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1 Introduction

In modeling and control problems it is often necessary to study certain func-
tionals of the system variables and their derivatives; when considering linear
systems, such functionals are often quadratic. The parametrization of such
functionals using two-variable polynomial matrices has been studied in detail
in [WT1], resulting in the definition of bilinear- and quadratic differential form
(BDF and QDF respectively in the following) and in the development of a cal-
culus for application in many areas. In this tutorial communication we review
the main definitions and results regarding QDFs.

We first examine bilinear differential forms. These are functionals from
C∞(R, Rw1)× C∞(R, Rw2) to C∞(R, R), defined as:

LΦ(w1, w2) =
N∑

h,k=0

(
dhw1

dth
)T Φh,k

dkw2

dtk
.

where Φh,k ∈ Rw1×w2 and N is a nonnegative integer. Let

Φ(ζ, η) =
N∑

h,k=0

Φh,kζhηk,

This two-variable polynomial matrix Φ(ζ, η induces the bilinear differential form
LΦ defined above.

LΦ is symmetric, meaning LΦ(w1, w2) = LΦ(w2, w1) for all w1, w2, if and
only if Φ is a symmetric two-variable polynomial matrix, i.e. if w1 = w2 and
Φ(ζ, η) = Φ(η, ζ)T . The set of symmetric two-variable polynomial matrices of
dimension w× w in the indeterminates ζ and η is denoted with Rw×w

S [ζ, η].
If the LΦ is symmetric, or equivalently, if the two-variable polynomial matrix

Φ is symmetric, then it induces also a quadratic functional acting on C∞(R, Rw)
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as

QΦ : C∞(R, Rw) → C∞(R, R)
QΦ(w) := LΦ(w,w).

We call QΦ the quadratic differential form associated with Φ.

Example 1 As an example of QDF, we consider power in an electrical circuit.
Denote with Vk the potential, and with Ik the current at the k-th terminal of
the circuit. The power is

P (t) =
N∑

k=1

Vk(t)Ik(t)

Define the external variable of the system as (V1 . . . VNI1 . . . IN )T =: (V I)T ;
then

P (t) =
[

V (t) I(t)
] [

0N×N IN

IN 0N×N

] [
V (t)
I(t)

]
Example 2 Consider a mechanical system consisting of two equal masses m
connected to “walls” by springs of equal stiffness k, which are coupled together
with a spring of stiffness k′. Take as external variables the displacements w1 and
w2 of the masses from their equilibrium positions; in such case two equations
describing the system are

m
d2w1

dt2
= k′(w2 − w1)− kw1

m
d2w2

dt2
= k′(w1 − w2)− kw2

Because of the absence of dissipative elements, we can conclude that the total
energy of the system at time t is conserved. Such quantity is induced by the
two-variable polynomial matrix

E(ζ, η) =
[

mζη + k + k′ −k′

−k′ mζη + k + k′

]
The system also admits another conserved quantity, linearly independent of
QE(·). One possible choice for such conserved quantity is the functional

C(t) = −k′

2
w1(t)2 −

k′

2
w2(t)2 + (k + k′)w1(t)w2(t) + m

dw1

dt
(t)

dw2

dt
(t)

whose dimension is that of an energy. This functional is induced by the two-
variable polynomial matrix

ΦCR,2(ζ, η) :=
1
2

[
−k′ k + k′ + mζη

k + k′ + mζη −k′

]

2



We now introduce the concept of symmetric canonical factorization (see [WT1],
p. 1709). Let Φ ∈ Rw×w

S [ζ, η]; then its coefficient matrix Φ̃ can be factored as
Φ̃ = M̃T ΣΦM̃ , where M̃ is a full row rank infinite matrix with rank(Φ̃) rows
and only a finite number of entries nonzero, and ΣΦ ∈ Rrank(Φ̃)×rank(Φ̃) is a
signature matrix, i.e.

ΣΦ =
[

Ir+ 0
0 −Ir−

]
From such factorization, multiplying on the left by

(
Iw Iwζ Iwζ

2 · · ·
)

and

on the right by
(

Iw Iwη Iwη
2 · · ·

)T , we obtain the symmetric canonical
factorization of Φ:

Φ(ζ, η) = MT (ζ)ΣΦM(η).

2 Basic operations in the calculus of QDFs

The association of two-variable polynomial matrices with BDF’s and QDF’s
allows to develop a calculus that has applications in dissipativity theory and
H∞-control (see [PW, WT2, TW, WT3]). One important tool in such calculus
is the map

∂ : Rw×w[ζ, η] −→ Rw×w[ξ]
∂Φ(ξ) := Φ(−ξ, ξ)

Observe that if Φ ∈ Rw×w[ζ, η] is symmetric, then ∂Φ is para-Hermitian, i.e.
∂Φ = (∂Φ)∗.

Another important role in the following is played by the notion of derivative
of a QDF. Given a QDF QΦ, we define its derivative as the QDF Q•

Φ
defined by

Q•
Φ
(w) :=

d

dt
(QΦ(w))

for all w ∈ C∞(R, Rw). In terms of the two-variable polynomial matrices asso-
ciated with the QDF’s, the relationship between a QDF QΦ and its derivative
Q•

Φ
is expressed as

d

dt
QΦ(w) = Q•

Φ
(w) for all w ∈ C∞(R, Rw) ⇐⇒

•
Φ(ζ, η) = (ζ + η)Φ(ζ, η) (1)

In several applications the need arises to consider integrals of QDFs. In
order to make sure that those integral exist, we assume that the argument of
the QDF has compact support; we denote by D(R, Rw) = {w ∈ C∞(R, Rw) |
has compact support}.

Let Φ ∈ Rw×w
S [ζ, η]; then ∫

QΦ : D(R, Rw) → R∫
QΦ(w) :=

∫ +∞

−∞
QΦ(w)dt
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Often we consider such integrals on closed finite intervals [t0, t1] ⊂ R. We call∫ t1
t0

QΦ(w) independent of path if for all intervals [t1, t2], the value of the integral
depends only on the value of w and (a finite number of) its derivatives at t1 and
at t2, but not on the intermediate path used to connect these endpoint.

The following algebraic characterization of path independence in terms of
properties of two-variable polynomial matrices uses the notion of derivative of a
QDF and the ∂ operator. Assume Φ ∈ Rw×w

S [ζ, η]; then the following statements
are equivalent:

(a)
∫ t1

t0
QΦ = 0

(b) There exists a Ψ ∈ Rw×w
s [ζ, η] such that (ζ + η)Ψ(ζ, η) = Φ(ζ, η);

(c) ∂Φ(ξ) = Φ(−ξ, ξ) = 0.

(for a proof, see Theorem 3.1 of [WT1]).

Example 3 Consider the differential equation of a simple oscillator

M
d

dt
2q + Kq = 0

The power delivered to the mass by the force F = −Kq is QΠ(q) = −Kqq̇ =
− 1

2Kqq̇ − 1
2Kqq̇, a QDF induced by the two-variable polynomial Π(ζ, η) :=

− 1
2K(ζ+η). Observe that Π(−ξ, ξ) = 0; it follows from the result just illustrated

that there exists Ψ(ζ, η) s.t. (ζ +η)Ψ(ζ, η) = Π(ζ, η). Indeed, it is easy to verify
that

Ψ(ζ, η) =
Φ(ζ, η)
ζ + η

= −1
2
K

This should come as no surprise, since the power in this system is the derivative
of the potential energy − 1

2Kq2, induced by Ψ(ζ, η) = − 1
2K.

3 QDFs along a behavior

In many applications, an essential role is played by QDFs evaluated along a
linear differential behavior B ∈ Lw. In order to introduce such notion, we briefly
review the relevant concepts from behavioral system theory first, referring the
reader to [PoW] for a thorough discussion of the subject.

A linear differential behavior is a linear subspace B of C∞(R, Rw) consisting
of all solutions w of a system of linear constant-coefficient differential equations:

R(
d

dt
)w = 0, (2)

where R ∈ R•×w[ξ], is called a kernel representation of the behavior

B := {w ∈ C∞(R, Rw) | w satisfies (2) },
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and w is called the external variable of B. The class of all such behaviors is
denoted with Lw. A given behavior B can be described as the kernel of different
polynomial differential operators; two kernel representations R1( d

dt )w = 0 and
R2( d

dt )w = 0 with R1, R2 ∈ R•×w[ξ] represent the same behavior if and only if
there exist polynomial matrices F1, F2 with a suitable number of columns, such
that R1 = F1R2 and R2 = F2R1; in particular if R1 and R2 are of full row rank,
this means that there exists a unimodular matrix F such that R1 = FR2.

An alternative way to represent the behavior of a linear differential system
are image representations. If M ∈ Rw×l[ξ] and

B = {w ∈ C∞(R, Rw) | there exists ` ∈ C∞(R, Rl) s.t. w = M(
d

dt
)`},

then we call
w = M(

d

dt
)` (3)

an image representation of B. Not all behaviors admit an image representation:
indeed, a behavior can be represented in image form if and only if each of its
kernel representations is associated with a polynomial matrix R ∈ R•×w[ξ] such
that rank(R(λ)) is constant for all λ ∈ C; or equivalently, B is controllable in
the behavioral sense (see Ch. 5 of [PoW]). The image representation (3) of B
is called observable if (M( d

dt )` = 0) =⇒ (` = 0). It can be shown that this is
the case if and only if the matrix M(λ) has full column rank for all λ ∈ C.

A class of behaviors which are to some extent the opposite of controllable
ones is that of autonomous behaviors (see [PoW]). It can be shown that such
behaviors admit kernel representations (2) in which the matrix R is w × w and
nonsingular, meaning its determinant is not the zero polynomial. Every tra-
jectory of an autonomous behavior B is a Bohl function, i.e. a finite sum of
products of polynomials, real exponentials, sines and cosines, associated with
the zeros of the determinant of any nonsingular representation R of B. Such
zeros are called the characteristic frequencies of B.

Equipped with these notions, we can now introduce the concept of equiva-
lence of QDFs on a given behavior. Let Φ1,Φ2 ∈ Rw×w

S [ζ, η] and let B ∈ Lw ; we
say that Φ1 is equivalent to Φ2 along B, denoted

Φ1
B= Φ2

if QΦ1(w) = QΦ2(w) holds for all w ∈ B. It is a matter of straightforward
verification to see that such relation is indeed an equivalence relation. This
equivalence can be expressed in terms of a kernel representation (2) of B as
follows (see Proposition 3.2 of [WT1]): Φ1

B= Φ2 if and only if there exists
F ∈ R•×•[ζ, η] such that

Φ2(ζ, η) = Φ1(ζ, η) + R(ζ)T F (ζ, η) + F (η, ζ)T R(η) (4)

If B ∈ Lw is autonomous, then each equivalence class of QDF’s in the equivalence
B= admits a canonical representative. In order to see this, choose a minimal ker-
nel representation R ∈ Rw×w[ξ] of B; observe that since B is autonomous, then
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det(R) 6= 0. We call Φ ∈ Rw×w
S [ζ, η] R-canonical if (R(ζ)T )−1Φ(ζ, η)(R(η))−1

is a matrix of strictly proper two-variable rational functions. It can be proved
(see Proposition 4.9 p. 1716 of [WT1]) that if Φ ∈ Rw×w

S [ζ, η], then there exists

exactly one QDF Φ′ ∈ Rw×w
S [ζ, η] which is R-canonical and such that Φ′ B= Φ;

we call Φ′ the R-canonical representative of Φ, denoted Φ mod R.

Example 4 As an illustration of the above definition, we consider the notion
of R-equivalence for scalar systems. Assume that w = 1, and let B = ker r( d

dt ),
with r ∈ R[ξ] having degree n. Observe that since

r0w + r1
dw

dt
+ . . . + rn

dnw

dtn
= 0

and rn 6= 0, it follows that the derivatives of w of order higher than n can be
rewritten as linear combinations of the derivatives of w of order less than or equal
to n−1. Consequently, any quadratic differential form QΦ involving derivatives
of w of order higher than or equal to n can be rewritten in an equivalent (and
unique!) way as a quadratic differential form QΦ′ involving the derivatives of w
up to the (n− 1)-th one. QΦ′ is the r-canonical representative of QΦ.

We denote the set consisting of all w-dimensional R-canonical symmetric two-
variable polynomials with Rw×w

R [ζ, η].
If B is a controllable behavior, then it admits an image representation (3),

and the equivalence of two QDFs on B can be ascertained in the following
way. Consider Φ ∈ Rw×w

S [ζ, η], and define Φ′(ζ, η) ∈ Rl×l
S [ζ, η] as Φ′(ζ, η) :=

MT (ζ)Φ(ζ, η)M(η); then for every (w, `) satisfying (3) it holds QΦ(w) = QΦ′(`).
Observe that QΦ′ is a functional acting on “free” trajectories ` ∈ C∞(R, Rl).
Now let Φ1,Φ2 ∈ Rw×w

S [ζ, η], and denote with Φ′1,Φ
′
2 ∈ Rl×l

S [ζ, η] the two QDF

obtained from the Φis and an image representation of B; then Φ1
B= Φ2 if and

only if Φ′1 = Φ′2. If the image representation is observable, then Φ1
B= Φ2 if and

only if Φ1 = Φ2.

4 Positive QDFs

Let Φ ∈ Rw×w
S [ζ, η]; we call it nonnegative, denoted Φ ≥ 0, if QΦ(w) ≥ 0

for all w ∈ C∞(R, Rw). We call Φ positive, denoted QΦ > 0, if Φ ≥ 0 and
(QΦ(w) = 0) =⇒ (w = 0). Using the two-variable matrix representation of QΦ

and the concept of symmetric canonical factorization, it can be verified that

QΦ ≥ 0 ⇐⇒ ∃ D ∈ R•×w such that Φ(ζ, η) = DT (ζ)D(η)
QΦ > 0 ⇐⇒ ∃ D ∈ R•×w such that Φ(ζ, η) = DT (ζ)D(η),

and rank (D(λ)) = w for all λ ∈ C

In Lyapunov stability theory for higher-order systems and in many other appli-
cations, it is important to determine whether a given QDF is zero-, nonnegative-,
or positive along a behavior B. We call QΦ zero along B, denoted with

QΦ
B= 0 or Φ B= 0
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if QΦ(w) = 0 for all w ∈ B. We call QΦ nonnegative along B, denoted

QΦ

B
≥ 0

or Φ
B
≥ 0, if QΦ(w) ≥ 0 for all w ∈ B, and positive along B, denoted

QΦ

B
> 0

or Φ
B
> 0, if QΦ

B
≥ 0, and [QΦ(w) = 0] =⇒ [w = 0].

These concepts translate into properties of the one- and two-variable poly-
nomial matrices representing B and the QDFs as follows (see Proposition 3.5 p.
1712 of [WT1]). From the notion of R-equivalence and from its characterization
(4) we can conclude that

QΦ
B= 0 ⇐⇒ ∃ F ∈ R•×•[ζ, η] such that Φ(ζ, η) = R(ζ)T F (ζ, η) + FT (η, ζ)R(η)

Also, Φ
B
≥ 0 if and only if there exists Φ′ such that Φ′ B= Φ and Φ′ ≥ 0;

equivalently,

Φ
B
≥ 0 ⇐⇒ ∃ D ∈ R•×w[ξ] and F ∈ R•×•[ζ, η] such that

Φ(ζ, η) = D(ζ)T D(η) + R(ζ)T F (ζ, η) + FT (η, ζ)R(η)

Finally,

Φ
B
> 0 ⇐⇒ ∃ D ∈ R•×w[ξ] and F ∈ R•×•[ζ, η] such that

Φ(ζ, η) = DT (ζ)D(η) + FT (η, ζ)R(η) + RT ζ)F (ζ, η),

and rank
([

R(λ)
D(λ)

])
= w for all λ ∈ C

Similar characterizations hold for behaviors admitting an image representation.

Example 5 We consider the problem of obtaining Lyapunov functionals for
higher-order systems (see section 4 of [WT1] for a thorough treatment of this
subject). Let B = {w | d2w

dt2 + 3 d
dtw + 2w = 0}. The basic result of the QDF

approach to Lyapunov stability is that B is asymptotically stable (meaning all
its trajectories vanish at +∞) if and only if there exists Ψ ∈ Rw×w[ζ, η] such

that QΨ

B
≥ 0 and d

dtQΨ

B
< 0 (see Theorem 4.3 of [WT1]). Consider the QDF

QΨ(w) := 2
3w2 + 1

3 ( d
dtw)2, which is evidently positive along B. Its derivative

equals 2
3 (2w + d2w

dt2 ) d
dtw. Since w ∈ B, it holds 2w + d2w

dt2 = −3 d
dtw, and conse-

quently d
dtQΦ(w) = 2

3 (−3 d
dtw) d

dtw = −2( d
dtw)2, which is negative for all w ∈ B.

The system is asymptotically stable.
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5 Average nonnegativity and half-line positivity

Questions such as when is the integral of a QDF a positive semidefinite oper-
ator arise naturally, for example when considering optimal control problems or
dissipativity.

We call a QDF QΦ average nonnegative, if
∫

QΦ ≥ 0, i.e.,∫ ∞

−∞
QΦ(w)dt ≥ 0 for all w ∈ D(R, Rq)

We call QΦ average-positive if
∫

QΦ ≥ 0 and
∫

QΦ = 0 implies w = 0. The def-
inition of average nonnegativity and positivity along a behavior follows readily
from these.

A QDF can be tested for average nonnegativity and positivity by analyzing
the behavior of the para-Hermitian matrix ∂Φ on the imaginary axis. Indeed,
(see Proposition 5.2 in [WT1])∫

QΦ ≥ 0 ⇐⇒ ∂Φ(iω) ≥ 0 ∀ ω ∈ R

and
∫

QΦ > 0 if and only if ∂Φ(iω) ≥ 0 ∀ ω ∈ R and det(∂Φ) 6= 0. Using
standard results in the spectral factorization of polynomial matrices, it can
be shown that

∫
QΦ ≥ 0 if and only if there exists F ∈ Rw×w[ξ] such that

∂Φ(ξ) = FT (−ξ)F (ξ); and
∫

QΦ > 0 if and only if there exists F ∈ Rw×w[ξ],
det(F ) Hurwitz, such that ∂Φ(ξ) = FT (−ξ)F (ξ).

Finally we mention half-line positivity, a concept particularly important in
H∞-control problems from a behavioral point of view (see [TW, WT3]). Φ
is half-line nonnegative (denoted by

∫ t
QΦ ≥ 0) if

∫ 0

−∞ QΦ(w)dt ≥ 0 for all

w ∈ D(R, Rw). Φ is half-line positive (denoted by
∫ t

QΦ > 0) if
∫ t

QΦ ≥ 0 and
[
∫ 0

−∞ QΦ(w)dt = 0] =⇒ [w = 0].

6 The storage function and the dissipation in-
equality

In the context of dissipative systems, a QDF measures the power supplied to a
system: its integral over the real line then measures the net flow of energy going
into the system. If such integral is positive, then the outflowing energy needs
to have been stored somewhere in the system. Also, energy cannot be stored
faster than it is supplied. These considerations lead to the definition of storage
function and to the dissipation inequality, which we now examine (see section 5
of [WT1] for a thorough treatment).

Let Φ ∈ Rq×q
s [ζ, η]; the QDF QΨ is said to be a storage function for QΦ if

the following dissipation inequality holds

d

dt
QΨ ≤ QΦ
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Storage functions are related to dissipation functions, which we now define. A
QDF Q∆ is a dissipation function for QΦ if Q∆ ≥ 0 and

∫
QΦ =

∫
Q∆. There

is a close relationship between storage functions, average nonnegativity, and
dissipation functions, expressed in the following result.

Proposition 6 Let Φ ∈ Rq×q
s [ζ, η]. The following conditions are equivalent:

1.
∫

QΦ ≥ 0,

2. Φ admits a storage function,

3. Φ admits a dissipation function.

Moreover, there exists a one-one relation between storage functions Ψ and dis-
sipation functions ∆ for Φ, defined by

d

dt
QΨ = QΦ −Q∆

or, equivalently,
(ζ + η)Ψ(ζ, η) = Φ(ζ, η)−∆(ζ, η).

Given an average nonnegative QDF, in general there exist an infinite number
of storage function. As the following result shows, all such storage functions lie
between two extremal ones.

Proposition 7 Let
∫

QΦ ≥ 0. Then there exist storage functions Ψ− and Ψ+

such that any other storage function Ψ for Φ satisfies

QΨ− ≤ QΨ ≤ QΨ+ .

QΨ− is called the smallest and QΨ+ the largest storage function of QΦ.
In many cases it is of interest to compute explicitly a storage function for a

given QDF. The following result suggests a procedure to compute the extremal
storage functions QΨ− and QΨ+ introduced in the previous theorem.

Proposition 8 Let Φ(ζ, η) ∈ R•×•
s [ζ, η]. Assume det(∂Φ) 6= 0 and ∂Φ(iω) ≥ 0

for all ω ∈ R. Then the smallest and the largest storage functions Ψ− and Ψ+

of Φ can be constructed as follows: let H and A be semi-Hurwitz, respectively
semi-anti-Hurwitz, polynomial spectral factors of ∂Φ. Then

Ψ+(ζ, η) =
Φ(ζ, η)−AT (ζ)A(η)

ζ + η
,

Ψ−(ζ, η) =
Φ(ζ, η)−HT (ζ)H(η)

ζ + η
.

Example 9 Consider the QDF induced by Φ(ζ, η) = 1 + ζη. Since ∂Φ(iω) =
1 + ω2 we conclude that

∫
QΦ ≥ 0, i.e. QΦ is average positive.

Since ∂Φ(ξ) = 1 − ξ2, it admits the two (Hurwitz, resp. anti-Hurwitz)
spectral factorizations ∂Φ(ξ) = (1 − ξ)(1 + ξ) = (1 + ξ)(1 − ξ). Now define
∆−(ζ, η) = (1+ζ)(1+η), then the corresponding storage function is Ψ−(ζ, η) =
−1, the smallest storage function for QΦ. On the other hand, if we define
∆+(ζ, η) = (1 − ζ)(1 − η), then the largest storage function is induced by
Ψ+(ζ, η) = 1.
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7 Conclusions

In this communication we illustrated the basic features of QDFs, including their
calculus and various concepts such as nonnegativity, average nonnegativity, and
half-line positivity, which have particular relevance in several fields of appli-
cation, such as Lyapunov theory (see [WT1, PR]), dissipativity theory, and
H∞-control (see [WT2, WT3, TW]). For reasons of space, we have limited
our treatment to the continuous-time case, without illustrating the analogous
of QDFs for systems described by partial differential equations (see [PS, PW]),
and for systems in discrete-time (see [KF]).
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