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ABSTRACT

This paper is concerned with the characterization of
systems described by first order PDE’s in terms of Mar-
kovian properties. It is shown that for 2D autonomous
systems with infinite-dimensional behavior the exis-
tence of a description by means of first order PDE’s
is equivalent to strong-Markovianity.

1. INTRODUCTION

First order ODE’s and PDE’s are relevant not only due
to simulation issues, but also due to the fact that they
are often associated with state/Markov properties. In
very broad terms, such properties mean that, given any
partition of the evolution domain into a ”past”, a ”pre-
sent”, and a ”future” region, the values of the system
trajectories on the ”present” region summarize the sys-
tem memory, in the sense that the future evolution only
depends on those values, needing thus no extra infor-
mation from the past. It is shown in [1] that for systems
given by ODE’s the existence of a first order descrip-
tion is equivalent to the Markov property. The situation
is somewhat more complicated for systems described
by PDE’s. In fact, for systems evolving over multi-
dimensional domains, two Markov properties, weak-
and strong-Markovianity, can be considered. It has re-
cently been shown in [2] that the existence of a first
order description is sufficient, but not necessary for
weak-Markovianity; however, for the case of systems
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with finite-dimensional behavior first order representa-
bility is equivalent to strong-Markovianity.

The aim of this paper is to move a step forward
in the characterization of first order representability
in terms of Markovianity and analyze what happens
for systems with infinite-dimensional behavior. We
consider the case of autonomous systems, i.e, systems
without free variables, in which the infinite - dimen-
sionality of the behavior is due to the existence of an
infinite-dimensional set of initial conditions. In partic-
ular, we focus on the 2D case and prove that, in this
case, similar to what happens for finite-dimensional
behaviors, the existence of a description by means of
first order PDE’s is indeed equivalent to strong - Mar-
kovianity.

2. INFINITE-DIMENSIONAL SYSTEMS
DESCRIBED BY PDE’S

This paper deals with multidimensional (nD) behav-
ioral systems that can be represented as the solution set
of a system of linear PDE’s with constant coefficients.
Let R ∈ R•×w[s1, · · · , sn] (the set of real polynomial
matrices in n indeterminates with w columns) and as-
sociate with this matrix the following system of PDE’s

R(
∂

∂x1
, . . . ,

∂

∂xn
)w = 0. (1)

The behavior B defined by this system of PDE’s is
simply its solution set over an appropriate domain. Here
we consider as domain the set of all continuous func-
tions C0(Rn, Rw) . Hence

B = {w ∈ C0(Rn, Rw) |
(1) holds in the distributional sense}.

As B is the kernel of a partial differential operator,
we refer to it as a kernel behavior, and denote it as
ker

(
R( ∂

∂x1
, . . . , ∂

∂xn
)
)
. The PDE (1) is called a kernel



representation of B = ker
(
R( ∂

∂x1
, . . . , ∂

∂xn
)
)
.

Our aim is to focus on infinite-dimensional autonomous
kernel behaviors, i.e., behaviors that have no free vari-
ables, in the sense that no component of the system
variable w can be arbitrarily chosen in C0(Rn, R), but
are infinite-dimensional subspaces of C0(Rn, Rw) (due
to the infinite dimension of their initial condition sets).
For the sake of simplicity we shall restrict attention in
this conference paper to the 2D univariate case, i.e., we
take n = 2 and w = 1; this means that we consider be-
haviors with one variable evolving in R2. The general
situation will later be reported elsewhere.

Thus, the kernel representations to be considered are
associated with 2D polynomial columns

R(s1, s2) =

 r1(s1, s2)
...

rq(s1, s2)

 ,

where the ri(s1, s2) are 2D polynomials. Factoring out
the greatest common divisor p(s1, s2) of these polyno-
mials yields:

R(s1, s2) = F (s1, s2)p(s1, s2), (2)

where,

F (s1, s2) =

 p1(s1, s2)
...

pq(s1, s2)


and

pi(s1, s2)p(s1, s2) = ri(s1, s2), i = 1, . . . , q.

Since the polynomials pi(s1, s2) have no common fac-
tors, they have at most a finite number of common ze-
ros and hence the variety

V := {(λ1, λ2) ∈ C2 | pi(λ1, λ2) = 0, i = 1, . . . , q}
(3)

is finite, [3].

On the other hand, if B = ker
(
R( ∂

∂x1
, ∂

∂x2
)
)

is infinite-
dimensional, then the polynomial p(s1, s2) cannot be a
unit (i.e., a nonzero constant), otherwise B would co-
incide with ker

(
F ( ∂

∂x1
, ∂

∂x2
)
)

which is finite dimen-
sional. Since the case where p(s1, s2) equals zero is
trivial, we shall henceforth assume that this polyno-
mial is nonconstant.

3. nD MARKOVIAN SYSTEMS

We consider two versions of Markovianity. The first,
weak - Markovianity, is defined as follows. Let Π be

the set of 3-way partitions (S−, S0, S+) of Rn such
that S− and S+ are open and S0 is closed; given a par-
tition π = (S−, S0, S+) ∈ Π and a pair of trajectories
(w−, w+) that coincide on S0, define the concatena-
tion of (w−, w+) along π as the trajectory w− ∧π w+

that coincides with w− on S0 ∪ S− and with w+ on
S0 ∪ S+.

Definition 1 A multidimensional behavior B ⊆ (Rw)Rn

is said to be weak-Markovian if for any partition π ∈
Π and any pair of trajectories w−, w+ ∈ B such that
w−|S0

= w+|S0
, the trajectory w− ∧π w+ is also an

element of B.

The second version, strong-Markovianity requires that
the restriction of a behavior to linear subspaces of Rn

also has concatenability properties.

Unlike what happens in the finite-dimensional case,
the restriction of an infinite-dimensional kernel behav-
ior B to a subspace S of Rn is not always a kernel be-
havior. Therefore in the sequel we consider the follow-
ing kernel behavior associated to the restriction B|S of
B to S.

Definition 2 Given a kernel behavior B defined over
Rn and a linear subspace S of Rn, define the behavior
K(B|S) as the smallest kernel behavior containing the
restriction B|S of B to S.

Our definition of strong-Markovianity for a behavior
B requires that K(B|S) is Markovian. More concretely,
given a subspace S ⊆ Rn, let ΠS be the set of 3-way
partitions (S−, S0, S+) of S such that S− and S+ are
open (in S) and S0 is closed (in S).

Definition 3 A multidimensional behavior B ⊆ (Rw)Rn

is said to be strong-Markovian if for any subspace S of
Rn, any partition πS ∈ ΠS , and any pair of trajecto-
ries w−, w+ ∈ K(B|S) such that w−|S0

= w+|S0
, the

trajectory w− ∧π w+ is an element of K(B|S).

Clearly, strong-Markovianity implies weak - Markov-
ianity. Moreover, these two properties coincide for
one-dimensional behaviors.

Let B be an nD behavior defined by a first order
PDE

(
n∑

i=1

Ri
∂

∂xi
+ R0)w = 0. (4)

It is easy to see that this implies weak-Markovianity.
However, as shown in [2] the reciprocal is not true. It is
therefore natural to ask whether first order PDE’s gen-
erate behaviors that are strong-Markovian and, recip-
rocally, whether strongly Markovian behaviors given



by PDE’s (1) admit first order representations (4). It
is proven in [2] that for finite dimensional behaviors,
strong-Markovianity and first order representability are
indeed equivalent. In this paper we show that the same
happens for autonomous systems with infinite-dimensional
behaviors.

4. FIRST ORDER PDE’S AND
MARKOVIANITY

As mentioned before, we shall focus on the univariate
two-dimensional case.

Let B ⊂ C0(R2, R) be the 2D behavior with kernel
representation associated to the matrix R in (2). Given
α ∈ R, define the following behaviors:

Bα
2D := {w ∈ B | ∀t ∈ R ∃c ∈ R ∀x2 ∈ R

w(t− αx2, x2) = c} (5)

and

Bα
1D := {v ∈ C0(R, R) | v(t) = w(t− αx2, x2),

t ∈ R, w ∈ Bα
2D}. (6)

Note that Bα
2D consists of all the trajectories in B that

are constant along all the lines Lα
t := {(x1, x2) | x1 +

αx2 = t}, t ∈ R, while Bα
1D is the 1-D behavior

obtained by following this constant value across these
lines. It is not difficult to check that

Bα
2D = B ∩ ker(

∂

∂x2
− α

∂

∂x1
)

= ker
(
R(

∂

∂x1
,

∂

∂x2
)
)
∩ ker(

∂

∂x2
− α

∂

∂x1
)

= ker
(
R(

∂

∂x1
, α

∂

∂x1
)
)

= ker
(
πα(

∂

∂x1
)p̃α(

∂

∂x1
)
)
, (7)

with

πα(s) := gcd(p1(s, αs), . . . , pq(s, αs)) (8)

and
p̃α(s) := p(s, αs). (9)

On the other hand Bα
1D, that can alternatively be given

by

Bα
1D = {v ∈ RR | v(t) = w(t, 0), t ∈ R, w ∈ Bα

2D},

is a 1D behavior whose trajectories correspond to the
restriction of the trajectories in Bα

2D to the x1-axis.
Thus, due to (7), we have that:

Bα
1D = ker(πα(

d

dt
)p̃α(

d

dt
)). (10)

In order to show that strong-Markovianity implies first
order representability, we start by proving that weak-
Markovianity alone already implies that the polyno-
mial p(s1, s2) in (2) is first order.

Lemma 1 Let B = ker
(
R( ∂

∂x1
, ∂

∂x2
)
)
⊂ C0(R2, R)

be an infinite-dimensional 2D weak-Markovian kernel
behavior and let α ∈ R. Then the behavior Bα

1D is a
1D Markovian behavior.

Proof. In order to prove this result it suffices to show
that every trajectory v of Bα

1D such that v(0) = 0
is concatenable with the zero trajectory, i.e., if Π =
((−∞, 0), {0}, (0,+∞)) then v∧Π0 ∈ Bα

1D. Let then
v ∈ Bα

1D be a trajectory such that v(0) = 0. Take w ∈
Bα

2D such that v(t) = w(t, 0). Then, w(−αx2, x2) =
w(0, 0) = v(0) = 0, i.e, w is zero on the line Lα

0 .
By the weak-Markovianity of B, this implies that w
is concatenable with the zero trajectory along the ob-
vious partition Π0 = (S−,Lα

0 , S+) of R2 determined
by the line Lα

0 . In other words, w∗ := w ∧Π0 0 ∈ B.
But w∗ is also a trajectory of Bα

2D. Moreover, its cor-
responding trajectory in Bα

1D, v∗(t) := w∗(t, 0), coin-
cides with v ∧Π 0. This shows that v is concatenable
with the zero trajectory, as desired.

Corollary 1 Let B = ker
(
R( ∂

∂x1
, ∂

∂x2
)
)
⊂ C0(R2, R)

be an infinite-dimensional 2D weak-Markovian kernel
behavior and p(s1, s2) be the corresponding right fac-
tor in factorization (2). Then p(s1, s2) is a 2D first
order polynomial, i.e., p(s1, s2) = a1s1 + a2s2 + a0,
for suitable coefficients a0, a1, a2 ∈ R.

Proof. Assume that B is weak-Markovian and let α ∈
R. Then, since 1D-Markovianity is equivalent to first
order representability [1], by (10) and Lemma 1, the
polynomial πα(s)p̃α(s) must have degree not higher
than 1. Note that, since the variety V defined in (3) is
finite, the polynomials pi(s, αs), i = 1, . . . , q are not
all zero polynomials. This implies that πα(s) is not the
zero polynomial. Therefore the degree of p̃α(s) cannot
be higher than 1. Now, let p(s1, s2) =

∑
i,j pijs

i
1s

j
2,

then
p̃α(s) =

∑
k

(
∑

i+j=k

pijα
j)sk,

and hence∑
i+j=k

pijα
j = 0, ∀α ∈ R, k ≥ 2.

This implies that pij = 0, for i+j ≥ 2 and p(s1, s2) =
a1s1 + a2s2 + a0, with a1 = p10, a2 = p01, a0 = p00.



Without loss of generality, we shall henceforth take
a2 = 0 (if this were not the case, then a linear change
of variable in the (x1, x2)-plane could be made to yield
this situation). Since p(s1, s2) has previously been as-
sumed to be nonconstant, we may also take a1 = 1
without loss of generality. Thus

p(s1, s2) = s1 + a0

and

B = ker
(
F (

∂

∂x1
,

∂

∂x2
)(

∂

∂x1
+ a0)

)
We next show that, in case B is strong-Markovian,
ker

(
F ( ∂

∂x1
, ∂

∂x2
)
)

= {0}.

Lemma 2 Let B = ker
(
R( ∂

∂x1
, ∂

∂x2
)
)
⊂ C0(R2, R)

be an infinite-dimensional 2D strong-Markovian be-
havior, and consider the corresponding 2D polynomial
matrix F (s1, s2) given by factorization (2). Then

ker
(
F (

∂

∂x1
,

∂

∂x2
)
)

= {0}

.

Proof. Take an arbitrary β ∈ R and consider the sub-
space Sβ = {(x1, x2) ∈ R2 | x2 = βx1}. If B is
strong-Markovian, then K(B|Sβ

) is a 1D Markovian
behavior given by

K(B|Sβ
) = ker

(
F (

d

dt
, β

d

dt
)p̃β(

d

dt
)
)

= ker(πβ(
d

dt
)p̃β(

d

dt
)),

with πβ and p̃β defined as in (8) and (9).
But, taking into account the considerations made

in the proof of Corollary 1, the polynomial πβ(s) p̃β(s)
= πβ(s)(s + a0) must have degree not higher than 1.
Therefore πβ(s) (which is non null) must be a nonzero
constant for all β ∈ R, and

K(B|Sβ
) = ker(p̃β(

d

dt
))

= ker(
d

dt
+ a0)

= span{e−a0t}. (11)

We now show that this implies that ker
(
F ( ∂

∂x1
, ∂

∂x2
)
)

=
{0}.

Indeed, suppose that this is not the case. Then (the
complexification of) ker

(
F

)
contains a trajectory of

the form ŵ(x1, x2) = eλ1x1+λ2x2 and all the trajecto-
ries w such that

(
∂

∂x1
+ a0)w(x1, x2) = eλ1x1+λ2x2 (12)

are in (the complexification of) B.

If λ1 6= −a0, (12) has solutions of the form

w(x1, x2) = k(x2)e−a0x1 +
1

λ1 + a0
eλ1x1+λ2x2 ,

k(.) ∈ C0(R, R).

Thus, (the complexification of) K(B|Sβ
) contains all

the trajectories v such that

v(t) = ke−a0t +
1

λ1 + a0
e(λ1+β)t, k ∈ R.

In particular, taking β = 0, we conclude that

{v0 | v0(t) = ke−a0t +
1

λ1 + a0
eλ1t, k ∈ R}

is a subset of (the complexification of) K(B|S0), which
(taking into account that λ1 6= −a0) contradicts (11).

If λ1 = −a0, one can easily verify that

{v0 | v0(t) = ke−a0t + te−a0t, k ∈ R}

is a subset of K(B|S0), which also contradicts (11).

Note that, in case ker
(
F ( ∂

∂x1
, ∂

∂x2
)
)

= {0}, we have
ker

(
R( ∂

∂x1
, ∂

∂x2
)
)
= ker

(
F ( ∂

∂x1
, ∂

∂x2
)p( ∂

∂x1
, ∂

∂x2
)
)
=

ker(p( ∂
∂x1

, ∂
∂x2

)). Thus, Corollary 1 and Lemma 2
clearly imply that every strong-Markovian infinite - di-
mensional kernel behavior B ⊂ C0(R2, R) can be de-
scribed by a first order PDE, i.e., B = ker(a1

∂
∂x1

+
a2

∂
∂x2

+a0). Conversely, it is not difficult to prove that
B = ker(a1

∂
∂x1

+ a2
∂

∂x2
+ a0) is strong-Markovian.

This yields our main result.

Theorem 1 Let B ⊂ C0(R2, R) be an infinite - di-
mensional 2D kernel behavior. Then the following are
equivalent:

1. B is strong-Markovian

2. B is described by one first order PDE, i.e., B =
ker(a1

∂
∂x1

+ a2
∂

∂x2
+ a0), for suitable real co-

efficients a0, a1, a2.

5. CONCLUSION

This paper reports on some results how to characterize
infinite-dimensional systems described by first order
PDE’s in terms of Markovian properties. For the par-
ticular case of univariate infinite-dimensional 2D sys-
tems, it was proven that representability by one first
order PDE is equivalent to strong-Markovianity. This



result points in the same direction as the results already
obtained in [2] for the finite-dimensional case, sug-
gesting that this straight connection between Markov-
ianity and first order PDE’s might also exist in more
general cases.
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