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Hidden Variables in Dissipative Systems

Jan C, Willems

Abstract— The relevance of hidden variables in dissipative
systems is examined, A definition of a dissipative dynamical
system is introduced in which the storage function does not
need to be observable from the variables that enter into the
supply rate. It is shown that a controllable system is dissipative
if and only if it has an observable storage function, but
that there are uncontrollable dissipative systems that do not
have an observable storage function. Finally, we argue that
unobservable storage functions are indispensable: they occur
in physical systems, for example in electrical circuits and in
Maxwell’s equations.

Index Terms— Behavioral systems, dissipative systems, stor-
age functions, controllability, observability, unobservable stor-
age functions.

I. INTRODUCTION

A common assumption in the analysis of dynamical
systems, particularly in control and signal processing, is
the assumption of minimality, i.e. siate controllability and
state observability, Tt is well-known, of course, that these
properties are not always valid. For example, traditional
stability questions mainly deal with autonomous systems.
Also. in control, after applying feedback, a system may
loose controllability, and in problems of disturbance de-
coupling it is the explicit purpose to make the sysiem
unobservable.

Recently, we have discovered that in the analysis of
physical systems, hidden variables (an informal term to
refer mainly to lack of observability, sometimes combined
with controllability) play an important, but sometimes subtle
role.

It is the purpose of this paper to explain that in the theory
of dissipative systems hidden variables are indispensable. In
particular, we argue that a in good definition of dissipative
system, one should not ask the storage function to he
observable from the system variables that enter in the supply
rate (or, for that matter, from the state of a particular
state representation of their transfer function). Also, we
will show that for systems described by partial differential
equations, hidden variables occur unavoidably in potential
representations, and in the storage function.

Many of the remarks and results in this paper have
appeared with a different emphasis before [6], [4]. The main
original result of this paper is the proof that a controllable
linear differential system that is dissipative (which means
that the storage function need not be observable) always
allows also an observable storage function.
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Finally, we emphasize through examples (electrical cir-
cuits and Maxwell's equations) the relevance of hidden
variables in physical systems.

II. 1-D DIFFERENTIAL 5YSTEMS

We use the behavioral language [10], [7]. A (1-D) dynam-
ical system is defined as £ = (T, W, B), with T CR the time
axis, W the signal space, and B C W7 the behavior. In the
present paper, we deal almost exclusively with continuous
time systemns with time axis T = R, W a finite dimensional
rea] vector space, and behavior *B that consists of the set of
solutions of a system of linear, constant coefficient differ-
ential equations, i.e. systems X = (R, R* B) (the notation
* means that the dimension of a vector or a matrix does no
need to be specified ~ but is, of course, finite) for which
there exists a polynomial matrix R € R**4™0HE) such thar

B = {we ¢ (R,R™M) | R(Lw =0},

equivalently B = ker(R(%)). The € assumption, which
will be used throughout for the solutions of the differential
equations which are encountered, is mainly a matter of
convenience of exposition.

This family of systems is denoted as £°, and £¥ if the
number of variables is w, whence £* = Uz, £¥. Since the
time axis equals R, we use both notations X & £¥ and B €
L£¥ If w is not specified, we use £& £* or B € £°.

The class of systems £* has many nice properties, for
instance | B, By € £° | = [ B1NBa, B + By e L¥ |
Important, but perhaps less expected, is the eliminarion
tireoremt which states that

[ Be &1 )= {w € ¢(R,RE) |
3wy € €°(R,R*?) such that {wy,w2) € B} € £ ],

These systems admit many possible representations. We
have already met kernel representations,

d
R(ZWw=0
(Sw=0,

through which the family of systems £°* is actually defined.
In view of the elimination theorem, we also obtain larent
variable representations

d d
R(a)w ZM(E?)E’ (1)

with M € B***[E] and £ the latent variable, w the mani-
fest variable, and B = (R(%))_IM(%)G"“(R,R&’"“)) the
external, or manifest (whatever is more appropriate in the
context) behavior of this latent variable representation. We
cail (1} a latent variable representation of its external
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Another type of representation, which is always pos-
sible, are state representations. Finaily, we also have in-
put/state/oufput state representations.

The system B € £° is said to be [controllable] <
[Vwi,wo € B, 3 vE DB and T > 0, such that v{t) =
wi{t) for t < 0, and v{t +T) = wa(t) for t = 0]. Denote
by £ cotanier Tespectively £F 1. the controllable el-
ements of £*, respectively £¥,

An important result from the behavioral theory states that
a system B € £* is controllable if and only if it admits a
image representation, that is, a latent variable representation
of the following special form:

d

Hence B = im{M(4)).

In this paper, we need the notion of observability in its
full generality, and not only for linear differential systems,
since we will consider observability of storage functions,
which are nonlinear (quadratic) functions of the system
variables, Let % = (T, W) x W5, ) be a dynamical system,
Hence each element w € B consists of two components, w =
{wr,ws). Interpret the variables w) as ‘observed” and w; as
‘to-be-deduced’ {rom the observed w;. We say that [ w;
is observable from wy in Z ] 1= [ (wi,w)). (w1, w]) e B
implies w) = wj 1. That is, if and only if there exists a map
F:WT - WT such that [ (wy,w2) €B 1= [wa=F(w) 1.

For latent variable representations we use the notion of
observability to mean that the latent variables are observable
from the manifest ones. Explicitly, the lalent variable rep-
resentation (1} is said to be observable if, whenever (w,{))
and (w, {5} both satisfy (1), then £y = {5, equivalently, it
turns out, if and only if there exists a polynomial matrix
F e R***[£] such that (w,£) satisfies (1) = £= F(%)w. If
a latent variable is not observable, then we think of it as
‘hidden’.

It can be shown that a controllable system B € L ontroltable
always admits an observable image representation. Staie or
input/state/output representations are ohservable if and only
if the state space is minimal (over all such representations
of a given ). Whence in our setting minimality of a state
representation is equivalent to observability. Controllability
enters in the following sense: a minimai state representation
of a behavior B € £* is state controllable (defined in the
usual way: every state may be steered 1o every other state)
if and only if B € £}

controllable
1. QUADRATIC DIFFERENTIAL FORMS

In this paper we only consider supply rates that are
quadratic differential forms. These are very effectively
parameterized using two-variable polynomial matrices, Let
R¥™%2{& 7] denote the set of real two-variable polynomial
matrices in the indeterminates  and 1. An element of this
set, say @ € R**2{[ nj, is hence 2 finite sum

(I)(gJ n) = Z (Dk’k”gk,nk”.

kl .k”

To each &, we associate the bilinear differential form
dkl - dk.’!
= —_— Dy | —w).
L‘D(v7 W) k’!zkg’ (dl‘k’ 1’) k'l (dfk” W)
Note that Ly is mapping from €*(R,R") x ¢=(R,R*?) 1o
(R, R). If & is square, @ € R¥¥[{, 7], then it induces a
guadratic differential form given by

Qo{w) := Lo{w,w).

Note that, because of the quadratic nature of O¢, we may
as well assume that @ is symmetric, ie. @ = ", with
D*(L.n) = ®T(n,L). Observe that the derivative of a
quadratic (or bilinear) differential is aiso a guadratic {(or
bilinear) differential form. Quadratic differential forms have
been studied in detail in [i1].

IV. DISSIPATIVITY OF 1-D SYSTEMS

B € £¥ (not necessarily controllable) is said to be

'[ dissipative with respect to the supply rate Qg ] 1<

[ 3 a lateni variable representation (1) of B and a ¥ €
RE4(¢, 1] such that the dissipation inequality

£04(8) < 00()

holds for all (w,£) that satisfy (1) 1.
The guadratic differential form Qg that appears in the
dissipation inequality is called a storage function. When
the dissipation inequality holds as an equality, we say that
B is Og-lossless or -conservative.

If the storage function acts on w;, i.e. ¥ € R¥*¥{{ n] and

2 0w(w) < Qo)

for all w < B, then we call the storage function observable.
QOf course, if £ is observable from w in the latent variable
representation, then the storage function Qw(f) induces a
storage function Oy {w). We also call such storage functions
observable. But if £ is not observable from w in the latent
variable representation, then QOw(€) is a function of hidden
variables. What we want to discuss in this paper is the
rationale for using hidden variables in storage functions,
unobservable storage functions.

Non-negative storage functions are very important in
applications, but we will not consider them in the present
paper. Qur storage functions nieed not be sign definite.

V. STORAGE FUNCTIONS FOR CONTROLLABLE SYSTEMS

The main issue discussed in this paper is the question
whether unobservable storage functions are indispensable in
the theory of dissipative sysiems. The answer to this gues-
tion is, as we shall see, an unambiguous ‘ves’. However, we
start with a result that shows that for dissipative controilable
systems there are always observable storage functions.
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Theorem: Let B <€ £2 none

The following are equivalent:
1. B is_dissipative with respect to (g, i.e. there exists
a latent variable representation R(4 w = M(Z)¢ and
a ¥ =4 e R ] such that

and & = @* e R¥¥[{ 7).

2 0v(0) < 0s(v)

for all (w,£) that satisfy R(Z)w=M(L)¢;

2. B is dissipative with respect to Q. with an observ-
able storage function, i.e. there exists a ¥ = €
R***{{, n] such that

£ 0v(w) < Qo(w)

for all w e 'B;
3. for all periodic w £ B there holds

qu)(w) dr >0,

where § denotes integration over a period;
4. for all w € B such that Og(w) € £(R,R), there holds

Lon
Qolw) dr 2 0;

N(—iw)"®(—iw,i0)N(iw) >0 Yo cR,

where w :N((%)l’ is an image representation of B,

Proof: The equivalence of 2., 3., 4., and 5. are classical
in the theory of dissipative systems (see [11]). We do not
dwell on these. The fact that also 1. implies any of 2., 3.,
4., or 5. is acwally the only original part of this theorem.
We prove (1. = 5.}.

Start from 1.: £Qw(€') < Qg(w) for all (w,£) that
satisfy R(Z)w =M(%)€’. By premultiplying R and M by
a unimodular polynomial matrix, and by postmultiplying
M by a unimedular matrix, we can write these behavioral
equations as

d d d
R{=w=0, R'(=)w=[M"(Z) 0]V(-)
(Zw=0. R'(Sw=[M"() O]V,
with M" square, det{M"} # 0, and V unimodular. The
equation R'($)w =0 is actnally a kernel representation of
B, and can, by controllability, be replaced by the image

representation
d
=N{=){.
Y (a‘r "

Define (£, n) :=N"({)D(,nIN(1). Denote the first
component of V{4)£, in a partition compatible with the
partition [M’ 0], by .

We obtain that there exists ¥ such that

d W
EQ‘P’(e ) < Qa{0)

for all (£,€") that satisfy R"($)N(L)E = M"(£)¢", with
M" square and with non-zero determinant. This implies,
in particular, that £ is free, hence that for any £ &

¢ (R, RUm(£)} there exists at least one corresponding £/ €
¢=(R,RI™(")} satisfying these behavioral equations. Ap-
plication of this, with a well-chosen class of ’s will give
us the result that we are after.

Take £{t) = ¢ a with & ¢ R and @ & C9™©), Note that,
for convenience, we use complex-valued signals, Taking the
real part yields the validity of the conclusions in the real
case. Note that, for @ such that det(M”(im)) #0, £'(r) =
£ (M" (iw)) 1 R"(iw)N(iw)a is a corresponding £, Now
integrate, for this periodic (£,£"),

20wty < Quw(6)
over one period, and obtain @'(—iw,iw) > 0. Hence
@[ —iw,iw) >0 for w e R, det{M"(iw)) #£ 0.
By continuity,
@' {—im,iw) =0 for all ® eR.

5. follows. O

In 19] it has been proven that every observable storage
function of a controllable system is a memoryless function
of the state in any minimal state space representation of a
suitable behavior. This behavior, however, depends on @ as
well as on B. See [9] for the precise statement.

VI. UNOBSERVABLE STORAGE FUNCTIONS

The following is an example of a system that is dissipa-
tive, but has no observable storage function. Consider the
system with manifest variable w = (wy,w,) and behavioral
equations

—x=Ax, w1 =Cx; w; free

dr

and the supply rate
T

Wy wa.
Hence w; satisfies an autonomous system of differentiai
equations, and w; is free. This system is obviously not con-
trollable. The following is a latent variable representation
of it:
—x =Ax, w; =Cx; iz = -—ATZ+CTwz,
dt dt
with latent variables (x,z). Note that this latent variable rep-
resentation is obviously not observable (even when (A,C)
is what is called an observable pair of matrices).
Now verify that
d T T
—X 7=W wa.
dt !
Hence this system is dissipative, in fact conservative. How-
ever, it can easily be verified that there exists no ¥ such
that

d
EQW(lewz) <wlwy
for all (w,wz} in the behavior.

The above example is, as many counterexamples,
somewhat degenerate, However, the following electrical
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circuit shows that unobservable storage functions are a
physical reality.

The following equations form a jatent variable repre-
sentation for the port variables (V,/) obtained from first
principles modeling:

d
Ril+L=—1; =V,
L+ L

d
Vet+RC=Ve = V,
C+Cd£C
V-V

I = L

rRe

Here, {;, the current through the inductor, and V., the
voltage across the capacitor, should be considered as latent
variables. After elimination of these latent variables, we
obtain, in the case R, = 1,Rc=1,L =1,C =1, the manifest
behavioral equation

d
(1 2V = (14 ). )

This system is obviously not controllable.
This system is dissipative with respect to the supply rate
VI. In fact. the internally stored energy,

1 1
ECVC2 + Eug

is a storage function, and
1
RUlf+ —(V V)
Re

is the corresponding dissipation rate. In the case R =
1,Re = 1,L =1,C =1, this storage function is, however,
not observable.

For the system (2} with the supply rate VI, there are,
however, also observable storage function. For example,

%x:—x,l/:]/x-}-[,

with dim{x) =1 is a minimal stale representation of (2)
for all v+ 0, and %xz is an observable storage function
for all ¥ < 1. In fact, since the symmetric part of the
associated ‘system matrix’ [ A ~2] is > 0, this state repre-
sentation, and hence the port behavior, can de realized as
an electrical circuit containing one unit capacitor, positive
resistors, gyrators, and transformers (for this, and other
circuit theory resuits, see, for example [1]). However, there
are no reciprocal circuit realizations (realizations without
gyrators) that are minimal, in the sense that they use only
one reactive element (a capacitor or an inductor), and further
positive resistors and transformers. Indeed, for such a first

order realization, the system matrix [‘g ‘g] would have
to be signature symmetric, but this would imply (A,B) is
controllable, contradicting the uncontrollability of (2). All
minimal state representations of (2) are uncontrollable.
Conclusion; there exist reciprocal circuit realizations of

d d
(1+ dt)v =1 +dt)1'

In fact, ore is given in the above figure, with Ry =1, R =
1,1 =1,C = 1. But these reciprocal realizations necessarily
all have an unobservable storage functions. Hence a com-
plete theory of dissipative physical systems must allow for
unobservable storage function.

This leads to the following open problems which were

7 announced at the 2003 CDC [4].

The most classical result of circuit theory is undoubtedly
the fact that g is the driving point impedance of a circuit
containing a finite number of positive resistors, capacitors,
inductors, and transformers if and only if g is rational and
positive real. This classic result was obtained by Brune [3].
In 1949, Bott and Duffin [2] proved that transformers are
not needed.

It seems to us that a more ‘complete’ version of this
clagsical problem is to ask for the realization of a differential
behavior. This problem is more general than the driving
point impedance problem, because of the existence of
uncontrollable systems. For example, a unit resistor realizes
the transfer function of the system (2) as jts driving point
impedance, but not its behavior (which admits, for example,
the short circuit response (¢t} = ™",V (t) = 0, not realized
by the resistor).

Probiem 1: Whar behaviors B € £2 are realizable as
the port behavior of a circuit containing a finite number of
passive resistors, capacitors, inductors, and transformers?

It is easy to see that B must be single input / single
output, and that the (ransfer function must be rationa! and
positive real, In addition B must be passive, but in general it
may have a non-observable storage function, and therefore
it is not clear what this says in terms of B.

Problem 2: Is it possible to realize a controllable single
input / single output system with a rational positive real
traisfer function as the behavior of a circuit containing a
[finire number of passive resistors, capacitors, and inductors,
but no transformers?

Note that in a sense this is the Bott-Duffin problem, the
issue being that the Bott-Duffin synthesis procedure usually
realizes a non-controliable system that has the correct trans-
fer function (i.e., the correct controllable part), but not the
correct behavior. In this case, there are standard synthesis
procedures known that do realize the correct behavior, but
they need transformers.

VIL. n-D SYSTEMS

In partial differential equations, the occurrence of hidden
variables is very prevalent. We ilustrate this by the intro-
duction of potentials, and by dissipative systems described
by partial differential equations.
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Define a linear shift-invariant n-D differential system as
= (R",R¥ %), with behavior ‘B consisting of the solution
set of a system of partial differential equations

d

d
R(a—xl”E)WZO (3)

viewed as an equation in the maps
(51, %) = x € RE s (w1 (3), .., walx)) = wix) € R,

Here, R € R**¥{§),...,&] is a matrix of polynomials in
R[&,...,&]. The behavior of this system of partial differ-
ential equations is defined as

B ={we ¢”(R*,RY) | (3) is satisfied}.

Important properties of these systems are their lineariry
(meaning that B is a linear subspace of (R¥)"), and
shift-invariance (meaning ¢*B =B for all x € R®, where
&* denotes the x—shift, defined by (¢°f)(x') = f(' +x)).
The €~-assumption in the definition of B is made for
convenience only, and there is much to be said for using dis-
tributions instead. We denote the behavior of (3) as defined
above by ker(R(aixI,...,%n)), and the set of distributed
differential systems thus obtained by £Z. Note that we may
as well write B ¢ £7, instead of X € £, since the set of
independent variables (R") and the signal space (R¥) are
evident from this notation. Of course, also here, the system
allows many other representations.

A typical example is given by Maxwell’s equations,
which describe the possible realizations of the fields E :
RxR*—=R¥B:-BRxR} - R} 'R xR* — R and p:
R x R* — R. Maxwell’s equations

= 1
V-E = o )
&
- . d .
VxE = ——B
* de
VB = 0
AVxB = —T+£E
- on o’

with g the dielectric constant of the medium and c? the
speed of light in the medium, define a distributed differential
system

d d d d

— (o4 pI0 g 9 0 g
2= (B4R ’ker(R(ar’ax’B_v’az )

) €y,

with the matrix of polynomials R € R3*10[&; & & &)
easily deduced from the above equations. This defines the
system (R x B3 R3 x R? x R3 x R, ™), with B the set of
all (E,B,j.p) that satisfy Maxwell’s equations.

Many of the results for 1-D systems generalize, often
with non-trivial proofs, to n-D systems. For a study of £3,
we refer to the fundamental paper [5], where, for instance,
the elimination theorem is proven. As an illustration of
the elimination theorem, consider the elimination of B

and p from Maxwell's equations. The following equations
describe the possible realizations of the fields E and j:

2 R -
O A o
82-\- 7 - &7

We now explain the generalization of controllability to
linear constant-coefficient partial differential equations. A
systemn B € £¥ is said to be controllable if for all wy,wy € B
and for all bounded open subsets &, O, of R* with disjoint
closure, there exists w & B such that wip, = wylg, and
wlg, = w2lo,. We denote the set of controllable elements
of £ by £F . iuoliapte- Here again it has been shown [5]
that it are precisely the controllable systems that admit an
image representation. The notion of observability carries
over unchanged from the 1-D to the n-D case. An important
difference between the 1-D and the n-D case is that,
contrary o the 1-D case, there may not exist an observable
image representation of a controllable behavior in the n-D
case. .

Note that an image representation corresponds to what
in mathematical physics is called a porential function. An
interesting aspect is the fact that it ties the existence of a
potential function with the system theoretic property of con-
trollability: concatenability of trajectories in the behavior. In
the case of Maxwell’s equations, an image representation is
given by

E = ——A-V¢,
dt ¢
B = V><;4‘,
J = EOEEA_E()CVA)
. Eoﬁ 2

where ¢ : R xR - R is a scalar, and A : Rx B® —
I3 a vector polential. This image representation is not
observable. Maxwell’s equations, in fact, do not admit an
observable image representation. Hence, in mathematical
physics, potentials often involve hidden variables [8].

VIII. DISSIPATIVE n-D SYSTEMS

Quadratic differential forms and their notation readily
generalizes to the n-D case.
Let B € £F . 1poante and consider the 2n-variable poly-
nomial matrix ® =@* ¢ R¥¥[{y,..., 6. M1, .., M- Define
B to be globally conservative with respect to the supply

rate Qg if
/ Oa(w) dxj---dx, =0
Rn

for all w € B of compact support, and globally dissipative
if :
/ Qo(w) dx-+dxy >0
IRn

for all w € ‘B of compact support.
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Consider the controllable n-D distributed dynamical sys-
tem B € LI e and the supply rate defined by the
quadratic differential form Qg. Let w = M(;f,—],...,é%)e
be an image representation of 8. Then B is conservative
with respect to Qg if and only if there exist an n-vector
of quadratic differential forms Oy = (Qy,...,Qw,) on
¢=(R®, R¥H4m{) called the flux densiry, such that

V. Qu(w,£) = Qa(w)
for all (w,£}, that satisfy w :M(g%,...,g‘z_—n)ﬁ. Here V=
a d
i 4t P |
When the first independent variable is time, and the
others are space variables, then the local version of the

conservation law can be expressed a bit more intuitively
in terms of a quadratic differential form Qs, the srorage

density, and a 3-vector of quadratic differential forms QOr, -

the spatial flux density, as
a
EQS(W; 0+ V- Or(w ) = Qo(w)

for all (w,{) that satisfy w:M(g—r,%,a‘%,‘%)E, an image
representation of £f . . Here V= % + 3‘1‘ + o.%

In the I-D case, as we have that the introduction of latent

variables in the storage sense is, in a sense, unnecessary

in the controllable case. However, in the n-D case, the
introduction of latent variables cannot be avoided, because
not every controllahle distributed parameter system B € £7
admits an observable image representation.

As an illustration of this result, consider Maxwell's
equations. This defines a conservative distributed dynamical
system with respect to the supply rate —£ f the rate
of electric energy supplied to the electro-magnelic field.
In other words, for all (E,7): R xR} - R*xR? of
compact support that satisfy the partial differential equations
obtained from Maxwell's equations after elimination of the
fields B and P, there holds

f f E . dxdydz dr =0.
R JR3

A local version of the law of conservation of energy is
provided by introducing the siored energy density, S, and
the energy flow (the flux density), F, the Poynting vector.
These are related 10 £ and B by

2
E.E4+ 25

2

’E x B.

S(E,B) =
FE.B) =

B-B,

|8

&

As is well-known, there holds,
P Goa oo -
ES(E,B)Jrv-F(E,B)HE‘-;:O

along the behavior defined by Maxwell’s equations.

Note that the local version of conservation of energy
involves & in addition to £ and 7. the variables that define
the rate of energy supplied. Whence B plays the role of a

latent variable, and it is not possible to express conservation
of energy in terms of E,f, and their partial derivatives.
Hence the local energy involves hidden variables already
in Maxwell’s equations,

We finally discuss dissipative n-D systems. The following
result gives the local version of dissipativeness for dis-
tributed differential systems.

Consider the controllable n-D distributed dynamical sys-
em B e LY and the supply rate defined by the

n.controllable
quadratic differential form Qg. Then *B is dissipative with

respect to Qg if and only if there exist:
1) a latent variable representation

J 2 2 a
Rl oW =MG gt @

of B,

2) an n—vector of quadratic differential forms Qg =
(Qw,,...,0w,) on (R R called the flux
density,

such that
V- Qi £) < Qolw)
for all (w,£), that satisfy (4).

ACKNOWLEDGMENTS

This research is supported by the Belgian Federal Govern-
ment under the DWTC program Interuniversity Attraction Poles,
Phase V, 2002-2006, Dynamical Systems and Control: Com-
putation, Identification and Modelling, by the KUL Concerted
Research Action (GOA) MEFISTO-666, and by several grants en
projects from IWT-Flanders and the Flemish Fund for Scientific
Research.

REFERENCES

[1] B.D.O. Anderson and 5. Vongpanitlerd, Network Analyis and Syn-
thesis, A Modern Svstems Theory Approach, Prentice Hall, 1973.

[2] R. Bott and R.J. Duffin, impedance synthesis without wransformers,
Jowrnal of Applied Physics, volume 20, page 816, 1949.

[3]1 O. Bmne, Synthesis of a finite two-lerminal network whose driving-
point impedance is a prescribed function of frequency, Jourmal of
Mathematics and Physics, volume 10, pages 191-236, 1931,

(4] M.K. Camlibel, J.C. Willems, and M.N. Belur, On the dissipativity
of uncontrollable systems, Proceedings of the 42nd IEEE Conference
on Decision and Control, Maui, Hawaii, pages 1645-1650, 2003.

[5]1 HXK. Pillzi and S. Shankar, A behavicral approach to conwol of
distributed systems, SIAM Journal on Conirol and Oprimization,
volume 37, pages 388408, 1999,

[6] H. Pillai and J.C. Willems, Dissipative disuibuted systems, SIAM
Journal on Control and Optimization volume 40, pages 1406-
£430, 2002.

[71 IW. Polderman and J.C. Willems, Mntroduction o Marhemarical
Systems Theory: A Behavioral Approach, Springer-Verlag, 1998.

[8] E. Scheibe, On the mathematical overdetermination of physics,
pages 186-199 of Philosophy, Mathematics and Modern Physics
(Edited by E. Rudolph and 1-O. Stamatescn), Springer-Verlag, 1994,

[5] H.L. Trentelman and J.C. Willerns, Every storage function is a
state function, Systems & Conirol Lerters, volume 32, pages 249-
260, 1997.

{10] 1.C. Willems, Paradigms and puzzles in the theory of dyramical
systems, JEEE Transactions on Awtomatic Control, volume 36,
pages 259-294, 1991

[11] 1.C. Willems and H.L. Trentelman, Cn quadratic differential forms,
SIAM Journal of Control and Oprimizarion, volume 36, pages 1703-
1749, 1998.

363



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


