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Abstract: We consider oscillatory systems consisting of identical subsystems symmet-
rically coupled,. We show that the time average of any quadratic functional of the
variables of a subsystem and their derivatives equals the time average of the same

functional on any other subsystem.
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1. INTRODUCTION

In this paper we consider oscillatory systems,
whose trajectories are linear combinations of si-
nusoidal functions w(t) = >, _; . Agsin(wit +
oK), with wi, Ak, ¢ € R for all k. Such are, for
example, mechanical systems consisting of connec-
tions of a large number of (frictionless) spring and
masses, with external variables the displacements
or the velocities of the masses from the equilib-
rium positions; or electrical systems consisting of
the interconnection of many inductors and capac-
itors, with external variables the voltages in the C
components or the currents in the L components.

In this paper we state and give a sketch of the
proof of a deterministic equipartition of energy
principle for oscillatory systems. We prove that if
an oscillatory system consists of “symmetrically
coupled” (such notion will be formally introduced
further in the communication) identical subsys-
tems, then the difference between the value of any
quadratic functional of the variables of the one
subsystem and their derivatives, and its value on
the variables of the other and their derivatives is
zero-mean. In particular, the time-averaged total

(kinetic+potential) energy of symmetrically cou-
pled undamped oscillators is asymptotically the
same for every oscillator. The latter is a result of
(Bernstein and Bhat, 2002) which we obtain in a
different context and as a special case of a more
general result.

We obtain our result using concepts and tech-
niques developed in the behavioral framework (see
(Polderman and Willems, 1998)). A special role
in our investigation is played by the concept of
quadratic differential form (QDF), introduced in
(Willems and Trentelman, 1998).

The paper is structured as follows: after reviewing
the basic notions regarding oscillatory systems in
the behavioral framework (section 2), we proceed
to give an introduction to quadratic differential
forms and their calculus (section 3). We then
define the notion of conserved- and of zero-mean
quantity. Equipped with such notions, we state
our equipartition of energy principle. Finally, we
show some applications of such principle to simple
systems consisting of few oscillators.

The notation used in this paper is standard: the
space of n dimensional real, respectively complex,



vectors is denoted by R®, respectively C*, and the
space of m x n real matrices by R™®. Whenever
one of the two dimensions is not specified, a bullet
e is used; so that for example, R**® denotes
the set of real matrices with n columns and an
unspecified number of rows. In order to enhance
readability, when dealing with a vector space R*®
whose elements are commonly denoted with w,
we use the notation R¥ (note the typewriter font
type!); similar considerations hold for matrices
representing linear operators on such spaces.

The ring of polynomials with real coefficients in
the indeterminate £ is denoted by R[¢]; the set of
two-variable polynomials with real coefficients in
the indeterminates ¢ and 7 is denoted by R[(,7].
The space of all n x m polynomial matrices in
the indeterminate £ is denoted by R**™[¢], and
that consisting of all n X m polynomial matrices
in the indeterminates ¢ and n by R**®[{,n]. We
denote with €°(R,R?) the set of infinitely often
differentiable functions from R to R<.

2. LINEAR OSCILLATORY BEHAVIORS

A linear differential behavior is a linear subspace
B of €°(R,R¥) consisting of all solutions w of
a system of linear constant-coefficient differential

equations:
d
Dy = 1
R(Syw=o, )
where R € R**¥[¢], is called a kernel representa-

tion of the behavior
B = {w e €°(R,RY) | w satisfies (1)},

and w is called the external variable of B. The
class of all such behaviors is denoted with £¥.

In the following, a special role is played by lin-
ear differential autonomous systems. Informally,
a system is autonomous if the future of ev-
ery trajectory in B is uniquely determined by
its past, equivalently by its present “state” (see
(Polderman and Willems, 1998) for a formal def-
inition); in other words, if the system has no
inputs. It can be shown that the behavior of an
autonomous system admits kernel representations
(1) in which the matrix R is square and nonsingu-
lar; moreover (see Theorem 3.6.4 in (Polderman
and Willems, 1998)), such a representation has
the minimal number of equations (w, the num-
ber of variables of the system) needed in order
to describe an autonomous behavior 98, and is
consequently called a minimal representation.

It can be shown that all minimal kernel repre-
sentations have the same Smith form; for this
reason, the diagonal elements in such Smith form
are called the invariant polynomials of B; their
product is denoted by xm», and is called the
characteristic polynomial of 6. The roots of xs

are called the characteristic frequencies of *B.
When considering nonminimal kernel representa-
tions, the nonzero invariant polynomials in the
Smith form of any matrix R' € R**¥[¢] such that
B = ker R’ (%), also equal the invariant polyno-
mials of B (see Corollary 3.6.3 in (Polderman and
Willems, 1998)).

We now define linear oscillatory behaviors.

Definition 1. B € L" is an oscillatory behavior if

w € B = w is bounded on (—o0, +00)

From the definition it follows immediately that
an oscillatory system is necessarily autonomous.
The following is a characterization of oscillatory
systems in terms of properties of its kernel repre-
sentation.

Proposition 2. Let B = ker R(Z), with R €
R**¥[¢]. Then B is oscillatory if and only if every
nonzero invariant polynomial of B has distinct
and purely imaginary roots.

Sketch of proof: We use a classic technique in
behavioral system theory, namely reducing the
problem to the scalar case by resorting to the
Smith form. Without loss of generality assume
that the kernel representation induced by R is
minimal. Compute the Smith form R = UAV
of R, with U, V unimodular and A the diagonal
matrix of the invariant polynomials ; of R. With
a change of variable, we reduce to the scalar
case, namely proving that B’ := ker wj(%) is
oscillatory if and only if ¢; € R[¢] has distinct
and purely imaginary roots.

(If) Observe that if the characteristic frequencies
Wik, k= 1,...,deg(3;) of B lie on the imaginary
axis and are distinct, then w} € %8’ if and only if

deg(v;

)
wilty= Y agre’t (2)
k=1

for aj, € C, k=1,...,deg(¢;). Observe that the
aji’s corresponding to conjugate characteristic
frequencies +iw;; are also conjugate, since each
entry of ¢;(§) has real coefficients. Conclude that
(2) describes a linear combination of sinusoidal
functions; thus, %;- is oscillatory.

(Only if ) The proof is by contradiction. Assume
that there is a characteristic frequency of %; not
lying on the imaginary axis; it is easy to verify
that this is in contradiction with the boundedness
of the trajectories in SB;- on the whole real axis.
Now assume by contradiction that there is a
characteristic frequency iw;; which is not simple.
Then there would exist one trajectory wj in %
of the form w’(t) = tsin(w;rt + ¢;x). Since such



wg is unbounded, this is in contradiction with the
oscillatory nature of %;-.

3. BILINEAR- AND QUADRATIC
DIFFERENTIAL FORMS

A bilinear differential form (BDF) is a functional
from €% (R,R") x €®(R,R") to €®(R,R), de-
fined as:

N

dhwl dk’wg

Lo (w1, ws) = g (dth KT T
hyk=0

where &5, € R ™ and N is a nonnegative
integer. Let

N
(D(Cvn) = Z (Dh,kCh k?
h,k=0
This two-variable w; X wy polynomial matrix
®(¢,n) induces the bilinear differential form Lg
defined above.

A BDF Lg is symmetric, meaning Lg(wy,ws) =
Lo(we,wq) for all wy,we, if and only if & is a
symmetric two-variable polynomial matriz, i.e. if
wi; = wy and ®((,n) = ®(n,¢)T. The set of
symmetric two-variable polynomial matrices of
dimension w X w in the indeterminates ¢ and 7 is
denoted with RE¥[¢, 7).

If @ is symmetric then it also induces a quadratic
functional acting on €*°(R,RY) as

Qs : C°(R,RY) — € (R, R)
Qo(w) := Lo (w,w).

We call Qg the quadratic differential form (QDF)
associated with ®.

The association of two-variable polynomial ma-
trices with BDF’s and QDF’s allows to develop
a calculus that has applications in many areas of
systems and control (see (Willems and Trentel-
man, 1998) for a thorough exposition). An impor-
tant role in the following is played by the notion of
deriwative of a QDF. Given a QDF Qg, we define
its derivative as the QDF Q&) defined by

Qs () i= 4 (Qo(w))

for all w € €*(R,R¥). In terms of the two-
variable polynomial matrices associated with the
QDEFE’s, the relationship between a QDF Q¢ and
its derivative Qé is expressed as

d

%Qq)(w) = Q&)(w) for all w € €°(R,RY)

— <i>(<ﬂ7) = (C+n)®(¢,n)

We end this section with the definition of zero-
mean quantity.

Definition 3. Let B € LY be an oscillatory sys-
tem, and let ® € RY[(,n]. Then Qg is a zero-
mean quantity for B if

1"
we%:>Tlgnoof/O Qo (w)(#)dt = 0

A parametrization of zero-mean QDF's in terms
of algebraic properties of the corresponding two-
variable polynomial matrices is given next.

Proposition 4. Let B € L" be oscillatory, and let
R € R™¥[¢] be such that B = ker R(%). Then

® € REY[¢, 7] is a zero-mean quantity if and only
if there exist U, X € R¥*¥[(, 5] such that

(¢, n) = (C+m¥(¢,n)
+R(O)TX(¢n) + X(n.Q)"R(n)

A proof of this result can be found in Proposition
15 of (Rapisarda and Willems, 2004).

In (Rapisarda and Willems, 2004) it is shown that
certain zero-mean quantities are such for every
oscillatory system, i.e. their zero-mean nature has
nothing to do with the dynamics of the particular
system at hand, but follows instead from the
fact that such quadratic differential forms are
derivatives of some other QDF. We call them
“trivially zero-mean QDFs”; a parametrization
is given in Proposition 22 of (Rapisarda and
Willems, 2004).

Ezxample 5. Consider the single oscillator described
by the differential equation md;tg’ + kw = 0.
The result of Proposition 4 allows us to conclude
that the following are zero-mean quantities for

ker(mélj—;2 +k):

mGn — k=(C+)5(C+mpm
—_—

Wy

—(m¢* + k) -
(C+nk=—(C+n)mln
————

Wy

+(m¢® + k) -+ (mn* + k) - ¢

- (mn® + k)

N~
N | —

Observe that the first of these zero-mean quanti-
ties is none other than the Lagrangian of the sys-
tem, while the second one is evidently a trivially
zero-mean quantity, being < kw?.

4. A DETERMINISTIC EQUIPARTITION OF
ENERGY PRINCIPLE

We begin this section by formalizing the notion of
symmetry in a behavioral framework. As usual,



we do it in an intrinsic way, i.e. at the level
of the trajectories of the behavior (see (Fagnani
and Willems, 1993) for a thorough discussion
of symmetries and representational issues in a
behavioral framework).

Definition 6. Let B be a linear differential behav-
ior with w external variables, and let IT € R"*¥ be
a linear involution, i.e. 11> = I,. B is called II-
symmetric if TIB = B.

In the following we use the symmetry induced by
the permutation matrix

-(15)

or equivalently, we consider systems with 2m ex-

ternal variables w;, i = 1,...,2m for which
Wm+1
Wam
wE B = =Iw € B (4)
w1
W

We now introduce the notion of observability. Let
B € L", with its external variable w partitioned as
w = (w1, ws); then woy is observable from wy if for
all (w1, ws), (w1, wh) € B implies wy = w). Thus,
the variable w, is observable from wy if w; and the
dynamics of the system uniquely determine ws;
in other words, the variable w; contains all the
information about the trajectory w = (wq,ws).
An algebraic characterization of observability in
terms of properties of the matrix R of a kernel
representation of 9B, and further consequences
of this property are given in (Polderman and
Willems, 1998).

The main result of this communication is the
following.

Theorem 7. Let B be an oscillatory behavior with
w = 2m external variables. Assume that 9 is II-
symmetric, with II given by (3), i.e. (4) holds.
Moreover, assume that

(a) wa,..., Wy, wyy1 observable from wi; and
(b) wyt2,. .., wsy observable from wy1.

Let ¥ € R™"[¢,n], and consider the QDF Qg
induced by the 2m x 2m two-variable matrix

O(C,n) = (Q(%’n) —\:v?c,m)

on B. Then Qg is a zero-mean quantity for B.

Sketch of proof: We first reduce ourselves to the
case of w = 2 in the following way. Symmetry of 5
and observability of ws,...,w,, from w;, and of

W42, - - - y Wom, from wy, 11 imply that there exists
an F € R@=1D>x1[¢] such that

w2 d Wn4-2 d
= F(%)wl and = F(%)wmﬂ

Wn Won

Consequently, Q¢(w) = Qu/(w1) — Qu/(Wnt1),
where the symmetric two-variable polynomial
W' (¢,n) is defined as

w6 = (1F7©) ven (g )

We now prove that the QDF induced by

v(¢m) 0 x
< 0 K —‘I’/(CJ))> GRz 2[(777]

is zero-mean. In order to do so, observe that the
projection of B on the wi- and wy41 variable

%whmerl = {(wlawm+1) | HwiaQ <i< 2m,z 7é Lm +1
such that (w1,...,wa,) € B}

is oscillatory. Such behavior is symmetric with

respect to
01
Ji= (1 0)

Using the results of (Fagnani and Willems, 1993)
conclude that such a system admits a kernel

representation like
T T2
T2 T1

with r; € R[¢{], ¢ = 1,2. Observe that det(R’) =
2 — % is an even polynomial, since B is oscilla-
tory (see Proposition 2). Conclude from this that
r} and r) are even polynomials. Use the fact that
the second external variable is observable from the
first one to conclude that there exist a,b € R[¢]
such that ar} +bry = 1. Observe that since r] and
rh are even, a and b can also be taken to be even

polynomials.
Now let I' € Rg[¢, n], and define
x( =@ (5if) 1)

It is a matter of straightforward manipulations to
see that

RT(-)X(6)+ XT (&R (¢) = <8F0(£) —31(1(5)>

It can be shown that such equation is equivalent
with equation (3); from this we conclude that
Qr(wy)—Qr(ws) is zero-mean. This concludes the
proof of the claim.

Example 8. Assume that two equal masses m con-
nected to “walls” by springs of equal stiffness k,



are coupled together with a spring of stiffness k’.
We consider this as the symmetric interconnec-
tion, through the spring with elastic constant &/,
of two identical oscillators, each consisting of a
mass m and a spring with elastic constant k. Take
as external variables the displacements wy; and ws
of the masses from their equilibrium positions; in
such case two equations describing the system are

d*w

m dtzl = k(w2 —w1) — kw,
d*w

mT; =K' (wy — wy) — kws

It is easy to verify that these equations describe a
symmetric behavior in the sense of Definition 6.

From the result of Theorem 7, we can conclude
that the difference between the kinetic energies
of the two oscillators, represented by the two-
variable polynomial matrix

m¢n 0
0 —mqn

is zero mean. Also the difference between the
potential energies of the two oscillators, induced

by
kO
0 —k

Of course, this implies that on average, also the
total energy of the two oscillators is the same.

5. CONCLUSIONS

In this communication we have stated the equipar-
tition principle stated in Theorem 7 and given a
sketch of its proof. Instrumental in such investiga-
tion is the behavioral framework, and the concept
of quadratic differential forms. Further results
in the direction outlined in this communication
can be found in (Rapisarda and Willems, 2004),
where also the concept of conserved quantity is
discussed, and a decomposition theorem for QDFs
is stated.
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