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Abstract— The characterization of stabilizing controllers is
discussed from the behavioral point of view. The main results
provide parametrizations of the set of regular and superregular
stabilizing controllers in terms of rational kernel representa-
tions of the plant.

Index Terms— Behaviors, control in a behavioral setting,
stabilizing controllers, regular controllers, superregular con-
trollers, dead-beat controllers.

I. INTRODUCTION

In the behavioral approach, a dynamical system is viewed

as a family of time trajectories, called the behavior of the

system. The behavior can be specified in many ways, for

example, as the kernel of a differential operator, as an

input/state/output model, or, if the system is controllable,

as the image of a differential operator or a transfer func-

tion. Recently, these representations have been extended to

rational symbols [8].

The behavioral vantage point allows to define a system

in a completely representation free manner. But it imposes

the challenge of defining system properties in an intrinsic,

representation free manner as well. This has led, for example,

to new definitions of classical system theoretic concepts

as controllability and stabilizability, and observability and

detectability. Of course, one of the main tasks remains to

obtain tests that allow to verify various properties in terms

of a specific system representation.

We view control simply as restricting the plant behavior. A

controller is a dynamical system, with its own behavior, and

the intersection of the plant behavior and the controller be-

havior is the subset of the plant behavior that is implemented

by this controller. The aim of the present article is to study

the parametrization of the set of regular and superregular

stabilizing controllers. The results obtained are very akin

to the Kučera-Youla parametrization [3], [9], see also [4].

However, we start from a different definition of stability, and

hence of stabilizability, and since in the classical Kučera-

Youla parametrization all systems with the same transfer

function are identified, our results are sharper since they

respect the uncontrollable part of the system involved.

The notation for polynomial matrices and matrices of

rational functions is discussed in the appendix, along with

certain subrings (proper, stable) of R(ξ ). These subrings

play a central role in the sequel. In this paper, we state the

results. Proofs will be given elsewhere.

II. REVIEW: RATIONAL REPRESENTATIONS OF LINEAR

TIME-INVARIANT SYSTEMS

A dynamical system is a triple Σ = (T,W,B), with T ⊆R

the time-set, W the signal space, and B ⊆W
T the behavior.

We consider behaviors B ⊆ (R•)R
that are the solution set of

a system of linear constant coefficient differential equations.

In other words, there exists a polynomial matrix R∈R [ξ ]•×•

such that B is the solution set of

R
(

d
dt

)

w = 0 (R)

We need to make precise when we want to call w : R → R•

a solution of (R). For simplicity of exposition, we deal with

infinitely differentiable solutions only. Hence (R) defines the

dynamical system Σ = (R,R•,B) with

B =
{

w ∈ C
∞ (R,R•)

∣

∣ R
(

d
dt

)

w = 0
}

.

Note that we may as well write B = ker
(

R
(

d
dt

))

, since B

is actually the kernel of the differential operator R
(

d
dt

)

:

C ∞(R,Rcoldim(R)) → C ∞(R,Rrowdim(R)).
We denote the set of linear time-invariant differential

systems or their behaviors by L •, and by L w when the

number of variables is w.

We also use rational representations of L •. These are

defined as follows. Let G ∈ R(ξ )•×•
, and consider the

system of ‘differential equations’

G
(

d
dt

)

w = 0 (G )

The matrix of rational functions G is called the symbol of

(G ). Since G is a matrix of rational functions, it is not clear

when w : R → R• is a solution of equation (G ). We define

solutions as follows. Let (P,Q) be a left coprime matrix

factorization over R [ξ ] of G = P−1Q. Define

[[w : R → R
• is a solution of (G ) ]] :⇔ [[Q

(

d
dt

)

w = 0 ]].

Whence (G ) defines the system Σ =
(

R,R•,ker
(

Q
(

d
dt

)))

∈
L •. We refer to [8] for motivation and details on system

representation with rational symbols.
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Since the representations (R) are merely a subset of the

representations (G ), matrices of rational functions form a

representation class of L • that is more redundant, and hence

richer, than the polynomial matrices. This redundancy can be

used to obtain rational representations with properties that

cannot be obtained using polynomial representations. In this

paper, we use this richness in order to parametrize the set of

stabilizing controllers.

III. INTEGER INVARIANTS

There are a number of integer invariants w,m,p,n (maps

from L • to Z+) that play an important role in the present

paper.

(i) w (B) equals the number of variables in B,

(ii) m(B) equals the number of free variables in B, i.e.

the number of input variables in B,

(iii) p(B) equals the number of bound variables in B, i.e.

the number of output variables in B, and

(iv) n(B) equals the number of state variables in B.

There are numerous ways to define these integer invariants

formally, see [5].

IV. REVIEW: CONTROLLABILITY, STABILITY, AND

STABILIZABILITY

The time-invariant system Σ = (R,R•,B) is said to be

(i) controllable if ∀ w1,w2 ∈B, ∃ T ≥ 0 and w ∈B, such

that w(t) = w1(t) for t < 0, and w(t) = w2(t −T ) for

t ≥ T ;

(ii) stabilizable if ∀ w ∈ B, ∃ w′ ∈ B, such that w′(t) =
w(t) for t < 0 and w′(t) → 0 for t → ∞;

(iii) autonomous if w1,w2 ∈ B and w1(t) = w2(t) for t < 0

implies w1 = w2;

(iv) stable if w ∈ B implies w(t) → 0 for t → ∞;

(v) memoryless if n(B) = 0;

(vi) dead-beat if B = {0}.

The latter two notions are added only for the sake of

completeness.

The system Bcontrollable ∈ L w is called the controllable

part of B ∈ L w if (i) Bcontrollable ⊆ B, (ii) Bcontrollable is

controllable, and (iii) [[B′ ∈L w,B′ controllable , and B′ ⊆
B]] ⇒ [[Bcontrollable ⊆B′]]. In words, Bcontrollable is the largest

controllable system contained in B. It is well known that

Bcontrollable exists.

The controllable part induces an equivalence rela-

tion, called controllability equivalence, on L w by setting

[[B′ ∼controllability B′′]] :⇔ [[ B′
controllable = B′′

controllable]]. It is

easy to prove that B′
controllable = B′′

controllable if and only if

B′ and B′′ have the same compact support trajectories.

It can be shown that the system G
(

d
dt

)

w = 0, where

G ∈ R(ξ )•×•
, and F

(

d
dt

)

G
(

d
dt

)

w = 0 are controllability

equivalent if F ∈ R(ξ )•×•
is square and nonsingular. Each

equivalence class modulo controllability contains exactly one

controllable behavior, and its behavior contains all the other

behaviors that belong that the equivalence class. In particular,

two input/output systems have the same transfer function if

and only if they are controllability equivalent.

The following result links controllability and stabilizability

of systems in L • to the existence of left prime representa-

tions over the various subrings of R(ξ ) introduced in the

appendix.

Proposition 1: Let B ∈ L •.

1) B admits a representation (R) with R of full row rank,

and a representation (G ) with G of full row rank and

G ∈ R(ξ )•×•
PS

, that is, with all its elements proper and

stable, meaning that they have no poles in C+.

2) B admits a representation (G ) with G left prime over

R(ξ ), that is, with G of full row rank.

3) B is controllable if and only if it admits a representa-

tion (R) with R ∈ R [ξ ]•×•
left prime over R [ξ ], that

is, with R(λ ) of full row rank for all λ ∈ C.

4) B admits a representation (G ) with G left prime over

R(ξ )
P

, that is, with all its elements proper and G∞

of full row rank.

5) B is stabilizable if and only if it admits a represen-

tation (G ) with G ∈ R(ξ )•×•
S

left prime over R(ξ )
S

,

that is, with G of full row rank and no poles and no

zeros in C+.

6) B is stabilizable if and only if it admits a representa-

tion (G ) with G ∈ R(ξ )•×•
PS

left prime over R(ξ )
PS

,

that is, with G∞ of full row rank and no poles and no

zeros in C+.

7) B is memoryless if and only if it admits a representa-

tion (R) with RinR•×•, in which case R can be taken

to be left prime over R, that is with R a constant matrix

of full row rank.

Proposition 1 illustrates how system properties can be

translated into rational symbols. Roughly speaking, every

B ∈ L • has a full row rank polynomial and a full row

rank proper and/or stable representation. As long as we

allow a non-empty region where to put the poles, we can

obtain a representation with the poles in that region. It is

only when we allow no finite and no infinite poles that

we are restricted to memoryless systems. The zeros of

the representation are more significant, however. No zeros

corresponds to controllability. Stable zeros corresponds to

stabilizability.

Proposition 1 spells out exactly what the condition is for

the existence of a kernel representation that is left prime

over R(ξ )
PS

: stabilizability. It is of interest to compare this

with the classical results obtained by Vidyasagar in his book

[6] (this builds on a series of earlier results, for example

[3], [9], [2]). In these publications, the aim is to obtain a

representation of a system that is given as a transfer function

to start with,

y = F
(

d
dt

)

u, w =

[

u

y

]

,

where F ∈ R(ξ )p×m
. This is a special case of (G ), and, since

[

Ip −F
]

has no zeros, y = F
(

d
dt

)

u is controllable, and

therefore stabilizable. Thus, by proposition 1, it also admits a

representation G1

(

d
dt

)

y = G2

(

d
dt

)

u with G1,G2 ∈R(ξ )•×•
PS

,

and left coprime over R(ξ )
PS

. This is an important,

classical, result. However, in the controllable case, we obtain
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a representation that is left prime over R(ξ )P , and such that
[

G1 G2

]

has no zeros at all.

The main difference of our result from the classical left co-

prime factorization results over R(ξ )
PS

is that we faithfully

preserve controllability, or, more generally, the exact behav-

ior, and not only the controllable part of a behavior, whereas

in the classical approach all stabilizable systems with the

same transfer function are identified. Loosely speaking, left

coprime factorizations over R(ξ )
PS

of a transfer function

avoid unstable pole-zero cancellations. Our approach avoids

altogether introducing common poles and zeros as well as

pole-zero cancellations. Since the whole issue of coprime

factorizations over the ring of stable rational functions started

from a need to deal carefully with pole-zero cancellations [9],

we feel that our trajectory based mode of thinking offers a

useful point of view.

V. INTERCONNECTION

Let Σ1 = (T,W,B1) and Σ2 = (T,W,B2) be two dynam-

ical systems. The dynamical system Σ = (T,W,B1 ∩B2) =:

Σ1 ∧ Σ2 is called the interconnection of Σ1 and Σ2. This

definition signifies that in the interconnected system, w has

to obey both the laws of Σ1 and Σ2.

Let B1,B2 ∈ L w. Their interconnection has behavior

B1∩B2, and obviously B1∩B2 ∈L w. This interconnection

is said to be regular if

p(B1 ∩B2) = p(B1)+p(B2)

Since m(B1 +B2) = m(B1)+m(B2)−m(B1 ∩B2), reg-

ularity is equivalent to m(B1 +B2) = w, and therefore to

B1 +B2 = C ∞ (R,Rw)

It is said to be superregular if in addition

n(B1 +B2) = n(B1)+n(B2)

The significance of these concepts may be explained as

follows. Regularity of the interconnection means that the

interconnection does not put conditions on the exogenous

variables that may be present in the systems B1 and B2.

It ensures that the exogenous behavior is left unchanged by

the interconnection. See [1, section VII] for an explanation of

this. Superregularity means that the interconnection can take

place at any moment in time. Precisely, the interconnection

of B1 ∈ L w and w2 ∈ L w is superregular if and only if

for all w1 ∈B1,w2 ∈B2, there exists a w ∈ (B1 ∩B2)
closure

such that w′
1,w

′
2 ∈ B1 ∩B2, with w′

1 and w′
2 defined by

w′
1(t) =

{

w1(t) for t ≤ 0

w(t) for t > 0
,

and

w′
2(t) =

{

w2(t) for t ≤ 0,

w(t) for t > 0
.

Hence, for a superregular interconnection, any distinct past

histories in B1 and B2 can harmoniously be continued as

the same future trajectory in B1 ∩B2. In [7] it has been

shown that superregular interconnection can also be viewed

as feedback interconnection.

We now prove a proposition about (super)regularity in

terms of left-prime kernel representations with rational sym-

bols.

Proposition 2: Consider B1,B2 ∈ L w. Let Gk

(

d
dt

)

w =

0,k= 1,2, Gk ∈ R(ξ )•×w
, be a (matrix of rational functions

based) kernel representation of Bk.

1. Assume that the Gk’s are left prime over R(ξ ) (by

proposition 1 such representations exist). B1 ∩ B2 is a

regular interconnection if and only if
[

G1

G2

]

is also left prime over R(ξ ) ,

that is, if and only if

rank(

[

G1

G2

]

) = rank(G1)+ rank(G2).

2. Assume that the Gk’s are left prime over R(ξ )
P

(we

have seen that such representations exist). B1 ∩B2 is a

superregular interconnection if and only if
[

G1

G2

]

is also left prime over R(ξ )
P

,

that is, if and only if

rank

([

G∞
1

G∞
2

])

= rank(G∞
1 )+ rank(G∞

2 ) .

In the next proposition, we establish the conditions for

stability of (super)regular interconnections in terms of kernel

representations.

Proposition 3: Consider B1,B2 ∈ L w.

1. Assume that B1 and B2 are stabilizable. Let

Gk

(

d
dt

)

w = 0,k = 1,2, Gk ∈ R(ξ )•×w

S
, be a (matrix of ra-

tional functions based) kernel representation of Bk. Assume

that the Gk’s are left prime over R(ξ )
S

(by proposition

1 such representations exist). Then B1 ∩B2 is a regular

interconnection and stable if and only if G =

[

G1

G2

]

is square

and unimodular over R(ξ )
S

, that is, det(G) is miniphase.

2. Assume that B1 and B2 are stabilizable. Let

Gk

(

d
dt

)

w = 0,k = 1,2, Gk ∈ R(ξ )•×w

PS
, be a (matrix of ra-

tional functions based) kernel representation of Bk. Assume

that the Gk’s are left prime over R(ξ )PS (by proposition 1

such representations exist). Then B1 ∩B2 is a superregular

interconnection and stable if and only if G =

[

G1

G2

]

is square

and unimodular over R(ξ )PS , that is, det(G) is biproper

and miniphase.

3. Assume that B1 and B2 are controllable Let

Rk

(

d
dt

)

w = 0,k = 1,2, Rk ∈ R [ξ ]•×w
, be a (polynomial

matrix based) kernel representation of Bk with Rk of full

row rank (by proposition 1 such representations exist). Then

B1 ∩B2 is a regular interconnection and dead-beat if and

only if R =

[

R1

R2

]

is square and unimodular over R [ξ ] , that

is, det(R) is a non-zero constant.
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VI. CONTROL

We refer to [7], [1] for an extensive treatment of control

in a behavioral setting. In terms of the notions introduced

in these references, we shall be only concerned with full

interconnection, meaning that the controller has access to all

the system variables. We refer to [1] for a nice discussion of

the concepts involved.

Let B (henceforth ∈ L w) be called the plant, C (hence-

forth ∈ L w) the controller, and their interconnection B∩C

(hence also ∈L w), the controlled system. Call the controller

(super)regular if the interconnection of the plant and the

controller is (super)regular: the controller restricts the be-

havior of the plant to a subset. In [7], [1], the relevance of

(super)regularity of the controller has been discussed. The

classical input/state/output based sensor-output-to-actuator-

input controllers that dominate the field of control are su-

perregular. Controllers that are regular, but not superregular,

are relevant in control, much more so than is appreciated,

for example as PID controllers, or as control devices that do

not act as sensor-output-to-actuator-input controllers.

C ∈ L w is said to be a stabilizing controller for the plant

B ∈ L w if B∩C is stable. C ∈ L w is said to be a dead-

beat controller for the plant B ∈ L w if B ∩ C is dead-

beat. The following proposition establishes that stabilizability

is equivalent to the existence of a superregular stabilizing

controller, and that controllability is equivalent to a regular

dead-beat controller.

Proposition 4:

1. [[B ∈ L w is stabilizable]]
⇔ [[∃ a regular controller C ∈ L w stabilizing B]]
⇔ [[∃ a superregular controller C ∈ L w stabilizing B]].

2. [[B ∈ L w is controllable]]
⇔ [[∃ a regular dead-beat controller C ∈ L w]].

The following corollary is an immediate consequence of

this proposition.

Corollary 5:

1. Assume that G ∈ R(ξ )n1×n2
S

is left prime over R(ξ )
S

.

Then there exists F ∈ R(ξ )
(n2−n1)×n2

S
such that

[

G

F

]

is R(ξ )
S

-unimodular.

2. Assume that G ∈ R(ξ )n1×n2

PS
is left prime over R(ξ )

PS
.

Then there exists F ∈ R(ξ )
(n2−n1)×n2

PS
such that

[

G

F

]

is R(ξ )
PS

-unimodular.

3. Assume that R ∈ R [ξ ]n1×n2 is left prime over R [ξ ]. Then

there exists F ∈ R [ξ ](n2−n1)×n2 such that

[

G

F

]

is R [ξ ]-unimodular.

VII. PARAMETRIZATION OF THE SET OF REGULAR

STABILIZING, SUPERREGULAR STABILIZING, AND

DEAD-BEAT CONTROLLERS

A. Regular stabilizing controllers

In this section, we parametrize the set of regular con-

trollers that stabilize a given stabilizable plant.

Step 1. The parametrization starts from a (matrix of

rational functions based) kernel representation (G ) of the

plant B ∈ L w, assumed stabilizable. Assume that G ∈

R(ξ )
p(B)×w(B)
S

is left prime over R(ξ )
S

. By proposition

1, such a representation exists.

Step 2. Construct a G′ ∈ R(ξ )
m(B)×w(B)
S

such that

[

G

G′

]

is R(ξ )S -unimodular. By corollary 5, such a G′ exists.

Step 3. The set of regular stabilizing controllers C ∈ L w

is given as the systems with (matrix of rational functions

based) kernel representation C( d
dt

)w = 0, where

C = F1G+ F2G′

with F1 ∈ R(ξ )
m(B)×p(B)
S

free, and F2 ∈ R(ξ )
m(B)×m(B)
S

R(ξ )
S

-unimodular, that is, det(F2) miniphase.

Step 3’. This parametrization may be further simplified

using controllability equivalence, by identifying controllers

that have the same controllable part, that is, by considering

controllers up to controllability equivalence. The set of

controllers C ∈ L w with kernel representation C( d
dt

)w = 0

and C of the form

C = FG+ G′

with F ∈ R(ξ )
m(B)×p(B)
S

is free, contains an element of

the equivalence class modulo controllability of each regular

stabilizing controller for B.

Proof of the parametrization: Note that, since

[

G

G′

]

, is

R(ξ )-unimodular, any C ∈ R(ξ )•×w
can be written as

C =
[

F1 F2

]

[

G

G′

]

,

for some
[

F1 F2

]

∈ R(ξ )•×w

S . Take C left prime over

R(ξ )
S

. By proposition 1, such a representation exists, since

a stabilizing controller is obviously stabilizable. Then also F

is left prime over R(ξ )
S

. Taken as a controller (since we

are only interested in stabilizing controllers, we only need

to consider stabilizable controllers), C
(

d
dt

)

w = 0 leads to the

controlled system
[

I 0

F1 F2

][

G

G′

]

(

d
dt

)

w = 0.

By proposition 3, this controller is stabilizing and regular

if and only if F2 is R(ξ )
S

-unimodular. This yields the

parametrization. To obtain step 3’, observe that the controller
[

F−1
2 F1 I

]

[

G

G′

]

(

d
dt

)

w = 0 is controllability equivalent to

[

F1 F2

]

[

G

G′

]

(

d
dt

)

w = 0. �
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B. Superregular stabilizing controllers

In this section, we parametrize the set of regular con-

trollers that stabilize a given stabilizable plant.

Step 1. The parametrization starts from a (matrix of

rational functions based) kernel representation (G ) of the

plant B ∈ L w, assumed stabilizable. Assume that G ∈

R(ξ )
p(B)×w(B)
PS

is left prime over R(ξ )PS . By proposition

1, such a representation exists.

Step 2. Construct a G′ ∈ R(ξ )
m(B)×w(B)
PS

such that

[

G

G′

]

is R(ξ )PS -unimodular. By corollary 5, such a G′ exists.

Step 3. The set of regular stabilizing controllers C ∈ L w

is given as the systems with (matrix of rational functions

based) kernel representation C( d
dt

)w = 0, where

C = F1G+ F2G′

with F1 ∈ R(ξ )
m(B)×p(B)
PS

free, and F2 ∈ R(ξ )
m(B)×m(B)
PS

R(ξ )
PS

-unimodular, that is, det(F2) biproper and

miniphase.

Step 3’. This parametrization may be further simplified

using controllability equivalence, by identifying controllers

that have the same controllable part, that is, by considering

controllers up to controllability equivalence. The set of

controllers C ∈ L w with kernel representation C( d
dt

)w = 0

and C of the form

C = FG+ G′

with F ∈ R(ξ )
m(B)×p(B)
PS

is free, contains an element of the

equivalence class modulo controllability of each superregular

stabilizing controller for B.

This parametrization is proven in the same way as the

regular case.

C. Regular dead-beat controllers

In this section, we parametrize the set of regular dead-beat

controllers for a given plant.

Step 1. The parametrization starts from a (polynomial

matrix based) kernel representation (R) of the plant B ∈L w,

assumed controllable. Assume that R(λ ) has full row rank

for all λ ∈ C, that is, that R is left prime over R [ξ ]. By

controllability of B, such a kernel representation exists.

Step 2. Construct an R′ ∈ R [ξ ]m(B)×w(B)
such that

[

R

R′

]

is R [ξ ]-unimodular. Since R is left prime over R [ξ ], such

an R′ exists.

Step 3. The set of regular dead-beat controllers C ∈L w is

given as the systems with (polynomial matrix based) kernel

representation C( d
dt

)w = 0, where

C = FC +C′

F ∈ R [ξ ]m(B)×p(B)
free.

Proof of the parametrization: Note that, since

[

R

R′

]

, is

R [ξ ]-unimodular, any C ∈ R [ξ ]•×w
can be written as

C =
[

F1 F2

]

[

R

R′

]

,

for some
[

F1 F2

]

∈ R [ξ ]•×w
. If C

(

d
dt

)

w = 0 defines a

regular dead-beat controller, C can be taken to be left prime

over R [ξ ]. Then F is also left prime over R [ξ ]. Taken as a

controller C
(

d
dt

)

w = 0 leads to the controlled system

[

I 0

F1 F2

][

R

R′

]

(

d
dt

)

w = 0.

By proposition 3, this controller is dead-beat and reg-

ular if and only if F2 is R [ξ ]-unimodular. the con-

troller
[

F−1
2 F1 I

]

[

R

R′

]

(

d
dt

)

w = 0 has the same behavior as

[

F1 F2

]

[

G

G′

]

(

d
dt

)

w = 0. This yields the parametrization. �

Example: To illustrate the parametrizations obtained

above, consider the plant
[

1 0
]

[

w1

w2

]

= 0, and the super-

regular stabilizing controller w2 + α d
dt

w2 = 0, with α ≥ 0.

Take
[

0 1
]

for G′ in the parametrizations. The set of

(super)regular stabilizing controllers is given by C
(

d
dt

)

w2 =
0, with C ∈ R miniphase in the regular case, and miniphase

and biproper in the superregular case. Taking F2(ξ ) = (1 +
αξ )/(1 + 2αξ ), for example, yields the controller w2 +
α d

dt
w2 = 0, with α ≥ 0. The parametrization in step 3’ yields

only the controller w2 = 0, which is indeed the controllable

part of these controllers. This example illustrates that the

parametrization in step 3’ does not yield all the (super)regular

stabilizing controllers, although it yields all the stabilizing

controller transfer functions.

VIII. CONCLUDING REMARK

The parametrization of superregular stabilizing controllers

is identical to what in the classical literature is called the

Kučera-Youla parametrization of stabilizing controllers. But,

there are two differences.

The first difference is that in the classical theory all sys-

tems with the same transfer function are identified, whereas

we take carefully the uncontrollable modes into account. In

a transfer-function based theory every system is considered

to be controllable, and uncontrollable (stable) modes can be

added and cancelled at will.

The second difference is the stability concept used. In

the classical setting the interconnection of B and C is

defined to be stable if the system obtained by injecting

(artificial) arbitrary inputs at the interconnection terminals is

bounded-input/bounded-output stable. Our stability definition

requires that w(t) → 0 for t → ∞ in the interconnected

behavior B ∩C . It turns out that bounded-input/bounded-

output stability requires (i) our stability, combined with (ii)

superregularity. Interconnections that are not superregular

cannot be bounded-input/bounded-output stable. However,

for physical systems these concepts (stability and super-

regularity) are quite unrelated. For example the harmonic

oscillator M d2

dt2 w1 +Kw1 = w2, with M,K > 0 parameters, is

obviously stabilized by the damper w2 =−D d
dt

w1 if D > 0. In

our opinion, it makes little sense to call the interconnection

unstable, just because the interconnection is not superregular.
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IX. APPENDIX: NOTATION AND NOMENCLATURE

We use the standard symbols R,N,Z, etc. C denotes

the complex numbers, C− :=
{

s ∈ C
∣

∣ Re (s) < 0
}

the open

left half, and C+ :=
{

s ∈ C
∣

∣ Re (s) ≥ 0
}

the closed right

half of the complex plane. When the number of rows or

columns is immaterial (but finite), we use •, •×•, etc. Of

course, when we then add, multiply, etc., we assume that

the dimensions are compatible. C ∞(R,Rn) denotes the set of

infinitely differentiable functions from R to Rn. The notation

rank,det, ker, degree,diag, etc. is self-explanatory.

R [ξ ] denotes the set of polynomials with real coefficients

and R(ξ ) the set of real rational functions in the indetermi-

nate ξ . p1, p2 ∈ R [ξ ] are said to be coprime if they have no

common roots. p ∈ R [ξ ] is said to be Hurwitz if it has no

roots in C+. The relative degree of f ∈ R(ξ ) , f = n/d, with

n,d ∈ R [ξ ], is the degree of the denominator d minus the

degree of the numerator n; f ∈ R(ξ ) is said to be proper

if the relative degree is ≥ 0, strictly proper if it is > 0,

and biproper if it is equal to 0. f ∈ R(ξ ) , f = n/d, with

n,d ∈ R [ξ ] coprime, is said to be stable if d is Hurwitz, and

miniphase if n and d are both Hurwitz. More general stability

domains are of interest, but we stick with the ‘Hurwitz’

domain for the sake of concreteness.

The definition of the behavior of (G ) involves left coprime

polynomial matrix factorizations of elements of R(ξ )•×•
.

These factorizations are reviewed in [8], along with the

Smith-McMillan form, and poles and zeros of matrices of

real rational functions.

Several subrings of R(ξ ) play an important role in this

article, namely,

1) R(ξ ) itself, the rational functions;

2) R [ξ ], the polynomials;

3) R(ξ )P , the set elements of R(ξ ) that are proper;

4) R(ξ )
S

, the set elements of R(ξ ) that are stable;

5) R(ξ )
PS

= R(ξ )
P
∩R(ξ )

S
, the proper stable ratio-

nal functions;

6) R, the reals.

The last ring is added for the sake of completeness. The

notation is different from the one used in [8]. We can think

of these subrings in terms of poles. Indeed, these subrings are

characterized by, respectively, arbitrary poles, no finite poles,

no poles at {∞}, no poles in C+, no poles in C+∪{∞}, and

no poles in C∪{∞}. It is easy to identify the unimodular

elements (that is, the elements that have an inverse in the

ring) of these rings. They consist of, respectively, the nonzero

elements, the non-zero constants, the biproper elements, the

miniphase elements, the biproper miniphase elements of

R(ξ ), and the non-zero constants.

We also consider matrices over these rings. Call an ele-

ment of R(ξ )•×•
proper, stable, or proper stable if each of

its entries is. The square matrices over these rings are uni-

modular if and only if their determinant is unimodular. For

M ∈ R(ξ )•×•
P

, define M∞ := limx∈R,x→∞ M(x). M ∈ R(ξ )n×n

P

is called biproper if det(M ∞) 6= 0. The unimodular elements

of R(ξ )n×n

P
are the biproper ones.

Let R denote any of the rings R(ξ ), R [ξ ], R(ξ )P ,

R(ξ )
S

, R(ξ )
PS

= R(ξ )
P

∩R(ξ )
S

, or R. M ∈ Rn1×n2

is said to be left prime over R if for every factorization of

M the form M = FM′ with F ∈ Rn1×n1 and M′ ∈ Rn1×n2 , F

is unimodular over R. It is easy to characterize left-prime

elements. M ∈ R(ξ )n1×n2 is left prime over R if and only if

1) M is of full row rank if R = R(ξ ),
2) M ∈ R [ξ ]n1×n2 and M(λ ) is of full row rank for all

λ ∈ C if R = R [ξ ],
3) M ∈ R(ξ )n1×n2

P
and M∞ is of full row rank if R =

R(ξ )
P

,

4) M is of full row rank and has no poles and no zeros

in C+ if R = R(ξ )
S

,

5) M ∈ R(ξ )n1×n2

P
, M∞ is of full row rank, and M has no

poles and no zeros in C+, if R = R(ξ )
PS

.

6) M ∈ Rn1×n2 is of full row rank if R = R.

The matrices of rational functions M1,M2, . . . ,Mn ∈R are

said to be left coprime over R if M = row(M1,M2, . . . ,Mn),
is left prime over R.

X. ACKNOWLEDGMENTS

The SISTA Research program is supported by the Research Coun-
cil KUL: GOA AMBioRICS, CoE EF/05/006 Optimization in Engineer-
ing, several PhD/postdoc & fellow grants; by the Flemish Government:
FWO: PhD/postdoc grants, projects, G.0407.02 (support vector machines),
G.0197.02 (power islands), G.0141.03 (Identification and cryptography),
G.0491.03 (control for intensive care glycemia), G. 0120.03 (QIT),
G.0452.04 (new quantum algorithms), G.0499.04 (Statistics), G.0211.05
(Nonlinear), G.0226.06 (cooperative systems and optimization), G.0321.06
(Tensors), G.0302.07 (SVM/Kernel, research communities (ICCoS, AN-
MMM, MLDM); by IWT: PhD Grants, McKnow-E, Eureka-Flite2; and by
the Belgian Federal Science Policy Office: IUAP P6/04 (Dynamical systems,
Control and Optimization, 2007-2011).

This research is also supported by the Japanese Government under
the 21st Century COE (Center of Excellence) program for research and
education on complex functional mechanical systems, and by the JSPS
Grant-in-Aid for Scientific Research (B) No. 18360203, and also by Grand-
in-Aid for Exploratory Research No. 17656138.

REFERENCES

[1] M. Belur and H.L. Trentelman, Stabilization, pole placement, and
regular implementability, IEEE Transactions on Automatic Control,
volume 47, pages 735–744, 2002.

[2] C.A. Desoer, R.W. Liu, J. Murray, and R. Saeks, Feedback system de-
sign: The fractional representation approach to analysis and synthesis,
IEEE Transactions on Automatic Control, volume 25, pages 399–412,
1980.
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