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The Module Structure of ARMAX Systems

Ivan Markovsky, Jan C. Willems, and Bart De Moor

Abstract— We consider ARMAX system representations and
identification problems. Identifiability conditions in terms of
the correlation function of the process are given. One of the
conditions is persistency of excitation of an input component
of the process and another one is a rank condition for a pair
of Hankel matrices.

We study the linear combinations of the process and its
shifts that produce a process independent of the input. The
set of all such linear combinations, called the orthogonalizers,
has a module structure and under identifiability conditions
completely specifies the deterministic part of the ARMAX
system. Computing a module basis for the orthogonalizers is a
deterministic identification problem.

We propose an ARMAX identification algorithm, which has
three steps: first compute the deterministic part of the system
via the orthogonalizers, then the AR part, which also has a
module structure, and finally the MA part.

Index Terms— System identification, ARMAX representation,
orthogonalizers, annihilators, module structure.

I. INTRODUCTION
A. Stochastic processes and correlation functions
Consider a vector w of w real valued, jointly Gaussian,
zero mean, stationary, ergodic stochastic processes on Z. In
what follows, process means a vector stochastic processes
that satisfies the above conditions. The correlation function
of w

Ry = (...,RWW(O),...

is defined as

RWW(I) :=E (W(I)WT(O)) c RWXW’

Ruw(1),...)

where E is the expectation operator. To avoid unessential
complications, we assume that R,,,(0) > 0.

A realization of w is denoted by wy (“d” stands for “data”).
Due to the ergodicity assumption, R,,, can be expressed in
terms of an infinite realization wy as

1
wa(t) = 711_120? Z Wd(t'f’T)W;ir(T).
7=1

If the realization wq is over a finite interval

wq = (Wd(]),...,Wd(T))7
we can only compute a finite sample estimate of R, e.g.,
the standard biased estimator

R l T—t
wa(t) = ? Z Wd(l‘—l—T)W(I(T),
7=1

Ryw(—t)=R] (1), fort=0,....T—1. (1)

A full version of this paper, with included proofs, is in preparation.
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Alternative methods for computing R, from wy are de-
scribed in [1, Chapter 2] in the context of nonparameteric
spectral estimation.

A process ¢ is called white if all the €(¢)’s are independent
and normalized if E (¢(0)e" (0)) = I. Independence of two
random vectors or processes is denoted by L.

B. ARMAX systems

We use a notion of a stochastic system, which is analogous
to the behavioral definition of a deterministic dynamical
system as a collection of trajectories (see, e.g., [2]). Roughly
speaking, a stochastic system % is a collection of pro-
cesses w. (In this paper, a process means real valued, jointly
Gaussian, zero mean, stationary, ergodic stochastic processes
on Z.)

Denote by o the shift operator

o(f)(1)=s+1)
and consider the difference equation

Y(o)y+U(c)u=E(o)e, (ARMAX)

with Y, U, and E real polynomial matrices; and Y square and
nonsingular. The stochastic system consisting of all processes

w:=col(u,y), dim(u)=m, dim(y)=np,

m+p=w:=dim(w), (2)

satisfying (ARMAX) with € white normalized process that is
independent of u is called an ARMAX (autoregressive mov-
ing average exogenous) system with parameters (Y,U,E).
Under generic conditions u is free, which means that for
all u there are y and € L u that satisfy (ARMAX). Therefore,
u is an exogenous input and y is an endogenous output. The
triples (Y,U,E) and (Y',U’ E’) are equivalent if they define
the same system.

The polynomial matrix R is left prime if any factorization
R = FR' with F square implies that F is unimodular, i.e.,
det(F) is a nonzero constant. Equivalently, R is left prime
if R(A) is full row rank for all A € C. Each polynomial
matrix R of full row rank can be factored as R = FR' with
F square and R’ left prime. Using this factorization we can
refine the representation (ARMAX) as follows:

A(0)(P(o)y+Q(0)u) =M(o)e,

where A and P are square and nonsingular, A is Schur, and
R:=[P Q] is left prime. The polynomial matrix

(ARMAX’)

o A represents the AR (autoregressive)-part,
e M the MA (moving average)-part, and
« R=[P Q] the X (exogenous)-part.
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The rational function G := P~'Q is called the transfer
function of the deterministic part of the ARMAX system.
Note, however, that we do not require G to be proper, i.e.,
we do not impose causality.

C. Representability, identifiability, and estimation

Consider a model class .#, e.g., all ARMAX systems.
Given an observed infinite realization wq of a process w
(or equivalently given its correlation function R,,,), the
following questions arise.

o Representability: When is there a system % € .#, such

that w € £?

o Identifiability: When is a representation & of w unique

in A7

o Identification: If w is identifiable, obtain a representa-

tion of % from wy.
In a more practical situation when the given realization

Wq = (Wd(l),...,wd(T))

of w is finite, the exact stochastic identification problem,
stated above, becomes an approximate stochastic identifi-
cation problems. Assuming that an ARMAX process w is
identifiable, the following estimation problem and related
question are of interest.
o Estimation: Assuming that w is identifiable, find a
representation of an estimate % of Z from wy.
o Consistency: Study the asymptotic behavior of the esti-
mate 53’, as T — oo,
In this paper, we approach the ARMAX identification and
estimation problems by first computing the X-part of the
ARMAX system, then the AR-part, and finally the MA-part,
i.e., we consider algorithms that decompose the original

wq — (Pv QvAa M )
problem into three sequential subproblems as follows:
wa = (ud,ya) — (P,Q) — A— M.

First we consider the case when wy is infinite and then
propose a modification for the more difficult finite time case.

The basic idea, developed in the paper, is that the finite
linear combinations of the rows of the Hankel matrix com-
posed of wq

Wd(l) Wd(Z) Wd(3) Wd(t)
wa(2) wa(3) wa(4) wa(t+1)
W= 1wa(3) wa(4) wa(

5) - owat+2) | O

that are orthogonal to the rows of the Hankel matrix com-
posed of inputs uqg

ug(l) wua(2) wua(3) ug(t)
ug(2) wua(3) wua(4) ug(t+1)
U= |ua(3) ua(4)

uq (5) uq (t + 2) cee 4

determine R = [P Q]. However, there are infinite number
of such “orthogonalizing” linear combinations. The questions
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occur: What structure do they have in order to be generated
by a finite number of them: the rows of R= [P Q]? How
we can limit the number of rows? What algorithms can be
used for actually computing an estimate of R from a finite
realization wg?

II. CONDITIONS FOR REPRESENTABILITY AND
IDENTIFIABILITY

Given a process w = (u,y) with a correlation function Ry,
we want to determine under what conditions w can be
represented as a solution of a stochastic difference equa-
tion (ARMAX’) with € a white normalized process that is
independent of u and A Schur, i.e., under what conditions
w € A, where % is an ARMAX system. This is the ARMAX
representability problem. The related problem: Given a pro-
cess w = (u,y) with a correlation function R,,,, determine
under what conditions (and in what sense) an ARMAX
representation 2 of w is unique is the ARMAX identifiability
problem.

Define the partitioning of R,,,, conformable with (2)

m IS
R {Ruu RM)} m
ww T .
Ry, Ry| P

A key condition for ARMAX representability turns out to be
the notion of a rank increment of a Hankel matrix composed
of Ry, with respect to a Hankel matrix composed of Ry,. The
rank increment of A with respect to B, where A and B have
the same number of columns, is

rankinc(A, B) :=rank ( col(A, B)) — rank(B).

The notion of rank increment is well defined for (two
sided, see (3) and (4)) infinite matrices as well. Let Ay,
denotes the submatrix of A formed of the first k block rows
and the first ¢ block columns. The rank increment of the (two
sided) infinite matrix A with respect to the is (two sided)
infinite matrix B is

klim (rank (col(Arg, Big)) — rank(Akq)) .

g—ee
A process w = (u,y) with a correlation function R, is
ARMAX representable if and only if

Ru1) Rul2) Ryu(1)
Ru®) Ru(3) | [Rul2)

Ryu (2)

rankinc Ry, (3)

is finite.

For identifiability we need, in addition, the assumption that
the input u is persistently exciting of a sufficiently high order.
A process u with a correlation function R, is persistently
exciting of order k if the Toeplitz matrix

Ru(0)  R(1) Ry, (k)
Ruu(l) Ruu (0) Rz;ru(k_ 1)
Rua()) Rualk+1) Ruu(0)

is full rank.
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A process w = (u,y) with a correlation function R, is
ARMAX identifiable if

Ruu ( 1) Ruu (2)
Ry (2) Ruy (3>

(1) Ryu(2)

rankinc Ry, (2) Ry 3)

is finite and if, in addition, u is persistently exciting of any
order.

Note 1. If upper bounds n and 1 for the order and the lag
of the deterministic part of the ARMAX system are a priori
given, the persistency of excitation assumption can be relaxed
to

“u is persistently exciting of order n+ 1”7,

as in the deterministic case, see [3]. However, in this paper
“persistently exciting” means persistently exciting of any
order.

III. THE MODULE OF ORTHOGONALIZERS

Let R[E]" denotes the set of all n-dimensional vector
polynomials with real coefficients in the indeterminate . The
set R[E]" has the structure of a module over the ring R[&].
A submodule of R[£]" is a subset of R[E]" that is also
a module, e.g., the submodule pjv +---+ prv; generated
by vi,...,vx € R[E]", where vy,...,v; € R[]. In fact, every
submodule of R[£]" is of this (finitely generated) form. The
minimal number of generators is by called the dimension of
the module. A submodule is called slim if it does not strictly
contain another submodule of the same dimension. This is
equivalent to the set of generators V := [v; vi| of the
submodule being right prime.

The importance of modules in systems theory stems from
the fact that

submodules are in a one-to-one relation with LTT sys-
tems and slim submodules are in a one-to-one relation
with controllable LTI systems.

With some abuse of notation, we will occasionally view a
vector v € R as a polynomial

v(€) i=vo+ 1€+ + 1€ e R[]

of degree (at most) /, and vise versa. Using this convention,
it is easy to see that although the left kernel of the Hankel
matrix W, see (3), might be infinite dimensional over R,
actually it is a module over R[&], so is finitely generated.

Lemma 1. The left kernel of a two sided infinite Hankel
matrix has a module structure.

Proof: Consider the matrix W in (3) and let 2/ denote
its left kernel. We need to show that if u,v € o7 then
1) u+ve, and
2) aue «, for all a € R[E].
Item 1 is trivial and item 2 follows from ¢’u € <7, for all
t € N, which is a simple consequence of the Hankel structure.
O
An element of the left kernel of W is called an annihilator
of the the Hankel matrix. Consider a process w with a
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partition w = (u,y). An orthogonalizer of w with respect to u
is a polynomial n € R"[£] that makes the process n(c)w
independent of u.

Example 1. The rows of R = [P Q] are orthogonalizers of
the ARMAX process w with parameters (P,Q,A,M). To see
this, note that

A(0)(P(o)y+Q(0)u) =M(c)e

= P(o)y+Q(0)u= ) H(r)d'e,
t=—o0
where the elements of H are the Markov parameters of the
system A(o)a = M(o)e, viewed as a system with input €
and output a. Now, since € L u, this implies that

P(o)y+Q(c)u L u.

Moreover, every element of the module generated by the
rows of R is an orthogonalizer of w. The basic question is:
Are these the complete set of orthogonalizer?

The orthogonalizers of w with respect to # have a slim
module structure. The main result of the paper is the fol-
lowing one: Consider an identifiable ARMAX process w =
col(u,y) with parameters (P,Q,A,M). The module of the
orthogonalizers of w with respect to u is generated by the
rows of R = [P Q]

IV. IDENTIFICATION ALGORITHM: INFINITE-TIME CASE

Our main result, stating that the module of the orthog-
onalizers is generated by R, suggests an algorithm for the
computation of the deterministic part of the ARMAX system,
i.e., an algorithm that realizes the mapping wq — R. We need
to compute the module of the orthogonalizers of wy. This
turns out to be a deterministic identification problem. In this
section, we consider the infinite-time case. In the following
section, we adapt the algorithm for the finite-time case.

A. X-part: wg— (P,Q)
We aim to find a module basis for the linear combinations
of W (see (3)) that are orthogonal to U (see (4)). This

question is equivalent to the question of computing a module
basis for the left kernel of WU ". Observe that

Ryu(0) Ry,(1) R,,(2) R, (1)
 [Rua(1) Ru(0) Ry, (1) R, (t—1)
WU = 1Rwu(2) Ruu(1) Ryu(0)

R;vru (t - 2)

Computing a module basis for the left kern of a Hankel
or Toeplitz matrix is a deterministic identification problem,
see [4, Section 8.5], so that

computing the orthogonalizers is a deterministic identi-
fication problem for the correlation function R,,.

There are many algorithms developed for solving this prob-
lem, e.g., the subspace algorithms based on state construc-
tion [5] or computation of an observability matrix [6].
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How many correlation coefficients are actually needed in
order to compute a set of generators of this left kernel? In
other words can we limit the number of rows and columns
of WU T? Suppose that upper bounds n and 1 are given
for the order and the lag of the deterministic part of the
ARMAX system. Using the result of [3], we have that if u
is persistently exciting of order n+ 1, then the left kernel of
the Hankel matrix

D S
wu : WM: wu : (5)
Ryu(n) Ry (1) Ryu(1+n)

determines all orthogonalizing polynomials of degree at most
1 and is therefore equal to the module generated by R. Hence
it determines R uniquely. Exploiting symmetry, this means
that T =n+ 141 correlation coefficients are sufficient.

B. AR-part: (wg,(P,Q)) — A

Once R is determined, we consider the ARMA identifica-
tion problem

A(c)a=M(o)e, where a:=R(0)w,

with a realization aq := R(0)wyq. Let Ry, be the correlation
function of a. Then the process ¢ = R(o)w is an ARMA
process and the set of annihilators of R,, is the module
generated by the rows of A.

Therefore, we can determine the AR-part of the ARMAX
system by computing a module basis of the left kernel of the
two sided infinite Hankel matrix composed of R,,. As in the
previous subsection, however, knowing an upper bound 1 for
the degree of A, we can consider a finite Hankel matrix

Ra(l)  Rua(2) Rea(1+1)
Ru(2) R4 (3) Ru(142)

. . . (6)
Rua(141) Rua(142) - Rua(2141)

which is again a deterministic identification problem and can
be solved by standard algorithms.

C. MA-part: (wq,P,Q,A) — M

Once A is determined, we consider the MA identification
problem

m=M(oc)e, where m:=A(0)a,

with a realization mq := A(0)aq. The process m is an MA
process, so that standard MA identification methods can
be employed for computing M. We use the efficient MA
identification method proposed in [1, Section 3.6].

D. Summary of the algorithm

If wq is a realization of an identifiable ARMAX process
w € A, where the deterministic and autoregressive parts of %
have lags less than or equal to 1, the system i computed
by Algorithm 1 with inputs wyq and 1 is equal to the true
data generating system %, i.e., = A.
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Algorithm 1 ARMAX identification: infinite-time case.

Input: Time series wq = (ug,yq) and upper bound 1 for the

degrees of the X and AR parts.

Compute the first 1 +n+ 1 correlation coefficients of wy.

Compute a module basis R for the left kernel of (5).

Let a4 := Ié(G)Wd

Compute the first 21 + 1 correlation coefficients of aq.

Compute a module basis A for the left kernel of (6).

Let mg := A(0)aq.

: Compute the parameter M of an MA system for mg.

Output ARMAX system i deﬁned by the parameters
(P,0,A,M), where [P Q] :=

A O o

V. IDENTIFICATION ALGORITHM: FINITE-TIME CASE

In the infinite time case, under the identifiability assump-
tion, we can recover the true data generating system exactly.
Of course, this is no longer possible in the finite-time case.
The question of main interest, considered in the literature,
is the consistency property of the estimate produced by an
algorithm: Does the finite-time estimate converge to the true
system as the time horizon goes to infinity? For a fixed
time horizon, however, the identification problem necessarily
involves approximation. Estimators that achieve statistically
optimal approximation are called efficient. Another point of
view of finite-time ARMAX identification problem is the
bias—variance decomposition of the approximation error.

In this section, we are not aiming at an optimal finite-
time approximation, i.e., the proposed algorithm will not be
efficient. We are looking instead at a heuristic adaptation of
the exact (in the infinite-time case) Algorithm 1 for the finite-
time case. This is similar to the application of exact deter-
ministic subspace algorithms for approximate deterministic
and/or stochastic identification problems.

A straightforward finite-time version of Algorithm 1 is
obtained by replacing the computation of

« the true correlation coefficients on steps 1 and 4 by the
standard biased estimates,

« amodule basis of an exact left kernel on steps 2 and 5 by
module basis of an approximate left kernel, computed,
e.g., by the SVD, and

« the exact MA model on step 7 by an approximate
MA model, computed, e.g., by the polynomial time
algorithms of [7] or [8].

The quality of the correlation estimates, however, affects the

accuracy of the parameter estimates and the question:
Which estimates R, R4, yield optimal efficiency?

is non trivial.

The matrices W and U defined in (3) and (4) are redefined
for a finite realization wy as

Wd(l’l+ 1) Wd(n+2) Wd(Tf 1 71”1)
wa(n+2) wa(n+3) wg(T—1—n+1)
W .= . . .
wan+14+1) wa(n+142) wa(T—1+1)
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and
w(t) w(2) ua(T 1~ 2n)
g | MO w |
ug(1 +.2n+1) ug(1 +.2n+2) ud(.T)

Our experience is that on step 2 it is better to compute the
left kernel of the matrix WU | instead of the Hankel matrix
composed of the standard biased correlation estimates Ry
A possible explanation for the superior results obtained
from WU " is that the standard biased estimator (1) implicitly
extends wq with zeros (rendering wq infinite), which changes
the data. For small sample size, the change of the data due
to the extension gives inferior estimates compared to the
computation from WU T where the data is not extended.
For example, in deterministic identification problem, i.e.,
var(g) = 0, the left kernel of WU " gives exact result, while
the approach using (1) gives biased result. The same obser-
vation is made in [1, pages 98-99], where it is supported by
a statistical argument (bias vs variance tradeoff).

Similarly on step 5, we replace the Hankel matrix formed
from the standard biased correlation estimates R, (see (6))
by the matrix obtained from the product

ad(l—i—l) ad(l+2) ad(T—l—l)
a? a3 - ag(T—2142)
aq(1) ag(2) - a(T—-21+1)
ag(1+2)  aq(1+3) aq(21+2)
ad(l+3) ad(l +4) ad(21+3)
: : : (D
a(T—1) aaT—1+1) aa(T)

which corresponds for estimation of R,, without extending
the data with zeros.

Algorithm 2 ARMAX identification: finite-time case.
Input: Time series wq = (ug,yq), upper bound 1 for the
degrees of the X and AR parts.
1: Compute a module basis R for an approximate left kernel
of WUT, using the SVD.
2: Let ag := R(0)wy.
3; Compute a module basis A for the approximate left
kernel of (7), using the SVD.
4: Let my ::A(G)ad.
s: Compute the parameter M of an approximate MA system
for my, using the method of [7].
Output: ARMAX system A defined by the parameters
(P,0,A,M), where [P Q] :=R.

If wg € (R")T is a realization of an identifiable ARMAX
process w € #, where the deterministic and autoregressive
parts of Z have lags less than or equal to 1, Algorithm 2
with inputs wy and 1 yields a consistent estimator for the
true data generating system 2.
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VI. SIMULATION EXAMPLE

The simulation example, presented in this section, is only
meant to illustrate the proposed identification algorithm. A
comparison with alternative algorithms for ARMAX identi-
fication is in order and will be reported elsewhere.

The polynomials P, Q, A, and M are selected as follows:

P(E) =1—0.8713E — 1.539% +1.371&°
+0.6451E% —0.58278,

0(&)=1-1.2E +0.6£%40.73,
AE)=1+E+05E2 and M(E)=1+0.5E.

The inputs u and e are white, normally distributed processes
with zero-mean and variances 1 and 0.2, respectively. The
initial condition, under which y is obtained from u and e
is a random vector. The time horizon for the simulation is
T = 1000 and the whole simulated time series wq = (#q,Yd)
is used for estimation.

We apply Algorithm 2 with 1 equal to the true system
lag. The experiment is repeated N = 5 times with different
realizations of u and e in each run. Let P*¥) and Q<k) be the
estimates of the polynomials P and Q, respectively, obtained
on the kth repetition of the experiment.

The poles and zeros of the deterministic part of the true
and identified ARMAX systems are shown in the left plot of
Figure 1. The spread of the estimates around the true values
indicates the bias and variance of the estimates. Similarly,
the right plot in Figure 1 shows the zeros of the AR part of
the true and estimated systems.

Figure 2, left shows the bode plots of deterministic parts
of the true and estimated ARMAX systems. Figure 2, right
shows the bode plots of the transfer functions M/P and
M /pa),

VII. CONCLUSIONS

We gave an ARMAX representability condition for a
stochastic process: the rank increment of a pair of infinite
Hankel matrices, composed of the process’s correlation func-
tion, should be finite. As in the deterministic case, a key
additional condition for identifiability is the persistency of
excitation of an input component of the process.

We introduced a notion called orthogonalizer. An orthog-
onalizer of an input/output partitioned process is a linear
combination of the process and its shifts that produces a
process orthogonal to the input. The set of orthogonalizers
has a module structure, i.e., it is finitely generated. Under
the identifiability conditions, a module basis for the set
of orthogonalizers is given by the rows of the polynomial
matrix R, determining the deterministic part of the ARMAX
system. This result suggests an algorithm for computing R
from data.

The proposed ARMAX identification algorithm is based
on the decomposition of the problem into three sequential
subproblems: compute first the X-part, then the AR-part, and
finally the MA-part. The deterministic part of the system
is computed, using the orthogonalizers. This turns out to
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Fig. 1.
mM® (tiny circles), for k=1,...,5.

60

0.5 1 1.5

Left: roots of P (solid crosses), Q (solid circles) Pk (tiny crosses), and Q(k) (tiny circles), for k=1,...,5. Right: roots of M (solid circles) and

Fig. 2. Left: Bode plots of Q/P (solid line) and Q(l)/P(l) (dashed line). Right: Bode plots of M/P (solid line) and M(l)/ﬁ(l) (dashed line).

be a classic deterministic identification problem for the
correlation function R,,: compute a module basis for the
left annihilators of the Hankel matrix composed of R,,,.
Computing the deterministic part, reduces the ARMAX
identification problem to an ARMA identification problem.
The second subproblem—find the AR-part—is again a de-
terministic identification problem. Computing the AR-part,
further reduces the ARMAX identification problem to an MA
identification problem.

We presented a heuristic modification of the infinite
sample size ARMAX identification algorithm for the finite
sample size case, where an approximation is needed. Each
of the three steps of the modified algorithm computes an
approximate result. The first and the second step use an SVD
approximation of the left kernel of an appropriate Hankel
matrix and the third step is based on a convex optimization
method for MA system identification.
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