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Abstract— Five subspace and two optimization based identification methods are applied on seventeen datasets from DAISY.
The validation criterion measures how accurate the model can fit a part of the data that is not used for identification. The
average result over all data sets shows that the global totalleast squares method achieves the best fit for all partitionings of the
data into identification and validation parts. The prediction error method, which is also optimization based and minimizes a
closely related cost function, achieves the second best fit on the identification part of the data but not always on the validation
part of the data. The difference in performance between the global total least squares and prediction error methods is likely
to be due to the imposed stability constraint in the prediction error method. Among the subspace methods the best fit on
the identification part of the data is achieved by the MOESP method. Fastest and probably most efficient is a method based
on the shift-and-cut operator.
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I. I NTRODUCTION

One of the main goals of the classical system identification theory is to find conditions for consistency and asymptotic
efficiency of identification methods. Such conditions give the following certificate to the methods:

asymptotically as more data is observed the methods work well (consistency) and are optimal (efficiency)if
the data generating mechanism is of a certain specified type.

It seems, however, that there is little judgment as to what extent the commonly used stochastic assumptions are satisfied
in applications. Three reasons for a theory–practice gap insystem identification are:

1) the existing theory is asymptotic in nature and little is known about the practically relevant finite sample size case,
2) the assumption that there is a (deterministic) “true” model in a specified model class is almost never satisfied,
3) the difference between the measured output and a simulated output of the identified model is not a stationary stochastic

process.

It is common practice to take into account the cumulative effect of model errors, disturbances, and measurement errors
by adding an “error” signal to the model output. In the mainstream literature, the error signal is modeled as a stationary
stochastic process. While the disturbances and the measurement errors are sometimes well modeled by a stationary
stochastic process, the model errors are certainly not random and might not be approximated well by a stationary
process. Moreover, the model–data mismatch in practice is often due to the infinite dimensional, nonlinear, time-varying
nature of the object or phenomenon that produces the data andthe finite dimensional, linear, time-invariant model class
that is used, and not due to measurement errors and disturbances. This suggests that the approximation properties of
identification algorithms are often more important than thestochastic ones.

In practice the assumptions for the theoretical certificatestated above are not fulfilled and the model is searched by
an ad hock trail and error. Models obtained by trying different methods, tuning some parameters, and pre-processing
the data are compared according to various validation criteria and the one that is believed to be the most “suitable” for
the purpose at hand is selected. This common identification practice requires active participation of a specially trained
human and is more of an art than a science. Certainly the selected model is no longer obtained by the identification
method but by the human. It is strange that the mainstream identification theory invariably concentrates on the theoretical
certificate and leaves the actual identification process to be carried out manually guided by intuition and ad hock rules.

For the present comparison we choose a validation criterionthat reflects the predictive power of the model: how
accurate the model can fit a part of the data that is not used foridentification. Values for the identification methods’
parameters that correspond to this validation criterion are chosen and fixed for all data sets. The data sets are benchmark
problems from the data base for system identification DAISY [DM05] and come from a number of applications: process
industry, electrical, mechanical, and environmental. Thedata is not pre-processed because different methods might
benefit from different pre-processing steps, which makes the comparison on the same data impossible. Our purpose is
to apply the methods choosing only the model class (which reflects an a priori bound on the model complexity) and the
identification/validation criterion (which reflects a desired notion of approximation).

Proceedings of the 17th International Symposium on Mathematical
Theory of Networks and Systems, Kyoto, Japan, July 24-28, 2006

FrP11.2

2858



II. COMPARED IDENTIFICATION METHODS

The compared identification methods are listed in Table I. The first five—subid, uy2ssbal, w2x2ss, cva, and
moesp—are subspace-type methods. They are based on standard numerical linear algebra operations like eigenvalue and
singular value decompositions and do not involve nonconvexnumerical optimization. The last two—pem andgtls—
optimize certain nonlinear least squares cost functions bylocal optimization methods. In general, subspace methods are
cheaper to compute than the optimization based methods but provide suboptimal results in terms of the particular criteria
being used by the optimization based methods.

TABLE I

COMPARED METHODS.

Name Description Reference
subid robust combined subspace algorithm [VD96, Figure 4.8]
uy2ssbal deterministic balanced subspace identification [MWRM05, Algorithm 7]
w2x2ss deterministic subspace identification using the shift-and-cut operator [MWD05, Algorithm 2]
cva subspace methodn4sid with option ’N4Weight’ set to’CVA’ [Lju04]
moesp subspace methodn4sid with option ’N4Weight’ set to’MOESP’ [Lju04]
pem output error identification in the prediction error setting [Lju04]
gtls output error identification using structured total least squares [MWV +05]

The methodsuy2ssbal andw2x2ss are derived for solving exact identification problems, i.e., the data is assumed to
be produced by a model in a model class considered. Here the methods are applied on data that does not necessarily satisfy
this condition. The software can handle the non-exact case because the exact operations rank computation and solution
of a compatible system of equations are automatically replaced by corresponding approximate operations numerical rank
computation (up to a given tolerance) and solution of an overdetermined linear system of equations in a least squares
sense. With this adaptation on the level of the numerical implementation, the exact identification algorithmsuy2ssbal
andw2x2ss become heuristic approximate identification algorithms.

The optimization based methodspem (Prediction Error Method) andgtls (Global Total Least Squares [RH95])
are similar in structure: they both minimize a nonlinear least squares cost function and the cost function evaluation
involves solving a Kalman filtering problem (pem) or a deterministic smoothing problem (gtls). The motivation for
the two methods, however, is rather different. The prediction error method is derived for ARMAX system identification,
where statistical assumptions like stationarity, whiteness, and normal distribution play an important role. The global
total least squares method is motived for deterministic approximation of the observed data. Similar dichotomy exists
for the subspace methods as well: thesubid, moesp, andcva methods are motivated in the ARMAX setting, while
uy2ssbal andw2x2ss are derived for exact identification.

The functionpem is implemented in the System Identification Toolbox of MATLAB. We call it with the options
• ’dist’,’none’, which chooses output error model structure,
• ’nk’,0, which requires a feedthrough term to be estimated, and
• ’LimitError’,0 which disables the default robustification of the cost function.
The output error model structure is chosen because it is compatible with the selected “simulation fit” validation criterion,
see Section IV.

The functiongtls is called with an option that specifies the inputs as exact. This again corresponds to an output
error identification problem. In the multi-output case, however, the cost function minimized bygtls is the trace of the
output error sample covariance matrix while the cost function minimized bypem is the determinant of the same matrix.
Therefore in the multi-output case the two cost functions are not necessarily equivalent. In addiiton, thegtls function
does not constrain the identified model to be stable while thepem does so. The initial approximation forgtls is the
model computed by the functionn4sid from the System Identification Toolbox with the default value of the option
’N4Weight’.

The functionuy2ssbal computes a finite time balanced model. The finite time balancing parameter is selected to
be 5l , wherel is the lag of the identified system, i.e., a degree of a difference equation representation, or equivalently
the observability index.

III. D ATASETS OFDAISY

The database for system identification DAISY [DM05] is used for verification and comparison of identification
algorithms. The considered data sets are listed in Table II.

Next we give references and some details about the meaning and origin of the data:
1) Lake Erie [GLM80]: data of a simulation related to the identification of the western basin of Lake Erie. The inputs

are the water temperature, water conductivity, water alkalinity, NO3, and total hardness. The outputs are the dissolved
oxigen and algae.

2859



TABLE II

EXAMPLES FROM DAISY. T—NUMBER OF DATA POINTS, m—NUMBER OF INPUTS, p—NUMBER OF OUTPUTS, l—LAG OF THE IDENTIFIED

MODEL.

# Data set name T m p l
1 Data of a simulation of the western basin of Lake Erie 57 5 2 1
2 Data of ethane-ethylene distillation column 90 5 3 1
3 Heating system 801 1 1 2
4 Data from an industrial dryer (Cambridge Control Ltd) 867 3 3 1
5 Data of a laboratory setup acting like a hair dryer 1000 1 1 5
6 Data of the ball-and-beam setup in SISTA 1000 1 1 2
7 Wing flutter data 1024 1 1 5
8 Data from a flexible robot arm 1024 1 1 4
9 Data of a glass furnace (Philips) 1247 3 6 1

10 Heat flow density through a two layer wall 1680 2 1 2
11 Simulation data of a pH neutralization process 2001 2 1 6
12 Data of a CD-player arm 2048 2 2 1
13 Data from a test setup of an industrial winding process2500 5 2 2
14 Liquid-saturated steam heat exchanger 4000 1 1 2
15 Data from an industrial evaporator 6305 3 3 1
16 Continuous stirred tank reactor 7500 1 2 1
17 Model of a steam generator at Abbott Power Plant 9600 4 4 1

2) Distillation column [GLM82]: simulated data of an ethane-ethylene distillation column.The inputs are the ratio
between the reboiler duty and the feed flow, ratio between thereflux rate and the feed flow, ratio between the
distillate and the feed flow, input ethane composition, and top pressure. The outputs are top ethane composition,
bottom ethylene composition, and top-bottom differentialpressure.

3) Heating system:the experiment is a simple SISO heating system. The input drives a 300 Watt Halogen lamp,
suspended several inches above a thin steel plate. The output is a thermocouple measurement taken from the back
of the plate.

4) Industrial dryer: data from an industrial dryer (by Cambridge Control Ltd). The inputs are fuel flow rate, hot gas
exhaust fan speed, and rate of flow of raw material. The outputs are dry bulb temperature, wet bulb temperature,
and moisture content of raw material.

5) Hair dryer [Lju99], [Lju04]: laboratory setup acting like a hair dryer. Air is fanned through a tube and heated at
the inlet. The air temperature is measured by a thermocoupleat the output. The input is the voltage over the heating
device (a mesh of resistor wires).

6) Ball-beam [Ove95, pages 200–206]:data of a the ball and beam practicum at ESAT-SISTA. The inputis the angle
of the beam. The output is the position of the ball.

7) Flutter [FBPT98]: wing flutter data. Due to industrial secrecy agreements, details are not revealed. The input is
highly colored.

8) Robot arm:data from a flexible robot arm. The arm is installed on an electrical motor. The transfer function from
the measured reaction torque of the structure on the ground to the acceleration of the flexible arm is modeled. The
applied input is a periodic sine sweep. The input is reactiontorque of the structure. The output is acceleration of
the flexible arm.

9) Glass furnace [VD94]:The inputs are the heating input and cooling input. The outputs are produced by 6 temperature
sensors in a cross section of the furnace.

10) Two layer wall:heat flow density through a two layer wall (brick and insulation layer). The inputs are internal wall
temperature and external wall temperature. The output is heat flow density through the wall.

11) pH neutralization process:simulation data of a pH neutralization process in a constantvolume stirring tank. The
inputs are the acid solution flow in liters and base solution flow in liters. The output is the pH of the solution in the
tank. This process is a highly non-linear system.

12) Data of a CD-player arm [HS93]:data from the mechanical construction of a CD player arm. Theinputs are the
forces of the mechanical actuators while the outputs are related to the tracking accuracy of the arm. The data is
measured in closed loop, and then through a two-step procedure converted to open loop equivalent data. The inputs
are highly colored.

13) Winding: the process is a test setup of an industrial winding process.The main part of the plant is composed of
a plastic web that is unwinded from first reel (unwinding reel), goes over the traction reel and is finally rewinded
on the rewinding reel. Reel 1 and 3 are coupled with a DC-motorthat is controlled with input set point currents
I1 and I3. The angular speed of each reel (S1, S2 and S3) and thetensions in the web between reel 1 and 2 (T1)
and between reel 2 and 3 (T3) are measured by dynamo tachometers and tension meters. The inputs are the angular
speed of reel 1 (S1), angular speed of reel 2 (S2), angular speed of reel 3 (S3), set point current at motor 1 (I1),
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and set point current at motor 2 (I3). The outputs are tensionin the web between reel 1 and 2 (T1) and tension in
the web between reel 2 and 3 (T3).

14) Exchanger [BP97]: the process is a liquid-satured steam heat exchanger, wherewater is heated by pressurized
saturated steam through a copper tube. The output variable is the outlet liquid temperature. The input variables are
the liquid flow rate, the steam temperature, and the inlet liquid temperature. In this experiment the steam temperature
and the inlet liquid temperature are kept constant to their nominal values. The heat exchanger process is a significant
benchmark for nonlinear control design purposes, since it is characterized by a non minimum phase behavior. The
input is the liquid flow rate. The output is the outlet liquid temperature.

15) Industrial evaporator [ZVDL94]:a four-stage evaporator to reduce the water content of a product, for example milk.
The inputs are feed flow to the first evaporator stage, vapor flow to the first evaporator stage, and cooling water flow.
The outputs are the dry matter content, flow of the outcome product, and temperature of the outcome product.

16) Tank reactor [LI99]: The process is a model of a continuous stirring tank reactor,where the reaction is exothermic
and the concentration is controlled by regulating the coolant flow. The input is coolant flow l/min. The outputs are
concentration mol/l, and temperature Kelvin degrees.

17) Steam generator [PB96]:the data comes from a model of a Steam Generator at Abbott Power Plant in Champaign,
IL. The inputs are fuel scaled 0–1, air scaled 0–1, referencelevel inches, and disturbance defined by the load level.
The outputs are drum pressure PSI, excess oxygen in exhaust gases %, level of water in the drum, and steam flow
kg/s. To make possible the open loop identification the waterlevel was stabilized by applying to the water flow input
a feed-forward action proportional to the steam flow and a PI action. The reference of this controller is the third
input.

Note1 (Excluded data sets). Five data sets from DAISY are not included in the comparison.Three of them come from
autonomous systems, one (“Step response of a fractional distillation column”) comes from a step response experiment,
and one (“Data of a 120 MW power plant”) has inputs that are notpersistently exiting of sufficient order (ramp signals).
These data sets are excluded from the comparison because they can not be treated by all methods.

IV. VALIDATION CRITERION AND RESULTS

The dataw = (u,y) in all examples is split into identification and validation parts. For a chosenx∈ [0,100], the first
or lastx% of the data, denotedwidt, are used for identification, and the remaining(100−x)% of the data, denotedwval,
are used for validation. A model̂B is identified fromwidt by an identification method and is validated onwval by the
validation criterion defined next. The model class is lineartime-invariant systems with a boundl on the lag (degree of a
difference equation representation or equivalently observability index). Bounding the lag byl corresponds to bounding
the order byl p, wherep is the number of outputs.

The validation criterion corresponds to the “simulation fit” computed by the functioncompare of the System
Identification Toolbox, see Note 2. Given a time seriesw = (u,y) and a modelB, define the approximation ˆy of y
in B as follows:

ŷ
(

(u,y),B
)

:= min
ŷ

‖y− ŷ‖ subject to col(u, ŷ) ∈ B.

(The optimization is carried over the initial conditions that generate ˆy from the given inputu.) Let ȳ be the mean ofy,
i.e., ȳ := ∑T

t=1y(t)/T. With this notation, the fit ofw by B is defined as

F(w,B) := 100 max(0,1−‖y− ŷ(w,B)‖/‖y− ȳ‖) .

We compare the fitting criterionF(wval,B̂) for the models produced by the compared identification methods.
The average results for all data sets are given in Table III. “70i/30v” is a short notation for “first 70% of the data is

used for identification and the remaining 30% for validation”. Similarly “30v/70i” stands for “first 30% of the data is
used for validation and the remaining 70% for identification”. Bar plots for all methods, all data sets, and all experiments
(splitting of the data into identification and validation parts) are presented on Figures 2 to 7.

Note 2 (Unstable models). Some identification methods do not impose a stability constraint on the model, so that
depending on the data, they can computed unstable model. Contrary to a common misconception unstable model is not
necessarily a “bad” model. It could still achieve a good fit ofthe validation data, however, one should pay attention
in computing the fitting trajectory. Simulated forward in time, the unstable part of the model is sensitive to the initial
conditions, which makes the computation numerically ill conditioned. Simulation of the unstable part backward in time
(from a final condition) avoids this difficulty.
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TABLE III

AVERAGE FIT IN % ON ALL DATASETS. (THE BEST FITS AND SMALLEST EXECUTION TIMES OBTAINED BY SUBSPACE AND OPTIMIZATION

METHODS ARE MARKED WITH bold face.)

Experiment subid uy2ssbal w2x2ss moesp cva pem gtls
identification 51.18 49.27 46.39 55.52 49.79 57.43 68.46

70i/30v validation 32.14 31.57 32.34 38.97 33.38 37.77 48.40
identification 46.34 47.46 48.83 53.86 50.78 59.13 68.87

30v/70i validation 36.96 37.69 38.15 40.43 37.10 45.17 53.72
identification 49.14 46.82 45.56 55.13 50.88 56.84 68.36

80i/20v validation 30.01 28.20 29.75 33.01 31.75 36.17 44.14
identification 49.47 48.20 48.07 54.48 51.90 58.93 68.48

20v/80i validation 46.09 37.30 40.81 39.79 39.81 45.28 56.88
identification 50.92 47.61 48.59 54.79 51.25 58.39 68.95

90i/10v validation 40.47 32.89 31.46 37.06 35.07 39.48 48.55
identification 48.16 48.46 47.34 53.93 50.71 58.78 69.06

10v/90i validation 45.58 43.71 45.13 44.12 39.71 43.62 56.28
Typical execution times 0.11 0.95 0.05 4.45 5.03 14.79 25.14

V. CONCLUSIONS

The conclusions are based on the average results over all data sets, see Table III.
For all partitionings of the data into identification and validation parts, the best fit on both identification and validation

parts of the data is obtain bygtls. The second best fit on the identification part of the data is obtained bypem. The
gtls andpem methods are the optimization based; they explicitly minimize the validation criterion so it is not surprising
that they outperform the subspace-based methods on the identification part of the data. A good fit on the validation part
of the data, however, is not guaranteed by a good fit on the identification part of the data. Indeed in four out of the six
partitionings of the data, a subspace method achieves the second best fit on the validation part of the data. With respect
to the execution timepem is about twice faster thangtls.

Perhaps the most important reason for the superior performance ofgtls over pem is the fact thatgtls does not
impose a stability constraint on the identified model. (Minimization over a larger set guarantees smaller value of the
cost function.) Other possible reasons for the difference in performance ofgtls andpem are that the cost functions in
the multi-output case differ (trace vs determinant), the optimization algorithms differ (Levenberg–Marquardt vs Gauss–
Newton), the initial approximations and the convergence criteria (most probably) also differ.

Among the subspace methods the best fit on the identification part of the data is achieved bymoesp. In three
partitionings of the data,moesp achieves also the best fit on the validation part of the data. In the other three cases, the
best fit is achieved bysubid. Fastest and perhaps most efficient of all methods isw2x2ss, the method based on the
shift-and-cut operator. The subspace methodsuy2ssbal andw2x2ss that are designed for exact system identification
and are applied as heuristics for approximate identification, do not give as accurate results as the stochastic subspace
identification methods.
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Fig. 1. Typical execution times.
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Fig. 2. Splitting of the data into 70% identification 30% validation.
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Fig. 3. Splitting of the data into 30% validation 70% identification.
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Fig. 4. Splitting of the data into 80% identification 20% validation.
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Fig. 5. Splitting of the data into 20% validation 80% identification.
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Fig. 6. Splitting of the data into 90% identification 10% validation.
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Fig. 7. Splitting of the data into 10% validation 90% identification.
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