
Conserved- and zero-mean quadratic quantities

for oscillatory systems

P. Rapisarda∗ J.C. Willems†

1 Introduction

In this paper we consider oscillatory systems, i.e. systems whose trajectories are
linear combinations of sinusoidal functions w(t) =

∑
k=1,...,n Ak sin(ωkt + φk),

with ωk, Ak, φk ∈ R for all k. In this context we study the structure of the
set of quadratic functionals of the system variables and their derivatives, i.e.
expressions of the form QΦ(w) =

∑
i,j(

diw
dti )T Φij

djw
dtj , where the indices i and j

range over a finite set and Φij = ΦT
ji ∈ Rw×w. We show that these functionals

are partitioned in conserved quantities (QΦ(w) is constant for all w satisfying
the laws of the system) and in zero-mean quantities (the time average of QΦ(w)
over the whole real axis is zero along the trajectories w of the system).

In this communication we also state a deterministic equipartition of energy
principle: if an oscillatory system consists of symmetrically coupled identical
subsystems, then the difference between the value of any quadratic functional
of the variables of the one subsystem and their derivatives, and its value on the
variables of the other and their derivatives is zero-mean.

The results reported here are obtained in the behavioral framework (see [2]),
using the concept of quadratic differential form (QDF ), introduced in [4]. In this
communication we assume that the reader is familiar with the basic concepts
regarding behaviors and QDFs; a tutorial paper on the latter topic is available
elsewhere in these Proceedings.

The notation used in this paper is standard: the space of n dimensional
real, respectively complex, vectors is denoted by Rn, respectively Cn, and the
space of m × n real matrices by Rm×n. Whenever one of the two dimensions is
not specified, a bullet • is used; so that for example, R•×n denotes the set of
real matrices with n columns and an unspecified number of rows. In order to
enhance readability, when dealing with a vector space R• whose elements are
commonly denoted with w, we use the notation Rw (note the typewriter font
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type!); similar considerations hold for matrices representing linear operators on
such spaces.

The ring of polynomials with real coefficients in the indeterminate ξ is de-
noted by R[ξ]; the set of two-variable polynomials with real coefficients in the
indeterminates ζ and η is denoted by R[ζ, η]. The space of all n× m polynomial
matrices in the indeterminate ξ is denoted by Rn×m[ξ], and that consisting of
all n × m polynomial matrices in the indeterminates ζ and η by Rn×m[ζ, η]. We
denote with C∞(R, Rq) the set of infinitely often differentiable functions from R
to Rq.

2 Basics

A linear differential behavior is a linear subspace B of C∞(R, Rw) consisting of
all solutions w of a system of linear constant-coefficient differential equations:

R(
d

dt
)w = 0, (1)

where R ∈ R•×w[ξ], is called a kernel representation of the behavior

B := {w ∈ C∞(R, Rw) | w satisfies (1) },

and w is called the external variable of B. The class of all such behaviors is de-
noted with Lw. In this communication we consider linear differential autonomous
systems. Intuitively, a system is autonomous if the future of every trajectory
in B is uniquely determined by its past, by its present “state” (see [2] for a
formal definition). The behavior of an autonomous system admits kernel repre-
sentations (1) in which the matrix R is square and nonsingular; moreover (see
Theorem 3.6.4 in [2]), such a representation has the minimal number of equa-
tions (w, the number of variables of the system) needed in order to describe an
autonomous behavior B, and is consequently called a minimal representation.

It can be shown that all minimal representations have the same Smith form;
the diagonal elements in such Smith form are called the invariant polynomials
of B; their product is denoted by χB, and is called the characteristic polynomial
of B. The roots of χB are called the characteristic frequencies of B. It can be
shown that when considering nonminimal kernel representations, the nonzero
invariant polynomials in the Smith form of any matrix R′ ∈ R•×w[ξ] such that
B = ker R′( d

dt ), also equal the invariant polynomials of B (see Corollary 3.6.3
in [2]). In particular, χB = det(B) (the latter assumed monic).

We now introduce the class of linear oscillatory behaviors.

Definition 1 B ∈ Lw is an oscillatory behavior if

w ∈ B =⇒ w is bounded on (−∞,+∞)

From the definition it follows immediately that an oscillatory system is neces-
sarily autonomous. The following is a characterization of oscillatory systems in
terms of properties of its kernel representation.
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Proposition 2 Let B = ker R( d
dt ), with R ∈ R•×w[ξ]. Then B is oscillatory

if and only if every nonzero invariant polynomial of B has distinct and purely
imaginary roots.

In this communication we consider QDFs evaluated along a linear differential
behavior B ∈ Lw; see the tutorial paper in these Proceedings for a formal
definition of the equivalence of QDFs and of the notion of R-canonical QDF.
We denote the set consisting of all w-dimensional R-canonical symmetric two-
variable polynomial matrices with Rw×w

R [ζ, η]. It is a matter of straightforward
verification to prove that Rw×w

R [ζ, η] is a vector space over R.

3 A decomposition theorem for QDFs

We begin this section with the definition of conserved and zero-mean quanti-
ties; among the latter we distinguish between trivially- and intrinsic zero-mean
quantities. Finally, we give the main result of this section, a decomposition
theorem for QDFs.

The definition of conserved quantity is as follows.

Definition 3 Let B ∈ Lw be an oscillatory system, and let Φ ∈ Rw×w
R [ζ, η].

Then a QDF QΦ is a conserved quantity for B if

w ∈ B =⇒ d

dt
QΦ(w) = 0

The definition of zero-mean quantity is as follows.

Definition 4 Let B ∈ Lw be an oscillatory system, and let Φ ∈ Rw×w
R [ζ, η].

Then QDF QΦ is a zero-mean quantity for B if

w ∈ B =⇒ lim
T→∞

1
T

∫ T

0

QΦ(w)(t)dt = 0

Observe that certain zero-mean quantities are such for every oscillatory system:
their zero-mean nature has nothing to do with the dynamics of the particular
oscillatory system at hand. Take for example QΦ(w) = 2 · w · d

dtw, which is
the derivative of QΦ′(w) = w2; then limT→∞

1
T

∫ T

0
QΦ(w)dt = limT→∞

1
T w2 |T0

which is zero, since w is oscillatory and consequently bounded. The following
definition addresses this issue.

Definition 5 Let Φ ∈ Rw×w
R [ζ, η]. Then a QDF QΦ is a trivially zero-mean

quantity if

w ∈ C∞(R, Rw), w quasi-periodic =⇒ lim
T→∞

1
T

∫ T

0

QΦ(w)(t)dt = 0

It is a matter of straightforward verification to see that given B = ker R( d
dt )

with R nonsingular, the sets of R-canonical conserved-, zero-mean, and trivially
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zero-mean quantities for B are in one-one correspondence with linear subspaces
of the vector space of Rw×w

R [ζ, η], the set of R-canonical symmetric quadratic
differential forms. We denote such subspaces respectively with CR, ZR and TR,
that is

CR := {Φ ∈ Rw×w
R [ζ, η] | QΦ is conserved }

ZR := {Φ ∈ Rw×w
R [ζ, η] | QΦ is zero-mean }

TR := {Φ ∈ Rw×w
R [ζ, η] | QΦ is trivially zero-mean }

Let IR be a complement of TR in ZR; then IR consists of those zero-mean
quantities which are not trivial ones. We call the elements of IR the intrinsically
zero-mean quantities, in order to emphasize that their zero-mean nature depends
in an essential way on the dynamics of the system.

Parametrizations of the elements of CR, ZR, TR and IR in terms of alge-
braic properties of the corresponding two-variable polynomial matrices will be
presented in detail elsewhere (see [3]).

We can now state the main result of this section, a decomposition theorem
for R-canonical QDFs.

Theorem 6 Let B ∈ Lw be oscillatory, and let R ∈ Rw×w[ξ] be such that B =
ker R( d

dt ). Assume that B has no characteristic frequencies in zero. Then every
Φ ∈ Rw×w

R [ζ, η] admits a unique decomposition as

Φ = ΦCR
+ ΦTR

+ ΦIR

where ΦCR
∈ CR, ΦTR

∈ TR, ΦIR
∈ IR.

Example 7 Consider a single oscillator, described by the differential equation
md2w

dt2 + kw = 0, i.e. R(ξ) = mξ2 + k. It can be shown that the space of
R-canonical symmetric two-variable polynomials has dimension 3.

It can be also shown that this system admits only one conserved quantity,
namely the total energy of the oscillator, induced by the two-variable polynomial
E(ζ, η) = 1

2mζη + 1
2k. There is one intrinsically zero-mean quantity, namely

the Lagrangian of the system, induced by L(ζ, η) = 1
2mζη − 1

2k. A third QDF,
linearly independent from QE and QL, is induced by I(ζ, η) = (ζ + η) · k.

4 An equipartition of energy principle

We begin the section by formalizing the notion of symmetry in an intrinsic way,
i.e. at the level of the trajectories of the system.

Definition 8 Let B be a linear differential behavior with w external variables,
and let Π ∈ Rw×w be a linear involution, i.e. Π2 = Iw. B is called Π-symmetric
if ΠB = B.
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In the following we use the symmetry induced by the permutation matrix

Π =
(

0 Im
Im 0

)
(2)

or equivalently, we consider systems with 2m external variables wi, i = 1, . . . , 2m
for which

w ∈ B ⇐⇒



wm+1

...
w2m

w1

...
wm


= Πw ∈ B (3)

In order to state the main result of this section, the notion of observability is
required. Let B ∈ Lw, with its external variable w partitioned as w = (w1, w2);
then w2 is observable from w1 if for all (w1, w2), (w1, w

′
2) ∈ B implies w2 = w′2.

Thus, the variable w2 is observable from w1 if w1 and the dynamics of the
system uniquely determine w2; in other words, the variable w1 contains all the
information about the trajectory w = (w1, w2).

The main result of this communication is the following.

Theorem 9 Let B be an oscillatory behavior with w = 2m external variables.
Assume that B is Π-symmetric, with Π given by (2), i.e. (3) holds. Moreover,
assume that

(a) w2, . . . , wm, wm+1 observable from w1; and

(b) wm+2, . . . , w2m observable from wm+1.

Let Ψ ∈ Rm×m[ζ, η], and consider the QDF QΦ induced by the 2m×2m two-variable
matrix

Φ(ζ, η) :=
(

Ψ(ζ, η) 0
0 −Ψ(ζ, η)

)
on B. Then QΦ is a zero-mean quantity for B.

See also [1] for an analogous result obtained in the state-space context.

5 Example

Assume that two equal masses m connected to “walls” by springs of equal
stiffness k, are coupled together with a spring of stiffness k′. We consider this
as the symmetric interconnection, through the spring with elastic constant k′, of
two identical oscillators, each consisting of a mass m and a spring with elastic
constant k. Take as external variables the displacements w1 and w2 of the
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masses from their equilibrium positions; in such case two equations describing
the system are

m
d2w1

dt2
= k′(w2 − w1)− kw1

m
d2w2

dt2
= k′(w1 − w2)− kw2

From the result of Theorem 9, we can conclude that the difference between the
kinetic energies of the two oscillators, represented by the two-variable polyno-
mial matrix (

mζη 0
0 −mζη

)
is zero mean. Also the difference between the potential energies of the two
oscillators, induced by (

k 0
0 −k

)
Observe that this implies that also the total energy of the two oscillators in on
average the same.

6 Conclusions

In this communication we have illustrated the decomposition presented in The-
orem 6 and the equipartition principle stated in Theorem 9, which are proved
using the framework of quadratic differential forms. For reasons of space, we
have omitted to mention other interesting results of our investigation. Promi-
nent among these are those regarding the actual computation of conserved- and
zero-mean quantities for a given system, which is reduced to the solution of
polynomial matrix equations. These methods can be applied to systems de-
scribed by higher-order equations, and they can be implemented easily using
standard polynomial computations, thus making them available for inclusion in
computer-aided modeling and simulation tools.
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