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Abstract— Five subspace and two optimization based identification nteods are applied on seventeen datasets from DAISY.
The validation criterion measures how accurate the model aa fit a part of the data that is not used for identification. The
average result over all data sets shows that the global totéast squares method achieves the best fit for all partitiomgs of the
data into identification and validation parts. The prediction error method, which is also optimization based and mininzes a
closely related cost function, achieves the second best fit the identification part of the data but not always on the valdation
part of the data. The difference in performance between the Igbal total least squares and prediction error methods is kely
to be due to the imposed stability constraint in the predicton error method. Among the subspace methods the best fit on
the identification part of the data is achieved by the MOESP mthod. Fastest and probably most efficient is a method based
on the shift-and-cut operator.
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|. INTRODUCTION

One of the main goals of the classical system identificati@oty is to find conditions for consistency and asymptotic
efficiency of identification methods. Such conditions gikie following certificate to the methods:

asymptotically as more data is observed the methods work (a@hsistency) and are optimal (efficienaf)
the data generating mechanism is of a certain specified. type

It seems, however, that there is little judgment as to whegréxhe commonly used stochastic assumptions are satisfied
in applications. Three reasons for a theory—practice gagystem identification are:

1) the existing theory is asymptotic in nature and little i©Wwn about the practically relevant finite sample size case,

2) the assumption that there is a (deterministic) “true” eldd a specified model class is almost never satisfied,

3) the difference between the measured output and a sirdwdatput of the identified model is not a stationary stocleasti
process.

It is common practice to take into account the cumulativeafbf model errors, disturbances, and measurement errors
by adding an “error” signal to the model output. In the maieain literature, the error signal is modeled as a stationary
stochastic process. While the disturbances and the measoteesrrors are sometimes well modeled by a stationary
stochastic process, the model errors are certainly notoranand might not be approximated well by a stationary
process. Moreover, the model-data mismatch in practicées aue to the infinite dimensional, nonlinear, time-vagyi
nature of the object or phenomenon that produces the datéharfthite dimensional, linear, time-invariant model class
that is used, and not due to measurement errors and distghanhis suggests that the approximation properties of
identification algorithms are often more important than skechastic ones.

In practice the assumptions for the theoretical certifictsted above are not fulfilled and the model is searched by
an ad hock trail and error. Models obtained by trying différmethods, tuning some parameters, and pre-processing
the data are compared according to various validationri@ignd the one that is believed to be the most “suitable” for
the purpose at hand is selected. This common identificatiantise requires active participation of a specially tegin
human and is more of an art than a science. Certainly thetsdl@codel is no longer obtained by the identification
method but by the human. It is strange that the mainstreantifibation theory invariably concentrates on the thecsdti
certificate and leaves the actual identification processtodiried out manually guided by intuition and ad hock rules.

For the present comparison we choose a validation critetiah reflects the predictive power of the model: how
accurate the model can fit a part of the data that is not usediéntification. Values for the identification methods’
parameters that correspond to this validation criteriencdrosen and fixed for all data sets. The data sets are berichmar
problems from the data base for system identification DAIS¥ID5] and come from a number of applications: process
industry, electrical, mechanical, and environmental. Taga is not pre-processed because different methods might
benefit from different pre-processing steps, which makescttmparison on the same data impossible. Our purpose is
to apply the methods choosing only the model class (whickatflan a priori bound on the model complexity) and the
identification/validation criterion (which reflects a desl notion of approximation).
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II. COMPARED IDENTIFICATION METHODS

The compared identification methods are listed in Table k fitst five—subi d, uy2ssbal , w2x2ss, cva, and
noesp—are subspace-type methods. They are based on standardcaliigear algebra operations like eigenvalue and
singular value decompositions and do not involve noncomeexerical optimization. The last twopemandgt | s—
optimize certain nonlinear least squares cost functionltgl optimization methods. In general, subspace methogls a
cheaper to compute than the optimization based methodsdwite suboptimal results in terms of the particular créter
being used by the optimization based methods.

TABLE |
COMPARED METHODS

Name Description Reference

subi d robust combined subspace algorithm [VD96, Figure 4.8]
uy2ssbal deterministic balanced subspace identification [MWRMO5, Algorithm 7]
W2X2SS deterministic subspace identification using the shift-emtdoperator [MWDO0S5, Algorithm 2]
cva subspace method4si d with option’ N4Wei ght’ set to’ CVA’ [LjuO4]

noesp subspace method4si d with option’ N4AWei ght’ set to’ MOESP’ [LjuO4]

pem output error identification in the prediction error setting [LjuO4]

gtls output error identification using structured total leasiesgs [MWV *05]

The methodsiy2ssbal andw2x2ss are derived for solving exact identification problems, itlee data is assumed to
be produced by a model in a model class considered. Here tthedseare applied on data that does not necessarily satisfy
this condition. The software can handle the non-exact casause the exact operations rank computation and solution
of a compatible system of equations are automatically ogjldoy corresponding approximate operations numericél ran
computation (up to a given tolerance) and solution of an dermined linear system of equations in a least squares
sense. With this adaptation on the level of the numericaléempntation, the exact identification algorithong2ssbal
andw2x2ss become heuristic approximate identification algorithms.

The optimization based methogem (Prediction Error Method) andt | s (Global Total Least Squares [RH95])
are similar in structure: they both minimize a nonlinearstesquares cost function and the cost function evaluation
involves solving a Kalman filtering problenpé€m) or a deterministic smoothing problergt(l s). The motivation for
the two methods, however, is rather different. The preaiicérror method is derived for ARMAX system identification,
where statistical assumptions like stationarity, whismeand normal distribution play an important role. The glob
total least squares method is motived for deterministicraamation of the observed data. Similar dichotomy exists
for the subspace methods as well: gebi d, noesp, andcva methods are motivated in the ARMAX setting, while
uy2ssbal andw2x2ss are derived for exact identification.

The functionpemis implemented in the System Identification Toolbox of MATBAWe call it with the options
o "dist’,’ none’, which chooses output error model structure,

« 'nk’, 0, which requires a feedthrough term to be estimated, and

o« 'LimtError’, 0 which disables the default robustification of the cost fiorct

The output error model structure is chosen because it is abbl@ with the selected “simulation fit” validation criten,
see Section V.

The functiongt | s is called with an option that specifies the inputs as exacis @bain corresponds to an output
error identification problem. In the multi-output case, lever, the cost function minimized ot | s is the trace of the
output error sample covariance matrix while the cost fuorctninimized bypemis the determinant of the same matrix.
Therefore in the multi-output case the two cost functioresrast necessarily equivalent. In addiiton, thel s function
does not constrain the identified model to be stable whilepte does so. The initial approximation fgt | s is the
model computed by the functiom4si d from the System Identification Toolbox with the default \@lof the option
" NAWei ght " .

The functionuy2ssbal computes a finite time balanced model. The finite time batenpiarameter is selected to
be 3, wherel is the lag of the identified system, i.e., a degree of a diffeeeequation representation, or equivalently
the observability index.

I1l. DATASETS OFDAISY
The database for system identification DAISY [DMO05] is used ¥Verification and comparison of identification
algorithms. The considered data sets are listed in Table II.
Next we give references and some details about the meanthgragin of the data:
1) Lake Erie [GLM80]: data of a simulation related to the identification of the wastbasin of Lake Erie. The inputs
are the water temperature, water conductivity, water alkg) NO3z, and total hardness. The outputs are the dissolved
oxigen and algae.
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2)

3)

4)

5)

6)
7

8)

9)
10)

11)

12)

13)

TABLE Il
EXAMPLES FROMDAISY. T—NUMBER OF DATA POINTS M—NUMBER OF INPUTS p—NUMBER OF OUTPUTS|—LAG OF THE IDENTIFIED

MODEL.
# Data set name T m p |
1 Data of a simulation of the western basin of Lake Efie 57 5 2 1
2 Data of ethane-ethylene distillation column 90 5 3 1
3 Heating system 801 1 1 2
4  Data from an industrial dryer (Cambridge Control Ltd) 867 3 3 1
5 Data of a laboratory setup acting like a hair dryer 1000 1 1 5
6 Data of the ball-and-beam setup in SISTA 10000 1 1 2
7  Wing flutter data 1024 1 1 5
8 Data from a flexible robot arm 1024 1 1 4
9 Data of a glass furnace (Philips) 1247 3 6 1
10 Heat flow density through a two layer wall 1680 2 1 2
11  Simulation data of a pH neutralization process 2001 2 1 6
12 Data of a CD-player arm 2048 2 2 1
13 Data from a test setup of an industrial winding proces@500 5 2 2
14  Liquid-saturated steam heat exchanger 4000 1 1 2
15 Data from an industrial evaporator 6305 3 3 1
16  Continuous stirred tank reactor 7500 1 2 1
17  Model of a steam generator at Abbott Power Plant | 9600 4 4 1

Distillation column [GLM82]: simulated data of an ethane-ethylene distillation coluifime inputs are the ratio
between the reboiler duty and the feed flow, ratio betweenrdflex rate and the feed flow, ratio between the
distillate and the feed flow, input ethane composition, aopl ppressure. The outputs are top ethane composition,
bottom ethylene composition, and top-bottom differentiassure.

Heating systemthe experiment is a simple SISO heating system. The inpwesira 300 Watt Halogen lamp,
suspended several inches above a thin steel plate. Thetasitathermocouple measurement taken from the back
of the plate.

Industrial dryer: data from an industrial dryer (by Cambridge Control Ltd).eTihputs are fuel flow rate, hot gas
exhaust fan speed, and rate of flow of raw material. The ositprg dry bulb temperature, wet bulb temperature,
and moisture content of raw material.

Hair dryer [Lju99], [LjuO4]: laboratory setup acting like a hair dryer. Air is fanned tigh a tube and heated at
the inlet. The air temperature is measured by a thermoca@iglee output. The input is the voltage over the heating
device (a mesh of resistor wires).

Ball-beam [Ove95, pages 200-20@}ata of a the ball and beam practicum at ESAT-SISTA. The igptite angle

of the beam. The output is the position of the ball.

Flutter [FBPT98]: wing flutter data. Due to industrial secrecy agreementsaildeare not revealed. The input is
highly colored.

Robot arm:data from a flexible robot arm. The arm is installed on an dtmdtmotor. The transfer function from
the measured reaction torque of the structure on the grautiiet acceleration of the flexible arm is modeled. The
applied input is a periodic sine sweep. The input is reactimque of the structure. The output is acceleration of
the flexible arm.

Glass furnace [VD94]The inputs are the heating input and cooling input. The astpte produced by 6 temperature
sensors in a cross section of the furnace.

Two layer wall:heat flow density through a two layer wall (brick and insuatiayer). The inputs are internal wall
temperature and external wall temperature. The outputas ft@v density through the wall.

pH neutralization processsimulation data of a pH neutralization process in a constahtme stirring tank. The
inputs are the acid solution flow in liters and base solutiowfin liters. The output is the pH of the solution in the
tank. This process is a highly non-linear system.

Data of a CD-player arm [HS93]data from the mechanical construction of a CD player arm. inpets are the
forces of the mechanical actuators while the outputs arge@lto the tracking accuracy of the arm. The data is
measured in closed loop, and then through a two-step proeedunverted to open loop equivalent data. The inputs
are highly colored.

Winding: the process is a test setup of an industrial winding procBss.main part of the plant is composed of
a plastic web that is unwinded from first reel (unwinding yegbes over the traction reel and is finally rewinded
on the rewinding reel. Reel 1 and 3 are coupled with a DC-mtitat is controlled with input set point currents
I1 and 13. The angular speed of each reel (S1, S2 and S3) anerik®ns in the web between reel 1 and 2 (T1)
and between reel 2 and 3 (T3) are measured by dynamo tachrsnaett tension meters. The inputs are the angular
speed of reel 1 (S1), angular speed of reel 2 (S2), anguladspkreel 3 (S3), set point current at motor 1 (11),
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and set point current at motor 2 (13). The outputs are tenisiche web between reel 1 and 2 (T1) and tension in
the web between reel 2 and 3 (T3).

14) Exchanger [BP97]:the process is a liquid-satured steam heat exchanger, wheter is heated by pressurized
saturated steam through a copper tube. The output varigltheioutlet liquid temperature. The input variables are
the liquid flow rate, the steam temperature, and the inleididemperature. In this experiment the steam temperature
and the inlet liquid temperature are kept constant to theminal values. The heat exchanger process is a significant
benchmark for nonlinear control design purposes, since @haracterized by a non minimum phase behavior. The
input is the liquid flow rate. The output is the outlet liquehiperature.

15) Industrial evaporator [ZVDL94]:a four-stage evaporator to reduce the water content of auptpfibr example milk.
The inputs are feed flow to the first evaporator stage, vapartfiathe first evaporator stage, and cooling water flow.
The outputs are the dry matter content, flow of the outcoméuymrp and temperature of the outcome product.

16) Tank reactor [LI99]: The process is a model of a continuous stirring tank reaetbere the reaction is exothermic
and the concentration is controlled by regulating the auoflow. The input is coolant flow I/min. The outputs are
concentration mol/l, and temperature Kelvin degrees.

17) Steam generator [PB96}the data comes from a model of a Steam Generator at AbbottrHlaet in Champaign,

IL. The inputs are fuel scaled 0-1, air scaled 0-1, referéeea inches, and disturbance defined by the load level.
The outputs are drum pressure PSI, excess oxygen in exhases §o, level of water in the drum, and steam flow
kg/s. To make possible the open loop identification the wiatexl was stabilized by applying to the water flow input
a feed-forward action proportional to the steam flow and addba. The reference of this controller is the third
input.
Notel (Excluded data sets}ive data sets from DAISY are not included in the compari§dwee of them come from
autonomous systems, one (“Step response of a fractiortdlatisn column”) comes from a step response experiment,
and one (“Data of a 120 MW power plant”) has inputs that arepeosistently exiting of sufficient order (ramp signals).
These data sets are excluded from the comparison becayseathenot be treated by all methods.

IV. VALIDATION CRITERION AND RESULTS

The dataw = (u,y) in all examples is split into identification and validatioarts. For a chosere [0,100, the first
or lastx% of the data, denotediq, are used for identification, and the remainii§)0— x)% of the data, denoteda),
are used for validation. A mode¥ is identified fromwig; by an identification method and is validated vy, by the
validation criterion defined next. The model class is lingae-invariant systems with a boutdn the lag (degree of a
difference equation representation or equivalently oladglity index). Bounding the lag bl corresponds to bounding
the order bylp, wherep is the number of outputs.

The validation criterion corresponds to the “simulatiori fiomputed by the functiorconpar e of the System
Identification Toolbox, see Note 2. Given a time senes- (u,y) and a model#, define the approximatiog 6f y
in % as follows:

y((uy),#) = myin|\y—9|| subject to  cqlu,y) € Z.

(The optimization is carried over the initial conditiongtlgeneratey from the given inpuu.) Lety be the mean of,
i.e.,y:=Y{_,y(t)/T. With this notation, the fit ofv by 2 is defined as

F(w, %) := 100 max0,1— [y — %(w. 2)[|/[ly = I|)-

We compare the fitting criterioﬁ(w\,ahQ) for the models produced by the compared identification nistho

The average results for all data sets are given in Table TDi/30v” is a short notation for “first 70% of the data is
used for identification and the remaining 30% for validatidgimilarly “30v/70i” stands for “first 30% of the data is
used for validation and the remaining 70% for identificatidar plots for all methods, all data sets, and all experitaen
(splitting of the data into identification and validationr{z) are presented on Figures 2 to 7.

Note 2 (Unstable models)Some identification methods do not impose a stability caistron the model, so that
depending on the data, they can computed unstable modeita®pio a common misconception unstable model is not
necessarily a “bad” model. It could still achieve a good fittleé validation data, however, one should pay attention
in computing the fitting trajectory. Simulated forward im#, the unstable part of the model is sensitive to the initial
conditions, which makes the computation numerically ilhdimioned. Simulation of the unstable part backward in time
(from a final condition) avoids this difficulty.
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TABLE IlI
AVERAGE FIT IN % ON ALL DATASETS. (THE BEST FITS AND SMALLEST EXECUTION TIMES OBTAINED BY SUBSP&E AND OPTIMIZATION
METHODS ARE MARKED WITHbold face)

Experiment subid uy2ssbal W2X2ss  npesp cva pem gtls
identification 51.18 49.27 46.39 5552 49.79| 57.43 68.46

70i/30v  validation 32.14 31.57 32.34 38,97 33.38| 37.77 48.40
identification 46.34 47.46 48.83 53.86 50.78 | 59.13 68.87

30v/70i  validation 36.96 37.69 38.15 40.43 37.10| 45.17 53.72
identification 49.14 46.82 4556 55.13 50.88 | 56.84 68.36

80i/20v  validation 30.01 28.20 29.75 33.01 31.75| 36.17 44.14
identification 49.47 48.20 48.07 54.48 5190 58.93 68.48

20v/80i  validation 46.09 37.30 40.81 39.79 39.81 45.28 56.88
identification 50.92 47.61 48.59 5479 51.25| 58.39 68.95

90i/10v  validation 40.47 32.89 31.46 37.06 35.07 39.48 48.55
identification 48.16 48.46 4734 53.93 50.71| 58.78 69.06

10v/90i  validation 45.58 43.71 45.13 44,12 39.71 43.62 56.28
Typical execution times 0.11 0.95 0.05 4.45 5.03| 14.79 25.14

V. CONCLUSIONS

The conclusions are based on the average results over alsdtd, see Table III.

For all partitionings of the data into identification andidation parts, the best fit on both identification and valoiat
parts of the data is obtain byt | s. The second best fit on the identification part of the data tainbd bypem The
gt I s andpemmethods are the optimization based; they explicitly miaierthe validation criterion so it is not surprising
that they outperform the subspace-based methods on théficktion part of the data. A good fit on the validation part
of the data, however, is not guaranteed by a good fit on theifabation part of the data. Indeed in four out of the six
partitionings of the data, a subspace method achieves toaddest fit on the validation part of the data. With respect
to the execution tim@emis about twice faster thagt | s.

Perhaps the most important reason for the superior perfirenafgt | s over pemis the fact thatgt | s does not
impose a stability constraint on the identified model. (Mirgation over a larger set guarantees smaller value of the
cost function.) Other possible reasons for the differenceerformance ofit | s andpemare that the cost functions in
the multi-output case differ (trace vs determinant), thénojzation algorithms differ (Levenberg—Marquardt vs Gay
Newton), the initial approximations and the convergendeca (most probably) also differ.

Among the subspace methods the best fit on the identificataoh qf the data is achieved byoesp. In three
partitionings of the dataypesp achieves also the best fit on the validation part of the dat¢éhe other three cases, the
best fit is achieved bgubi d. Fastest and perhaps most efficient of all methodslis2ss, the method based on the
shift-and-cut operator. The subspace methoglBssbal andw2x2ss that are designed for exact system identification
and are applied as heuristics for approximate identificatio not give as accurate results as the stochastic subspace
identification methods
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Fig. 1. Typical execution times.
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Fig. 2. Splitting of the data into 70% identification 30% dalfion.
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Fig. 3. Splitting of the data into 30% validation 70% idewttfion.
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