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Abstract

In this paper we analyze a deterministic version of the Markov property for discrete

nD systems with finite dimensional behavior. We show that in this case this property

is equivalent to the existence of a description by means of decoupled first order partial

difference equations.
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1 Introduction

This paper is concerned with the characterization of nD behaviors endowed with a deterministic

version of the Markov property.

As usual within the behavioral approach to systems and control, we consider that a system

is characterized by the set of its admissible signals (or system trajectories) rather than being

specified by a transfer function or even a state space model; such set is known as the system

behavior, B. Moreover, in this setting, the system variables (whose evolution is described by

the system trajectories) are not a priori divided into inputs and outputs.

We consider here nD discrete behaviors (i.e., whose trajectories are defined over a discrete

n-dimensional domain) that can be represented as the solution set of a system of homogeneous



linear partial difference equations. The question that we investigate is the connection between

the fact that a behavior B is Markovian (in some sense to be made precise in the sequel) and

the possibility of representing it by means of a system of first order partial difference equations.

In the one-dimensional case, say, for systems defined over IR or ZZ, a behavior B is said to

be Markovian whenever the concatenation of two trajectories w1, w2 ∈ B that coincide at one

point of the domain (i.e, w1(t) = w2(t), for some t) yields a trajectory w (coinciding with w1

in (−∞, t) and with w2 in [t, +∞)) which still is an element of B, [5] This is a deterministic

version of the stochastic independence of past and future given the present.

As referred in [5], the one-dimensional Markovian property is indeed equivalent to the

representability by means of first order difference/differential equations. The extension of this

result to the discrete 2D case has been studied in [2, 3], for a convenient generalization of the

one-dimensional Markov property. However the obtained characterization of the corresponding

representations is rather involved.

The research reported in this paper began as an attempt to answer the conjecture presented

in [6], according to which in the continuous nD case the Markov property is equivalent to the

representability by means of a system of first order PDEs which are decoupled in the sense

that each of them only involves one partial differentiator. Although initially meant for the

continuous case, the analysis that has been carried out suggested a different approach from the

one used in [2] to deal with the discrete case. This has allowed us to obtained the main result

of this paper, which states that, for discrete nD systems with finite-dimensional behavior, the

Markov property introduced in [2, 3] is indeed equivalent to the representability by a special

system of first order partial difference equations.

2 Preliminaries

As mentioned in the introduction, we consider discrete nD behavioral systems [5], whose

behaviors can be described as solutions sets of systems of partial linear difference equations

with constant coefficients. In other words, if B denotes the behavior of such a system, then

B = kerR(σ1, . . . , σn, σ−1
1 , . . . , σ−1

n ),
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where σi denotes the i-th nD shift defined by σiw(t1, . . . , ti, . . . , tn) = w(t1, . . . , ti + 1, . . . , tn),

and R(z1, . . . , zn, s−1
1 , . . . , z−1

n ) is an nD Laurent-polynomial (L-polynomial) matrix. For the

sake of simplicity, we will write (σ1, . . . , σn) = σ and (σ−1
1 , . . . , σ−1

n ) = σ−1 for the shift

operators, and use a similar notation z and z−1 for the indeterminates. If j ∈ ZZn is a multi-

index j = (j1, . . . , jn), then σj = σj1
1 . . . σjn

n ; an analogous interpretation holds for zj .

We will refer to B = kerR(σ, σ−1) as a kernel behavior. Since the matrix R uniquely

specifies the behavior B, we also say that R is a representation of B. Clearly, every kernel

behavior B ⊂ (IRq)ZZ
n

is a linear shift-invariant subspace of (IRq)ZZ
n
.

3 Markov properties

For the sake of simplicity, in the sequel we restrict to the 2D case (i.e., take n=2); however

our definitions and results go through to the general nD case with small adaptations.

A straightforward generalization of the 1D Markov property to 2D behaviors is given in

definition 1 below. Before stating this definition we introduce some useful concepts.

We define an interval of ZZ2 as a set I = ((a, b)×(c, d))∩ZZ2 where a and c may be −∞ and

b and d may be +∞. Since we only consider discrete intervals, from now on we simply write

I = (a, b)× (c, d). Note that I can be the whole ZZ2, a rectangle, a horizontal or vertical strip,

or a horizontal or vertical line in the discrete grid. Given an interval I ⊂ ZZ2, let (T−, T0, T+)

be a partition of I. The set T0 is said to separate T− and T+ if every path from T− to T+ formed

by nearest neighbors intersects T0. Given two trajectories w1, w2 ∈ B|I , the concatenation of

w1 with w2 in I with respect to the partition (T−, T0, T+), denoted by w1 ∧T0 w2, is defined as

a trajectory w ∈ B|I such that w|T− = w1|T− and w|T+∪T0 = w2|T+∪T0 .

Definition 1 Given an interval I ⊂ ZZ2, a 2D kernel behavior B ⊂ (IRq)ZZ
2

is said to be

Markovian in I if the following holds. For every partition (T−, T0, T+) of I such that T0

separates T− and T+, if w1, w2 ∈ B|I are such that w1|T0 = w2|T0 then w1 ∧T0 w2 ∈ B|I . The

behavior B ⊂ (IRq)ZZ
2

is simply called Markovian if it is Markovian in ZZ2.

As shown in [2], the 2D behavior
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B = ker

 σ3
2 − σ2

2 − σ2 − 1

σ1 − σ3
2


is Markovian, but cannot be represented by first order equations. This example led to the

consideration of a stronger version of this property, [2], that we here call the strong Markov

property, see also [3] .

Definition 2 A 2D kernel behavior B ⊂ (IRq)ZZ
2

is said to be strong Markovian if it is Marko-

vian in I for every interval I ⊂ ZZ2.

It turns out, [2], that a 2D kernel behavior is strong Markovian if and only if it can be

represented as B = kerR(σ), for a suitable 2D polynomial matrix R(z) = R00+R10z1+R01z2+

R11z1z2 with intricate structure. In the next section we show how this characterization can

be simplified in case B is a finite-dimensional subspace of (IRq)ZZ
2
.

4 Finite-dimensional strong Markov behaviors

A 2D kernel behavior B ⊂ (IRq)ZZ
2

is finite-dimensional (as a subspace of (IRq)ZZ
2
) if and only if

it can be represented as B = ker R(σ, σ−1) where R(z, z−1) is a right-prime 2D L-polynomial

matrix, [1]. In this case, if B 6= {0} it can also be represented by a latent variable model of

the form 
σ1x = A1x

σ2x = A2x

w = Cx

(1)

where A1 and A2 are nonsingular commuting matrices of size N , x is the latent variable

and w is the system variable, [1]. Such model is denoted by (C,A1, A2). This means that the

trajectories w ∈ B are given by w(i, j) = CAi
1A

j
2x(0, 0), for arbitrary initial values x(0, 0) of

the latent variable. Moreover [4] the model (C,A1, A2), can always be taken to be observable,

i.e., such that if two trajectories w1, w2 ∈ B coincide in the interval [0, N − 1]× [0, N − 1] then

the corresponding initial values x1(0, 0) and x2(0, 0) of the latent variable coincide. This is

equivalent [4] to the condition
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rank O :=



C

CA1

CA2

CA2
1

CA1A2

CA2
2

CA3
1

...

CAN−1
1 AN−1

2



= N. (2)

The key to our problem is the following lemma.

Lemma 1 Let B be a 2D finite-dimensional kernel behavior. If in addition B is strong Marko-

vian then it can be represented by a latent variable model (C,A1, A2) where the matrix C has

full column rank.

Proof.

We start by showing that, together with observability, the strong Markov property implies

that the pairs (C,A1) and (C,A2) are observable in the classical 1D sense. Let x1(0, 0) and

x2(0, 0) be two initial values of the latent variable x such that

CAj
2x1(0, 0) = CAj

2x2(0, 0), for allj ∈ ZZ.

Then, the corresponding system trajectories w1(i, j) = CAi
1A

j
2x1(0, 0) and w2(i, j) = CAi

1A
j
2x2(0, 0)

are such that w1(0, j) = w2(0, j) for all j ∈ ZZ. Consider a partition (T−, T0, T+) of ZZ given by

T− = {(i, j) ∈ ZZ2 : i < 0}, T0 = {(i, j) ∈ ZZ2 : i = 0} and T0 = {(i, j) ∈ ZZ2 : i > 0}. Since B is

strong Markovian and w1 and w2 coincide in T0, the trajectory w∗ = w1∧T0 w2 is in B. Hence,

there exists x∗(0, 0) such that w∗(i, j) = CAi
1A

j
2x
∗(0, 0). Now, since w∗ coincides with w2 in

T+, in particular these trajectories coincide in the discrete interval [0, N − 1]× [0, N − 1] and,

due to the observability of (C,A1, A2), we conclude that x2(0, 0) = x∗∗(0, 0). On the other

hand, since w∗ coincides with w1 in T−, in particular these trajectories coincide in the discrete

interval [−(N − 1), 0]× [−(N − 1), 0]. Therefore, observability, together with the fact that the
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matrices A1 and A2 are invertible and commute, yields that x1(0, 0) = x∗∗(0, 0). Thus

x1(0, 0) = x2(0, 0).

This means that ∩j∈ZZ ker ACAj
2 = {0}, which implies, by the invertibility of A2, that

rank



C

CA2

...

CAN−1
2


= N,

i.e., (C,A2) is a 1D observable pair. The proof of the observability of (C,A1) is analogous.

It follows from the definition of the strong Markov property that B is Markovian in I =

T0 = {(i, j) ∈ ZZ2 : i = 0}. By arguments similar to the ones above, it is possible to prove that,

together with the observability of (C,A2), this implies that C has full column rank. Before

proceeding we note that, due to the fact that A1 and A2 are invertible and commute, it is not

difficult to see that B|I is the set of all trajectories of the form w̄(j) = w(0, j) = CAj
2x(0, 0),

for arbitrary initial values of the latent variable x(0, 0). Let now x1(0, 0) and x2(0, 0) be two

initial values of the latent variable x such that

Cx1(0, 0) = Cx2(0, 0).

Then the corresponding trajectories w̄1(j) = w1(0, j) = CAj
2x1(0, 0) and w̄2(j) = w2(0, j) =

CAj
2x2(0, 0) (of B|I) coincide at (0, 0). Since B is Markovian in I, w̄∗∗ = w̄1 ∧(0,0) w̄2 is still a

trajectory of B|I , implying that w̄∗∗(j) = CAj
2x
∗∗(0, 0) for some x∗∗(0, 0). Since w̄∗∗ coincides

with w̄1 in I− := {(i, j) ∈ ZZ2 : i = 0, j < 0} and with w̄2 in I+ := {(i, j) ∈ ZZ2 : i = 0, j > 0}

the observability of the pair (C,A2), together with the invertibility of A2, allows to conclude

that

x1(0, 0) = x∗∗(0, 0) = x2(0, 0).

This means that C has full column rank.

Remark. Note that (1) is in fact a 2D state space model for B. Thus the previous lemma

means that, as should be expected, in case this model is observable and B is strong Markovian,
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the components of the state variable x at each point (i, j) can be obtained as linear combi-

nations of the system variable values w(i, j), i.e., x can be obtained by means of linear static

relations on w.

In the sequel a latent variable model (C,A1, A2) where C has full column rank is referred

to as an FCR model. Assume that B ⊂ IRqZZ2

has an FCR model (C,A1, A2), then equations

(1) can be written in matrix form as


σ1IN −A1

σ2IN −A2

C

 x =


0N×q

0N×q

Iq

 w. (3)

Applying to both sides of this equation the invertible operator

U(σ) =


IN 0N −(σ1IN −A1)E

0N IN −(σ2IN −A2)E

0N 0N S


where E is a left-inverse of C and S = [ET F T ]T , for some suitable matrix F , is invertible,

we obtain the equivalent equations




(σ1IN −A1)E

(σ2IN −A2)E

F

 w = 0

x = Ew.

(4)

This allows to eliminate the latent variable x from the description of B and to obtain the

representation


(σ1IN −A1)E

(σ2IN −A2)E

F

 w = 0, (5)

yielding the following result.

Proposition 1 Let B be a 2D finite-dimensional kernel behavior. Then, if B is strong Marko-

vian, it can be represented by means of partial difference equations of the form (5), where
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(A1, A2) is a pair of invertible commuting matrices and the matrix S = [ET F T ]T is invert-

ible.

We next show that the converse is also true.

Proposition 2 Let B be a 2D finite-dimensional kernel behavior. Then, if it can be rep-

resented by means of partial difference equations of the form (5), where (A1, A2) is a pair

of invertible commuting matrices and the matrix S = [ET F T ]T is invertible, B is strong

Markovian.

Proof.

Let B have a representation as stated in the proposition. Consider the transformed behavior

B̂ := S(B). Since S corresponds to an invertible static transformation, it is clear that B is

strong Markovian if and only if so is B̂. Now, B̂ is the set of all trajectories ŵ = [xT zT ]T such

that



 σ1IN −A1

σ2IN −A2

 x = 0

z = 0.

(6)

Taking into account that (A1, A2) is a pair of commuting invertible matrices, we easily

conclude that the restriction B̂|I of B̂ to an interval I ⊂ ZZ2 is the set of all trajectories

ŵ = [xT zT ]T such that

z(i, j) = 0

and

x(i, j) = Ai−i0
1 Aj−j0

2 x(i0, j0),

for all (i, j) ∈ I, where (i0, j0) is a particular arbitrary point in I and the value of x(i0, j0) ∈ IRN

is arbitrary. Clearly, if such two trajectories coincide at one single point (i∗, j∗) ∈ I then they

coincide everywhere in I (and in ZZ2). This implies that B̂ is Markovian in every interval

I ⊂ ZZ2, and is hence strong Markovian.

Combining Propositions 1 and 2 we obtain the main result of this paper.
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Theorem 1 Let B ⊂ (IRq)ZZ
2

be 2D finite-dimensional kernel behavior. Then the following

are equivalent.

1. B is strong Markovian

2. B can be represented by means of partial difference equations of the form
(σ1IN −A1)E

(σ2IN −A2)E

F

 w = 0, (7)

where (A1, A2) is a pair of invertible commuting matrices and the matrix S = [ET F T ]T

is invertible.

Note that the representation of Theorem 1 consists in two decoupled first order partial

difference matrix equations (one of which only involving the shift σ1 and the other involving

only σ2) together with a static relation. In case the behavior B is trim, i.e. if given v ∈ IRq

there exist a trajectory w ∈ B and a point (i, j) ∈ ZZ2 such that w(i, j) = v, then no static

relation is present and B is simply represented by two decoupled first order equations.

Theorem 1 easily generalizes to the nD case, yielding the following characterization.

Theorem 2 An nD finite-dimensional kernel behavior B ⊂ (IRq)ZZ
n

is strong Markovian if

and only if it can be represented by means of partial difference equations of the form

(σ1IN −A1)E

(σ2IN −A2)E
...

(σnIN −An)E

F


w = 0, (8)

where A1, A2, . . . , An are invertible pairwise commuting matrices and the matrix S = [ET F T ]T

is invertible.

5 Conclusion

Taking advantage of the existence of a first order latent variable representation with special

structure for discrete 2D finite-dimensional behaviors, we have shown that for such behav-
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iors the strong Markov property is equivalent to the representability by means of two special

decoupled first order equations, together with a static relation. This gives a complete charac-

terization of this property in representation terms. However, a question which remains here

unanswered (but is the subject of our current investigation) is the following: is every finite-

dimensional behavior represented by two decoupled first order matrix difference equations a

strong Markovian behavior? A positive answer to this question would provide a full solution

to the representability conjecture of [6].

It is our conviction that the obtained results go through to the continuous case. The

research concerning this case will be reported in due time.
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