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Summary. Inthis paper we consider a finite state Markov chain with twtpats, an observed
output and a to-be-estimated output, and derive a recuesimmator for the to-be-estimated
output from an observed output string. The main point of &énigle is to illustrate that for
this kind of filtering problem, it is not needed to have a pesihidden Markov realization of
the joint process, but it suffices to have a quasi-realinatWle also present an approximate
quasi-realization algorithm. We perform a simulation camipg the behavior of the exact, ex-
perimental and approximate quasi-realizations and chgakie performance of the estimator.

1 Filtering problems for finitary processes

Consider a stochastic procejss - | " defined on the time axi®, where both out-
putsy and z take values from finite sets. The main problem is to derivecarre
sive estimator for the to-be-estimated output z from an feseoutput string .
As data for the problem we assume the string probabilitiesllopossible strings
([y(l) 2] [y@ 2], [y(T) z(T)]T) forall T’ € N.

Our approach is to split up the problem in two steps. In thegtep we model the
given output probabilities by a joint quasi-hidden Markowdel. The second step is
the filtering step where we calculate the estimate for z basdhe joint quasi-hidden
Markov model and the observed string y. We will show that fas filtering applica-
tion, it suffices to have a quasi-realization of the stringlgabilities rather than a true
realization. The advantages of this last fact are twofotsit &f all, there is no need to
calculate a true realization, which is usually much more giicated to obtain than
a quasi-realization [1, 5]. In fact, there exist no genelgbathms for computing a
true stochastic realization. Moreover, there are prosdesavhich a true realization
does not exist while a quasi-realization does exist. Secitweddynamic order of a
quasi-realization is often smaller than the order of a taadization which makes the
filtering computation less expensive.

In Section 2 we give a overview of the quasi-realization pgoband recall an
algorithm to solve it. In Section 3 we derive the formulas floe recursive filter.
In Section 4 we present an approximate quasi-realizatigorigthm which obtains a
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balanced reduced quasi-realization of the string proliigisibnd in Section 5 finally,
we give a simulation example showing the effectiveness®ptioposed estimator.

The following notation is used throughout the papeX lis a matrix, then;., ;.
denotes the submatrix &f formed by the-th to thek-th row and by the-th to the
[-th column ofX. With X; ;, we mean the, j-th element ofX.

2 Quasi-realizations of finitary processes

Consider a stochastic procesdefined on the time axi¥ taking values from a finite
setY, called the output alphabet, witlf| the cardinality ofY. Denote byY* the set
of all finite strings with symbols from the s&t (including the empty string) and by
Yy = y1y2 - - - ¥|y| @n output sequence froli, wherely| denotes the length of Let
P : Y* — [0,1] be string probabilities, defined &y) := P(y(1) = y1,y(2) =
y2,---,¥(|y]) = yy|). Of course, the string probabilities satisR(¢) = 1 and
doyev Plyy) = P(y).

A quasi-hidden Markov modé defined a$X,, Y, I1,, 7y, ¢,), Where

X, with |X,| < oo is the quasi-state alphabet, alids the output alphabet;
eq is a column vector iR*4!, andr, is a row vector iR ¥l with 7e, = 1.
11, is a mapping fromY to RI*«!*I%«| with the matrixITx, := > .y I,(y)
such thatlTx e, = e,.

In the quasi-realizationproblem, we are given the output string probabilities
P and the problem is to find a quasi-HMM that realiZBswhich means that for
aly = yiy2...yly € Y7, it holds thatP(y) = m,1l,(y)eq, Wherell,(y) =
1y (y1) g (y2) - - - 1g(yy)-

A quasi-realizationX,, Y, I1,, 7,4, ) of P is calledminimalif for any other
realization(X7, Y, I1;, m;, e;,) of P, it holds thatX, | < |X]|.

The(generalized) Hankel matriaf P plays a central role in the quasi-realization
problem [4]. To build the Hankel matrix, we need two arbirarderingsu :=
(uj,t = 1,2,...) andv := (v;,j = 1,2,...) of the strings ofY*. The gen-
eralized Hankel matrixy of P is now defined as the doubly infinite matrix with
i, j-th elementP(u,;v;), whereu; andv; are thei-th andj-th elements of. and
v, and whereu;v; denotes the concatenation of the stringsand v;. Typically,
in the first ordering the strings are ordered lexicograghyidaom right to left,
which gives(¢,0, 1,00, 10,01, 11,000, 100, ...) for Y = {0,1}. In the second
ordering the strings are ordered lexicographically froffb ie right, which means
(¢,0,1,00,01,10,11,000,001,...) for Y = {0,1}. The top left corner of the Han-
kel matrix §) for the case wher® = {0, 1} then looks like

1 P(0)  P() | P(00)  P(O1)  P(10)  P(11)
P(0) | P(00) P (01) | P(000) P(001) P(010) P(011)
P(1) | P(10) P(11) | P(100) P(101) P(110) P(111)
P(00)|P(000) P(001)]P(0000) P(0001) P(0010) P(0011)
P(10)|P(100) P(101)|P(1000) P(1001) P(1010) P(1011)
P(01)|®(010) P(011)|P(0100) P(0101) P(0110) P(0111)
P(11)|P(110) P(111)|P(1100) P(1101) P(1110) P(1111)

The Hankel matrix of the string probabilitiésof the output process of a minimal
quasi-HMM with |X,| finite can be decomposed is= 0,C,, with
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0q = col(mq, mq I14(0), mq114(1), 74 114(00), mq 14 (10), .. .),
Cq = row(eq, I14(0)eq, Iy (1)eq, I14(00)eq, I14(01)eq, . . ),

whereQ, is injective andZ,, is surjective. Now, the following theorem is well-known

[2]:

Theorem 1 Let P be the string probabilities of a process with values from #&din
setY. Then:

1. There exists a quasi-realizatidi,, Y, I1,, 74, eq) Of P if and only if the rank
of the (infinite) generalized Hankel matrixof P, is finite.

2. The minimal order of a quasi-realizatidiX,|min is equal to the rank of the
Hankel matrixs$).

3. (X, Y, 11y, 7q, e4) and(Xy, Y, 117, 7, ;) are two minimal quasi-realizations,
then there exists a nonsingular matfixsuch that

mg=m,T, I(y) =T 'I'(y)T, eq =T '€,

We now present a general algorithm to find a minimal quadiza&t#on given the
generalized Hankel matris associated with the output string probabilities.

Step 1:Find a sub-matrixM € R™*"" of § with rank M) = rank($).
Assume thatM is formed by the elements in the rows indexed by the strings
Upy s Upys - - Up, AND COIUMNS) Ve, ooy Ve,

Step 2:Let R € R be the sub-matrix ofy formed by the elements in
the first row and columns indexed by the strings, v, ..., v. , and analogously
K € R"*! be the sub-matrix ofy formed by the elements in the rows indexed
by the stringsu,,, ur,,...,u, , and the first column. For each € Y define
oyM € R"*"" as the submatrix ofy formed by the elements in the rows in-
dexed by the strings,.,y, u,.,y, ..., u,,,y andin the columns indexed by the strings
Veys Veys - - -5 Ve, ,,,» Whereu,,y denotes the concatenation of the string and the
symboly.

Step 3Find P € R¥alminxn" andQ € R™ *Xalmin such thatPMQ = I ...-

Step 4:A minimal quasi-realizationX,, Y, I1,, 74, e4) iS now obtained as fol-
lows:

4(y) = PoyMQ Vy €Y,
7Tq :RQ7
eq = PK.

A hidden Markov mode(HMM) (X,Y, II, 7, e) is a special case of a quasi-
hidden Markov model where the elementsmoflI(y),y € Y are nonnegative and
e:i=[11...1]".

In the case of a hidden Markov model, the system matrices agvebabilistic
interpretation. There is an underlying state processhich generates the output
processy. The process: takes values from the finite s&t with cardinality |X|.
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Without loss of generality, we tak = {1,2,...,|X]|}. The elementI(y), ; is
equaltoP(z(t + 1) = j,y(t) = y|z(t) = i), the probability of going from stateto
statej while producing the output symbgl The element; is equal toP(z(1) = ),
the initial distribution of the underlying state process.

The hidden Markov modé€lX, Y, I, 7, e) is said to be atochastic realizationf
Pif, forall yiys ...y € Y*, itholds thatP(y) = wII(y,)II(y,) ... II(y, e

It is immediately clear that the minimal order of a true stastic realization of
an output process is at least as large than the minimal order of a quasi-rdaiiza
of . In Section 5, we give an example where the minimal order igk 4, while
the minimal quasi-order is equal to 3.

3 Recursive filtering

We consider a quasi-hidden Markov mod¥l,, Y x Z, II,, 7y, e,) with two output
processes, an observed output progessd a to-be-estimated output proces$he
output alphabets ar& andZ respectively. The aim is to find a mappidgfrom
Z x Y* to R, such that

2z3y, - Y1) = PO =2zly(1) =Yy, ..yt = 1) =Y, ).

Define B as a mapping fronZ to RI*«| where B (z) = Syer Moy, 2)eq
and 11" as a mapping frory to R¥a 1l wherel1(y) := 3>, ., I, (y, 2).

Proposition 1 The following equations define a recursive algorithm thahpates
z from the past of;:

7~T1 = 7Tq,
ﬁ't+1 = 77rtqu(y)(yt)v
. Tt
Tt = < )
Tt€q

2z5yy ... Y,) = mBP(z), vz el

This can be seen from

Ply()=y,,...ylt=1) =y, 4,2(t) = 2)
PY1Y2---Yio1)

225y Y1) =

By (2)
ﬁteq '

As a true realization is a special case of a quasi-realzatie formulas are also
valid for a true realization. In that case, the intermediatéabler; has a probabilis-
tic interpretation. One can show that = P(z(t) = jly(1) = yy,...,y(t —1) =
Yio1)-
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So we derived a recursive filter which can be calculated framaasi-realization
without the need for calculating a true stochastic redbratAs already mentioned,
the advantage of this approach is twofold. First of all, ¢hisr no need to calcu-
late a true stochastic realization, which is typically mexgensive than calculating
a quasi-realization. In fact, there exist no general atgors for computing a true
stochastic realization. Second, a quasi-realizatiorcaflyi has lower order than a
true realization, which makes that the filter itself becotess complex.

4 Approximate quasi-realization

In this section, we extend the idea of balanced realizafionbnear time-invariant
systems to quasi-realizations of hidden Markov models. \lllealso show that bal-
anced realizations can be used for model reduction.

First define matrice$V, and M,, which are the analogue of the controllability
and observability Gramians in system theory, as:

Wy = Z Hq(Y)eqe;qu(y)T = eqe;rv
yev*

My = Z Hq(y)Tﬂ';ﬂ'qu(y) = O;Oq_
yev=

Obviously,W, = W, > 0 andM, = M, > 0. Moreover, if¢, is surjective and
0, isinjective (as is the case for minimal quasi-realizatjptieen the strict inequality
holds.

We assume that the infinite sums in the definitions above, @ite fit is a topic
of our current research to check under which conditiongi(y ),y € Y this as-
sumption is fulfilled.

If the matricesiV, and M, are finite, then it is easy to verify that they are solu-
tions to the Lyapunov equations:

Z Hq(y)Wqu(y)T -W, = _eqe:;rv 1)
yey
an(y)TMqu(Y) - M, = _W;rﬂq- (2)
yeY

A realization is calledbalancedif the matricesiV, and A, are diagonal and
equal to each other. It can be shown that for every quasizegi@n, there exists an
equivalent balanced quasi-realization. We now show treaatgorithm of Section 2
can be modified such that it gives immediately a balancedigaabzation.

The sub-matrixA/ of Step lof the algorithm is taken equal to the complete
Hankel matrix$y € R>°*>°. The matriced< and R of Step 2becomef);...; and
$1.1:00 respectively. The decomposition 8tep 3is performed using the singular
value decomposition (SVD) of the Hankel matfix= ULV = UVEVEVT,
with X = diag(o1,02,...,0%,|....) - Then one can show that the realization of
Step 4is balanced and is given by
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my) = VZ-UToysVVE-1 VyeY,
T = 911 VVET,
62 =V 2_1UTfj1:oo,l~

If the quasi-realization is in balanced form, a reduced rhoflerder [X}| can
be obtained byruncatingthe model such that only the firgX; | states are retained.
We are presently working on obtaining error bounds for thisbced reduced quasi-
realization.

5 Simulation example

We now apply the ideas of filtering and SVD-based approximeadization in a
simulation. Suppose we are given two corresponding strfafjgength 5000) ¥
and 2V of an unknown hidden Markov model with two outputs, an obsdmutput
y and a to-be-estimated outputWe are also given another string?yof length100
of the observed outputand the problem is to find an estimate of the corresponding
string 2% of the to-be estimated output.

The strings ") and 2') were generated using an HMM = (X, Y, I1, 7, €)

0.09 0 0 0.010 0 8100 0 090 0 0
0.09 0 0 0 .01 0 .81 0 000.9 00 0 O
(a,0) =14 "0 oro| T@eD=157%0 90 > T®O=] 35100 0 | TO®D=1| 0490 0.000]"
0 0 .010 0 0 0 .81 0 00 .09 0 0 .09 0

m = [.45 .05 .05 .45] s

wherell is a mapping fronY x Z to RE‘{‘X‘X‘ with |X| = 4, Y = {a,b} and
Z = {0,1}. This model is unknown, but is given here to check the qualitthe
results.

It can be shown, using the method on page 26 of [3], that thigicorder true
realization is minimal. However, the rank of the Hankel rxaits equal to 3, which
means that a minimal quasi-realization has order 3. Forréegon, our filtering
algorithm will have an extra advantage. Not only, there imaed to compute a true
instead of a quasi-realization, but furthermore, the maliquasi-realization has a
lower order than the minimal realization such that the fiigicomputations become
less expensive.

We start with the modeling step. A hidden Markov with two aittprocesseg
andz with output alphabet¥ andZ is equivalent with a hidden Markov model with
one output process with alphabetW := Y x Z, in this exampleY x Z = {« :=
a0, :=al,v:=b0,0 := bl}.

From the output string W) (which is the equivalent of the string§'y and 2V)
of length5000, the probabilities of strings up to length 4 are estimatesleRpected,
the (21 x 21) Hankel matrix associated with these estimated string fiibes has
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full rank. However, there are 3 dominant singular valueg @mgular values or-
dered from high to low are: 1.6105; 0.5240; 0.0171; 0.00810%4; 0.0030; 0.0018;
0.0015;...). We now use the algorithm of Section 4 to find an approximagsg

realizations” = (Xi,Y, I1;, 7, e;) of order 3.

Table 1. String probabilities for strings of length 2 and length 6.

Sequence Exact Experimental ApproximaBequence Exact Experimental Approximate
aa 0.0041 0.0052 0.0052 %Y 0.3321 0.3225 0.3199
af  0.0369 0.0386 0.0386 ~vé 0.0405  0.0382 0.0408
oy 0.0081  0.0072 0.0072 o 0.0045  0.0046 0.0046
Bé 0.0009 0.0012 0.0012 e} 0.0004 0.0004 0.0004
Ba  0.0045 0.0028 0.0028 [ 207 0.0729 0.0732 0.0758
BB 03322  0.3377 0.3377 56 0.0121  0.0152 0.0126
By 0.0369 0.0362 0.0362 |B3BBBB«  0.0018 - 0.0012
~6 0.0365 0.0388 0.0388 |3BBBBHA  0.1430 - 0.1453
~ya  0.0369 0.0396 0.0396 | BBBBLY 0.0159 - 0.0161
vB  0.0405 0.0386 0.0386 |388835  0.0159 - 0.0169

In the first part of Table 1, we show the exact, experimentdl @pproximated
string probabilities for strings of length 2. To check thefpemance of the approxi-
mation, the string probabilities of strings longer than thypls, have to be examined.
In the second part of Table 1, we show the exact and approgdsiting probabili-
ties for a selection (due to space limitations) of stringieafth 6. We conclude that
the approximate quasi-realization algorithm performsegwiell.

b*w K ARIBHC K BHE  EARHPHHEOHHRERHREE HHERHREHERRER K

a‘u 10 20 30 40 50 60 70 80 90 100

Fig. 1. True first output, {?).

In the second step of our simulation, we are given a stridgand are asked to
find an estimate for the corresponding strifg zIn Figure 1, we show the string
y(2),

In Figure 2(a), we show the true second output striffg with '+, and the
estimated probability of observing the symliplbased on the approximate quasi-
realization, with ®’. One easily sees that, in general, the probability to oleser)
is high, when the true output is equalpand vice-versa, from which we conclude
that the estimator works quite well. In Figure 2(b), we shbe difference between
the probability of observing the symbobased on the approximate quasi-realization
and the same probability based on an exact quasi-realizétie notice that the dif-
ferences are minor. From these facts, we conclude that édiiltaring problem, the
approximate quasi-realization of order 3 performs well] #rere is no need to cal-
culate a quasi-realization of higher order or a true (noatieg) realization.
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Fig. 2. (a) True second outputZ2 (*') and estimated probability of observing@('e’). (b)
Error on probability of observing @

In this simulation example, there is no need to calculateaurtealization, which
is more complicated then obtaining a quasi-realizatioraddition, the order of a
quasi-realization is smaller than the order of a true ratitn, which makes that the
filtering computations become much less expensive.

6 Conclusions

In this paper, we considered HMMs with two outputs, an obserand a to-be-
estimated output. We derived filter equations for the securtdut based on the past
of the first output. It turned out that a quasi-realizatioffises to obtain recursive fil-
ter equations. By combining an exact quasi-realizatioorélgm with an SVD-based
approach, we proposed an approximate quasi-realizatymmitim.
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