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Abstract— The following identification problem is consid-
ered: minimize the £; norm of the difference between a given
time series and an approximating one under the constraint
that the approximating time series is a trajectory of a linear
time invariant system of a fixed complexity. The complexity
is measured by the input dimension and the maximum lag.
The problem is known as the global total least squares and
alternatively can be viewed as maximum likelihood identifica-
tion in the errors-in-variables setup. Multiple time series and
latent variables can be considered in the same setting.

The identification problem is related to the structured total
least squares problem, The paper presents an efficient software
package that implements the theory in practice. The proposed
method and software are tested on data sets from the database
for the identification of systems DAISY.

Index Terms— Errors-in-variables, system identification,
structured total least squares, numerical software, DAISY,

1. INTRODUCTION
A. The structured total least squares problem

The structured toral least squares (STLS) problem orig-
inates {2], [3] from the signal processing and numerical
linear algebra communities and is not widely known in the
area of systems and control. It is a generalization to matri-
ces with structure of the total least squares problem [4],
[5], known in the system identification literature as the
Koopmans-Levin’s method [6]. In this paper, we show the
applicability of the STLS method for system identification.
We extend previous results [7], [8] of the application of
STLS for SISO system identification to the MIMO case
and present numerical results on data sets from DAISY [9].

The STLS problem is defined as follows: given a time
series w and a structure specification &, find the global
minimum point of the optimization problem

n}(in (mgn ﬂw—ﬁzl{%z st F(w) [_XI] fO). (1)

The constraint of (1) enforces the structured matrix (W) to
be rank deficient, with rank at most row dim(X). The cost
function measures the distance of the given data w to its
approximation w. Thus the STLS problem aims at optimal
structured low rank approximation of .%(w) by 5 (W).

An extended version of this paper is submitted for publication to JEEE
Trans. on Automatic Control, see [11.
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B. The global total least squares problem

Let .# be a user specified model class and w a given
time series, We view a model 8 € . as a collection of
legitimate time series. The more the model forbids from
the universe of possible time series, the less complex and
therefore more powerful it is. The model class restricts the
maximal allowed model complexity. Within .#, we aim to
find the model & that best fits the data according to the
misfit criterion

M{(w, B) = ‘Jgg% w— v?z||%2.

The resulting optimization problem minge » M{(w,#) is
known as the global total least squares problem [10}. The
described system identification framework is put forward by
Willems in {11].

Our approach of solving the global total least squares
problem, is different from the one of Roorda and Heij [10},
f12]. We relate the identification problem to the STLS
problem (1) and subsequently use solution methods devel-
oped for the STLS problem, while different algorithms are
developed in the framework of the global total least squares
problem. Another difference between the approach of this
paper and the approach of Roorda and Heij is that we use
a kernel representation of the system, while in [10], [12] a
state space representation with driving input is used.

C. Outline of the paper

Section IT gives background material on LTI systems
described by kernel representation. Section Il defines and
solves the identification problems. Section IV describes
some extensions of the identification problem. Section V
shows results of the proposed method on data sets from
DAISY, and Section VI gives conclusions.

II. PRELIMINARIES
A. Kernel representation

Consider a time series w:= (w(1),...,w(T)) with w vari-
ables. A block-Hankel matrix with ! block rows, constructed
from w, is denoted by

w(l)  w(2) w(T—1+1)
) o= w(:2) w(:3) w(T—:l+2) .
w(l) w{l+1) w(T)

The time series w satisfies the set of difference equations

Row(t) -+ Ryw(t+ 1) +---+ Rw(t +1) =0,
fort=1,....T-1 (2)
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with maximum ! delays or lags, if and only if

R (w)=0, where R:=[Ry R R..

The rank deficiency of . (w) is related to the existence
of an LTI system ¥ that “explains” the data and the Hankel
structure is related to the dynamic nature of the model.

In the behavioral approach to system theory [13], (2)
is called a kernel representation of the system Z. A more
compact notation is

R(o)w=0, where R(&):= zl“ R, 3)
i=0

and ¢ is the backwards shift operator, (ow){t} = w(r +1).
Let 48 be the set of all trajectories of a system X, described
by (3), i.e,

Z.={w:Z—-R"|R(o)w=0}

We identify the behavior 48 of X with the system X itself.
No a priori separation of the variables into inputs and
outputs is imposed.

B. Shortest lag representation

A kernel representation (3) is not unique. There exists
a minimal one, called shortest lag representation [14, Sec.
71, in which the number of equations p = rowdim(R), the
maximum lag /, and the total lag n = ¥% | /;, where /; is
the lag of the ith equation, are all minimal. In a shortest
lag representation the number of equations p is equal 10 the
number of outputs in an input/output representation and the
total lag n is equal to the state dimension in a minimal state
space representation. The maximal lag / is called the lag of
the system Z.

C. Model class %y

The number of inputs in an input/output or in-
put/state/output representation of a linear system % is
invariant [14, Sec. 4]. Denote by .%,; the set of all LTI
systems with at most m inputs and lag at most I. The
natural numbers m and / specify the complexity of the
model class 2, ;. For & € %, ; and T sufficiently large, the
restriction 28|, 7| of the behavior & to the interval [1,7]
has dimension mT +n < mT +Ip.

The specification of the complexity by the lag of the
system does not fix the order. For a system & € %, ;, the
order # is in the range (I—1)p <n <lp.

III. TDENTIFICATION IN THE MISFIT SETTING

A. Problem formulation

Considering the model class .# = %, ;, the identification
problem intreduced in Section I-B is the following double
minimization problem:

: . 12 R
— L #). 4
ﬁrggﬂ (rnﬁ}n Iw—wllz, st we ) )

The given data is the time series w and the complexity
specification (m,[); m the number of inputs and / the lag.

The inner minimizatior problem, i.e., the misfit M{w, &)
computation, has the system theoretic meaning of finding
the best approximation # of the given time series w, that
is a trajectory of the (fixed from the outer minimization
problem) LTI system 2. This is a smoothing problem.
The outer minimization problem, however, is a difficult
non-convex optimization problem that requires iterative
methods. Some details on the numerical method used can be
found in Apperdix A, where a software package for solving
the STLS problem (1) is described.

B. Solution by structured total least squares

Our goal is to express (4} as an STLS problem (1). There-
fore, we need to ensure that the constraint #(#) [*,] =0
is equivalent to W € 4. As a byproduct of doing this, we
relate the parameter X, in the STLS problem formulation,
to the system .

Theorem I: Assume that %8 € %, is a system that
admits a kernel representation R(c)w =0, R(E) = i RiE?
with Ry =: [QJ Pg], P € RP*P of full row rank. Then the
constraint w € (1 7] is equivalent to the constraint

AT %] =0,

where
XT=-pP*[Ro R Q1.
Proof: The proof is given in [1]. |
Theorem 1 states the desired equivalence of the identifi-
cation problem and the STLS problem under the assumption
that the optimal approximating system 4 admits a kernel
representation

l 5 .Y -~
#=Xer(Y Rio"), R:=[0 B]
i=0
with A, € RP*? full row rank, (5)

We conjecture that condition (5) holds true for almost
all w € (R¥)T. Define the subset of (R¥)T consisting of all
time series w € (R¥)” for which the identification problem
is equivalent to the STLS problem, i.e.,

Qe {w c RV ‘ problem (4) has a unique global }

minimizer % that satisfies (5)

Conjecture 1: The set Q is generic in (B¥)T, ie., it
contains an open subset, whose complement has measure 0.

The existence and uniqueness part of the conjecture (see
the definition of ) is motivated in [15, Sec. 5.1]. The moti-
vation for (5) being generic is the following one. The high-
est possible order of a system in the model class %, ; is pl.
One can expect that generically in the data space (R*)7,
n= pl, where n is the order of 2. By {1, Lemma 2), n = pl
implies that in a kernel representation & = ker { T1_, Rio"),
Ry is of full row rank. But generically in RP*¥ the matrix
B e RP*P, defined by R, = [Q, £, is of full row rank.
Although the motivation for the conjecture is quite obvious,
the proof seems to be rather involved.
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C. Properties of the solution

The optimal value of the STLS problem is the minimal
achievable misfit M(w, &) for a system in %,; With
given 4, the problem of finding % is a smoothing prob-
lem and can be solved independently of the identification
problem.

Statistical properties of the identification problem (4),
are studied in the literature. For the stochastic analysis, the
errors-in-variables model is assumed and the basic results
are consistency and asymptotic normality. Consistency in
the SISO case is proven in [16). Consistency in the MIMO
case is proven in [15], in the framework of the global
total least squares problem. Complete statistical theory
with practical confidence bounds is presented in [17}, in
the setting of the Markov estimator for SISO semi-linear
models. Consistency of the STLS estimator for the general
structure specification described in Appendix A is proven
in [18].

Deterministic properties of the optimal approximate tra-
jectory w are also established. The following are properties
of the smoothing problem: i) w is orthogonal to the correc-
tion Aw :=w—Ww and ii) Aw is generated by an LTI system
of order n with p inputs. Since the identification problem
has as an inner minimization problem the smoothing prob-
lem, the same properties hold in particular for the optimal
solution. These results are stated for the SISO case in [7]
and then proven for the MIMO case in [10, Sec. VIL.

IV. EXTENSIONS
A. Given input/output partitioning
A standard assumption in system identification is that an
input/output partitioning of the variables is given. Let the
first m variables of the given time series be inputs and the
last p variables be outputs. Then with [}] :=w and

[Q(E) —P(E) :=R(E),

the kernel representation R{c)w = 0 becomes a left ma-
trix fraction representation P(c)y = Q(c)u. The transfer
function of & with the given inputfoutput partitioning is
H(z) = P71(z)Q(z).

B. Exact variables

Another standard assumption is that the inputs are exact
(in the errors-in-variables context noise free). Let & and §
be the estimated input and output. The assumption that # is
exact imposes the constraint & = .

More generally, if some variables of w are exact, then
the corresponding elements in W are fixed. In the STLS
problem formulation (1), the exact elements of w can be
separated in a block of S/(w) by permuting the columns
of 2], (w). The software package described in Appendix A
allows specification of exact blocks in .%/(w) that are not
modified in the selution (). After solving the modified
problem, the solution X of the original problem, with exact
variables, is obtained by applying the reverse permutation.

C. Latent inputs

The classical system identification framework [19] differs
from the one in this paper in the choice of the optimization
criterion and the model class. In [19], an unobserved input is
assumed to act on the system that generates the observations
and the optimization criterion is defined as the prediction
error.

An unobserved input e, row dim{e(¢)) = n, called latent
input, can be accommodated in the setting of Section ITI-A
by augmenting the mode! class .# = %,; with n. extra
inputs and the cost function [|w — |7, with the term ||e[[7,-
The resulting identification problem is

] € %‘). (6)

It unifies the misfit and latency description of the uncer-
tainty and is put forward by Lemmerling and De Moor [8].
In [8], it is claimed that the pure latency identification

> G

. . a2 112

min min ||\w—wlz +| € 8.1

me(w I — 3, + 11813, [
misfit

T

latency

problem
. o an? é
596%:2%: (mém l1€]l7, s-t- [w] € @) N

is equivalent to the prediction error approach.

The misfit-latency identification problem (6) can easily
be reformulated as an equivalent pure misfit identification
problem (4). Let wayg := [1], where e:=0 is an s, di-
mensional zero time series. Then the misfit minimization
problem for the time series way, and the model class
ZLrntn, 18 equivalent to (6).

The latent input amounts to increasing the complexity of
the model class. Thus a better fit is achieved with a less
powerful model. In our view, a latent input should be used
in the identification problem only when there is a prior
knowledge that the dala w is generated by a system with
unobserved input, i.e., when e exists physically.

This viewpoint is in contrast to the classical by now
system identification philosophy that considers the unob-
served input as a tool to account for the cumulative effect
of various sources—model class inadequacy, unobserved
inputs, measurement erross, efc.

D. Muitiple time series

In certain cases, e.g., the noisy realization problem, not
one but several observed time series w®, k=1,...,K are
given. Assume that all time series are of the same length
and define w to be the matrix valued time series w —
[wll) ... w(®)], so that w(r) € R**X. The only modification
needed for this case is to consider block-Hankel matrix
H#1(w) with size of the repeated blocks K x w instead
of 1 x w, as for the case of a single observed time series.
The software package described in Appendix A can treat
such problems.
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V. PERFORMANCE ON DATA SETS FROM DAISY

Currently the data base for system identification
DAISY [9] contains 28 real-life and simulated data sets,
which are used for verification and comparison of identifi-
cation algorithms. In this section, we apply the described
identification method, implemented by the software tool
of [20], on data sets from DAISY,
The first part of Table I gives information for the data
sets (number of data points 7, number of inputs m, the
number of outputs p) and shows the selected lag I for
the identified model. Since all data sets are with given
input/output partitioning, the only user defined parameter
selecting the complexity of the model class %, ; is the lag ..
The estimates obtained by the following methods are
compared:
» subid, a MATLAB implementation of the robust com-
bined subspace algorithm of [21, Fig. 4.8];

s detss, a MATLAB implementation of the determinis-
tic balanced subspace algorithm of [22};

» pem, the prediction error method of the Identification
Toolbox of MATLAB;

+ stlg, the proposed method based on STLS.

Note that /+ 1 is the user supplied parameter { in the
combined subspace algorithm subid. The order specified
for the methods subid, detss, and pem is pi (the
maximum possible in the model class %, ).
The comparison is in terms of the relative percentage
misfit A R
Mraa(w, ) := 100 M(w, B)/|[w(t)le,-

My, is computed by solving the smoothing problem
M(w,ﬂ?) for the estimated models %. For detss and
pem, 4 is the deterministic part of the identified stochastic
system.

The second part of Table I shows the relative misfits M
and execution time for the compared methods. The STLS
solver is initialized with the approximation of the non-
iterative method subid or detss that achieves smaller
misfit on the particular data set. The time needed for the
computation of the initial approximation is not added in the
timing of st1s. The prediction error method is called with
the data w and the order n = pl! specification only, so that
the appropriate model stracture and computational method
are selected automatically by the function.

Since My i5 up to a scaling factor equal to the cost
function of stls, it is not surprising that the proposed
method outperforms with respect to this criterion the alter-
native methods. The purpose of doing the comparison is to
verify that the numerical too! needed for the solution of the
optimization problem (1} is robust and efficient.

Indeed, identification problems with a few thousands data
points can be solved with the STLS software package.
Such problems are infeasible for direct application of opti-
mization methods without exploiting the special structure.
Also the computation time of st1s is similar to that of
pem, which is also an optimization based method. On all

examples, initialization of the STLS solver with the estimate
obtained by a subspace identification method, leads to
improved solution, in terms of the misfit criterion. Thus for
the expense of some extra computation time, the subspace
approximation is improved by stls.

In a stochastic setting, under suitable conditions, the
STLS estimate is consistent and asymptotically normal.
Therefore, an error estimate in the form of confidence bound
is available for the parameters of the identified system [17,
Ch. 17.4.7]. As a by product of the optimization algorithin,
the STLS solution package returns the asymptolic covari-
ance matrix of the error of estimation. In the SISO case, this
information gives confidence bounds for the cocfficients of
the obtained transfer function,

V1. CONCLUSIONS

We generalized previcus resulis on the application of
STLS for system identification to multivariable systems.
The STLS method allows to treat identification problems,
without input/ouiput partitioning of the variables and errors-
in-variables identification problems. Multiple time series,
latent variables, and prior knowledge about noise free
variables can be taken into account.

The classical identification problem, where the uncer-
tainty is attributed solely to unobserved inputs and the
observed inputs are assumed exact is a special case of the
proposed method. The relation and comparison with classi-
cal identification methods, however, is not yet investigated.

A robust and efficient software tool for solving STLS
problems is presented. It makes the proposed identification
method practically applicable. The performance of the soft-
ware package was tested on data sets from DAISY. The
results show that examples with a few thousands data points
can be solved routinely and the optimization method is
robust with respect to initial approximation obtained from
a non-optimization based method.

APPENDIX
A. Software package for selving STLS problems [20]

Efficient numerical methods for STLS problems were
developed in the past, see [23]. Applied to the system
identification problem, however, they cover only SISO
problems and the input/output identification problem can
not be treated. On the other hand, the more general STLS
methods of [2], [3] have cubic computational complexity
and are restricted to rank reduction with one. Thus they are
applicable only for small size SISO problems.

The described package solves the STLS problem (1) with
()= [c™ €9, where €4 is block-Toeplitz (T),
block-Hankel (H), unstructured (U), or exact (E). All block-
Toeplitz/Hankel structured blocks C% have blocks of the
same row size K and possibly different column dimen-
sions #;. Such a structure specification is more general than
necessary for the considered basic identification problem.
For the extensions of Section IV, however, as well as for
other approximation problems, the additional flexibility in
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TABLE I
RELATIVE MISFITS Myg, AND EXECUTION TIMES ! IN SECONDS FOR THE EXAMPLES AND THE METHODS.

parameters subid detss pem stls
#  Data sct name T m p | 1 M | t My f Ml ! Mrel
i Destillation column 90 5 3 17101 0.0089 | 0.57 0.0306 | 1.66 0.0505 | 0.45 0.0029
2 Destillation column nl0 90 S5 3 1 ]010 0.0089 | 0.57 0.0306 | 1.58 0.0505 | 0.45 0.0029
3  Destillation column n20 90 S5 3 1010 0.4309 | 0.57 0.1187 | 0.54 1.8574 | 1.17 0.0448
4 Destillation column n30 90 5 3 1]010 0.4357 | 0.61 0.1848 | 0.57 73600 | 1.18 0.0522
5 Glass furnace (Philips) 1247 3 6 1 [ 015 33.6782 | 1.72 293373 43 315416 84 114120
6 120 MW power plant 20 5 3 21014 8.9628 | 0.63 42906 | 2.68 354524 | 0.77 1.2427
7  pH process 201 2 1 6023 42564 | 0.64 44113 | 5.66 9.8727 | 193 3.2203
8  Hair dryer 1000 1 1 5012 1.0437 | 0.18 1.0359 | 3.33 0.8311 | 1.19 0.8208
9  Winding process /006 5 2 21029 114838 | 1.15 10.1473 17 20.2908 62 71731
10 Ball-and-beam setup 0w 1 1 2010 2.8062 | 0.17 28.3637 | 0.55 27708 | 0.11 2.6718
11 Industrial dryer 867 3 3 11011 0.5586 | 0.59 0.5519 | 2.35 05553 | 3.1l 0.4447
12 CD-player am 248 2 2 1013 94629 | 0.59 8.7653 | 479 113623 | 9.37 7.7980
13 Wing flutter 1024 1 1 5042 202766 | 0.19 21.0214 § 3.14 352727 | 091 11.6501
14 Robot arm 1024 1 1 4| Q12 3.8855 | 0.21 260082 | 266 36.1531 | 0.08 1.3905
15  Lake FErie 57 5 2 1]611 0.1423 | 0,14 0.2205 | 0.52 2,1548 | 043 0.0908
16  Lake Erie nl0 57 5§ 2 1]010 0.0505 | 0.14 0.0538 | 0.85 0.1992 | 041 0.0221
17  Lake Etie n20 57 5 2 11010 0.0607 | 0.16 0.0671 | 0.67 02677 | 045 0.0268
18  Lake Erie n30 57 5 2 11010 0.0798 | 0.17 0.0564 | 0.52 0.1862 | 0.41 0.0329
19  Heat flow density 1680 2 1 2| 013 0.7779 | 0.30 0.5651 | 3.73 41805 | 0.49 0.4219
20 Heating system 801 1 1 2010 0.4913 | 0.17 0.4441 | 0.94 04973 | 0.09 0.3658
21  Steam heat exchanger 4000 1 1 2} 014 0.1521 | 0.54 0.14%9 | 3.37 0.6723 | 0.40 0.0822
22  Industrial evaporator 6305 3 3 11032 377809 | 3.27 276341 40 40.6798 15 24.0065
23 Tank reactor 7500 1 2 1| G19 0.1768 | 1.89 0.1621 24 39620 | 2.18 0.0749
24  Sieam generator 9600 4 4 1 | 0.66 04175 | 845 0.5341 132 0.5751 118 0.1704

the problem formulation is useful. Also, as shown below,
the extra flexibility of the problem formulation does not
lead to significant complication in the solution method.

The structure of (-} is specified by K and the array 2
({T,H,U,E) x Nx N} that describes the blocks {C'V}7_;
@; specifies the block € by giving its type Zi(1), the
number of columns n; = Z4(2), and (f CU is block-
Hankel or block-Toeplitz) the column dimension %;(3) of
the repeated block. The input data for the problem is .5 (w)
and the structure specification K and 2.

We solve the optimization problem (1) in its equivalent
formulation, see [24],

min rT(OT™!(X)r(X), 8)

where r(X) := vec((#(w) [ 4] )T) The weight matrix I"
is block-Toeplitz and block-banded structured, see [25],

T, T T, 0
1"1 K .
r(x) = I
T
T T, . . r—l
0 ry - I FO d

The block size is 4K and the upper/lower block bandwidth s
equals the maximum number of block columns in a block-
Hankel/Toeplitz structured block €.

The structure in the weight matrix T'(X) is exploited for
efficient cost function and first derivative evaluation. The
cost function evaluation requires solving the system of equa-
tions T(X)y(X) = r(X) and computing the inner product

rT(X)¥(X). Straightforward implementation of these steps
results in O(T3) floating point operations. By solving the
system of equations, taking into account the structure of
T(X), we reduce the computational complexity to O(T).
In addition, the first derivative of the cost function can
be computed with the same computational complexity.
There is no closed form expression for the Jacobian matrix
J = [0ri/dx;], where x = vec(X), so that the pseudo-
Jacobian J, proposed in [26] is used instead of J. The cost
function and pseudo-Jacobian evaluation is performed with
computational complexity O(T).

The input data for the STLS algorithm is the structure
specification X,% and the data matrix C. The flexible
structure specification & is utilized in the computations for
the construction of the weight matrix I'(X). Because of its
structure, T(X) is specified by the nonzero part of its first
block row, ie., by the s+ 1 matrices {Tx(X)}_,. In [25,
Sec. 4], we prove that the I'y's are quadratic in X. Define
the shift matrix

o1 o0 ... 0
0 0 1 0
=0 0 e s | e R
oo -~ 0 1
o 0 .- 0 0

and let § be the Kronecker delta function: 8(0) = 1 and
A(k) =0 for k # 0. It can be shown that
T(X) = XexWesXey, fork=0,...,s, 9

where

X :={lk®@[XT -1]),
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Wiy = blk diag(W), ... W), a0)
and
(I Y& if C% is Toeplitz
w0 _ J @) if €O s Hankel
EUY Sk, Lif €O s unstructured
On; Jif €Y is exact.

By computing the Wey's defined in (10), T'(X) can be
constructed for any X via (9). Expressions (9) and (10)
completely “decode” the structure specification % and uti-
lize it in the subsequent computations of the cost function
and the pseudo Jacobian.

The software is written in ANSI C language. For the
vector-matrix manipulations and for a C version of MIN-
PACK’s Levenberg—Marquardt algorithm, the GNU Scien-
tific library (GSL) is used. The computationally most in-
tensive step of the algorithm—the Cholesky decomposition
of the block-Toeplitz, block-banded weight matrix T{X)—
is performed via the subroutine MEQ2GD from the SLICOT
library [27]. MATLAB interface via C-mex file is available.
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