ARMAX System Identification: First X, then AR, finally MA

Jan C. Willems*
(joint work with Ivan Markovsky and Bart L.M. De Moor)

In this extended abstract, 'process' means: a zero mean, gaussian, stationary, ergodic vector process on \mathbb{Z}, \perp means 'independence', and 'white noise' means a process ε for which the $\sigma^{t} \varepsilon(0)$'s are all \perp for $t \in \mathbb{Z}$, and σ denotes the shift $(\sigma f(t):=f(t+1))$. Consider the difference equation

$$
W(\sigma) w=E(\sigma) \varepsilon,
$$

(ARMAX)
with W, E suitably sized polynomial matrices. The behavior of (ARMAX) consists of all processes w such that (ARMAX) holds for some white noise process ε. The identification (ID) problem is to obtain estimates of (W, E) from observation of a realization of w :

$$
\tilde{w}(1), \tilde{w}(2), \ldots, \tilde{w}(T) .
$$

In this extended abstract, we will assume for simplicity of exposition that $T=\infty$. In the actual algorithm, we assume T finite, and study the behavior of the estimates as $T \rightarrow \infty$.

Every ARMAX system admits a more refined representation

$$
A(\sigma) R(\sigma) w=M(\sigma) \varepsilon
$$

(AR-MA-X)
with A square, $\operatorname{det}(A)$ non-zero and without unit circle roots, and R left-prime. Note that $R(\sigma) w=0$ corresponds to the 'exogenous' part of the AR-MA-X system (obtained by setting $\varepsilon=0$). We call R the ' X ' (exogenous) part, A the 'AR' part,

[^0]and M the 'MA' part of the AR-MA-X system. We present an algorithm that identifies first R, then A, and finally M.

Many interesting problems emerge: When do two systems (A, R, M) define the same behavior? Obtain canonical forms. If $w=\left[\begin{array}{l}u \\ y\end{array}\right]$, when is u a 'free input', in the sense that for any process u, there exists a process y such that $w=\left[\begin{array}{l}u \\ y\end{array}\right]$ belongs to the behavior of (AR-MA-X)? When is this y unique? In [1] these issues are studied in depth.

It is easy to see that for all $n \in \mathbb{R}[\xi]$ in the $\mathbb{R}[\xi]$-module generated by the transposes of the rows of $R, n(\sigma)^{\top} w \perp \varepsilon$. Assume that $R=\left[\begin{array}{ll}P & Q\end{array}\right]$ with P square, and correspondingly $w=\left[\begin{array}{l}u \\ y\end{array}\right]$, with $u \perp \varepsilon$. Now look for the finite linear combinations of the rows of the observed

$$
\tilde{W}=\left[\begin{array}{cccccc}
\tilde{w}(1) & \tilde{w}(2) & \tilde{w}(3) & \cdots & \tilde{w}(t) & \cdots \\
\tilde{w}(2) & \tilde{w}(3) & \tilde{w}(4) & \cdots & \tilde{w}(t+1) & \cdots \\
\tilde{w}(3) & \tilde{w}(4) & \tilde{w}(5) & \cdots & \tilde{w}(t+2) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right]
$$

that are orthogonal to the rows of the observed

$$
\tilde{U}=\left[\begin{array}{cccccc}
\tilde{u}(1) & \tilde{u}(2) & \tilde{u}(3) & \cdots & \tilde{u}(t) & \cdots \\
\tilde{u}(2) & \tilde{u}(3) & \tilde{u}(4) & \cdots & \tilde{u}(t+1) & \cdots \\
\tilde{u}(3) & \tilde{u}(4) & \tilde{u}(5) & \cdots & \tilde{u}(t+2) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right] .
$$

Call these linear combinations 'orthogonalizers'. Obviously each orthogonalizer is a vector of the form $\pi=\operatorname{col}\left(\pi_{0}, \pi_{1}, \cdots, \pi_{\mathrm{n}}, \cdots\right)$, with the π_{n} 's $\in \mathbb{R}^{\mathrm{w}}$, and all but a finite number of them non-zero. Organize the orthogonalizers as polynomial vectors $\pi(\xi)=\pi_{0}+\pi_{1} \xi+\cdots+\pi_{\mathrm{n}} \xi^{\mathrm{n}}+\cdots \in \mathbb{R}^{\mathrm{W}}[\xi]$.

It can be shown that if \tilde{u} is persistently exciting, then the orthogonalizers form exactly the $\mathbb{R}[\xi]$-module generated by the transposes of the rows of R. This yields an algorithm for identifying R from the observations via the orthogonalizers. As we have described it here, this algorithm requires an infinite number of rows of \tilde{W} and \tilde{U}, but if we assume that (upper bounds for) the lag L and the dynamic order n of the AR-MA-X system are known, we can restrict attention to the first L rows of \tilde{W} and the first $L+n$ rows of \tilde{U}.

Once R has been estimated, we compute

$$
\tilde{a}=\hat{R}(\sigma) \tilde{w},
$$

and obtain an estimate \hat{A} of A from \tilde{a}, and proceed by computing

$$
\tilde{m}=\hat{A}(\sigma) \tilde{a},
$$

to obtain an estimate \hat{M} of M, leading to an estimate $(\hat{R}, \hat{A}, \hat{M})$ for (R, A, M).
This extended abstract reports on research in progress. A full paper is in preparation.

References

[1] E.J. Hannan and M. Deistler, The Statistical Theory of Linear Systems, Academic Press, 1979.

[^0]: *ESAT, K.U. Leuven, B-3001 Leuven, Belgium, email: Jan.Willems@esat.kuleuven.ac.be. This research is supported by the Belgian Federal Government under the DWTC program Interuniversity Attraction Poles, Phase V, 2002-2006, Dynamical Systems and Control: Computation, Identification and Modelling, by the KUL Concerted Research Action (GOA) MEFISTO-666, and by several grants en projects from IWT-Flanders and the Flemish Fund for Scientific Research.

