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Abstract—We present an algorithm to compute a balanced ence paper is to present an algorithm for the construction of
state representation of a system from its description in terms g palanced state representation directly from the differential
of polynomial matrices and higher-order differential equations. equations (or the transfer function) that describe the system,
Keywords: Behaviors, image representation, state representa- in the MIMO Case,' The SISO case has been dealt with in
tion, controllability gramian, observability gramian, balancing, =~ Much more detail in [10].
model reduction. A few words on notation. In this paper we denote the fields
of real and of complex numbers respectively wikthand
C. The space oh dimensional real, respectively complex,

The physical processes and systems which are nowadaystors is denoted bR®, respectivelyC®, and the space
being modelled mathematically exhibit an increasing comef m x n real, respectively complex, matrices, t®rx®,
plexity, and the need to use them efficiently in order t@espectively C***. The operatorcol stacks the elements
compute control actions, to run scenarios, etc. has becorfreimbers, vectors, or matrices) on which it operates. The ring
critical in many applications. These requirements provide thef polynomials with real coefficients in the indeterminate
basic motivation for the reduction of the complexity of ais denoted byR[¢]; the ring of two-variable polynomials with
model and for its approximation by means of a simplifiedeal coefficients in the indeterminatésandn is denoted by
one, which captures those features of the original mofR[¢,n]. The space of alh x m polynomial matrices in the
relevant for the application at hand. indeterminatet is denoted byR**"[¢], and that consisting

In the context of linear systems, complexity is usuallyof all n x m polynomial matrices in the indeterminatésnd
related to the minimal number of state variables needeg by R**"[(,n]. Given a matrixR € R**"[¢], we define
to represent the model. Among the various methods fak*(¢) := R(—¢)T € R**®[¢].
model reduction developed in this area, those based onWe denote with¢>°(R,R9) the set of infinitely often
the concept obalanced state representatidras proven to differentiable functions fronR to R9, with D(R,R%) the
be remarkably effective. Such method computes a specilbset of¢>° (R, R¥) consisting of those compact support,
state-space representation of a system, one in which eaahd with®+ (R, R¥) the subset of>°(R,R") consisting of
component of the state vector is roughly speaking as muetii w’s such thatw)_. o) has compact support.
controllable as it is observable. Once such a representation
of the system has been computed, the components of the
state vector which contribute the least to its input-output In this paper we consider continuous-time finite-
behavior can be eliminated. Among the important features eimensional linear time-invariant systems input/output
this method is that under reasonable conditions, the stabilitgrm, described by the set of differential equations
of the reduced model is assured, and the existence of a d d
remarkable error bound. P(—)y = Q2 )u, 1)

In these algorithms, it is usuallg priori assumed that a ) )
state-space representation or the impulse response are givéfiere P € RVV[¢] is assumed to be nonsingulap, <
However, modeling a physical system from first principle&t’ “[¢], and the transfer functio®~'Q is a matrix of
hardly ever results in such a description, which indeeBroper rational functions. The variables y are theinputs
usually needs to beonstructedrom the set of higher-order respectively theoutputsof the system. Equation (1) defines
differential or difference equations (possibly with auxiliarythe system behavior
variaple_s and with static_ constraints among the variables) B = {(u,y) € C(R,R*7) | (1) holds).
describing the model. It is therefore of interest to develop
algorithms that pass directly from such a high-complexityn the following we identify the system described by (1) with
model to a reduced state model, without the intermediate stép behaviors.
required to compute a (non-balanced) state representationA standing assumption in this paper is that the behavior
from the first principles models. The purpose of this confer® is controllable meaning that for al{uy, y1), (u2,y2) € B

I. INTRODUCTION

Il. THE SYSTEM EQUATIONS
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there existsT” > 0 and (u,y) € 9B such that(u;,y;)(t) = i.e., the behavior of

(u,y)(t) for t < 0 and that(uq,y2)(t) = (u,y)(t + T) d

for t > 0. It can be shown (see sec. 5.2 of [6]) tHAt u = M(Z)e

is controllable if and only if the polynomial matri := d

[ P —Q ] associated with (1) is such that the rank of the y = N(Z)t

complex matrixR(\) € CY*+w is the same for each d

C r = col(aci(%)@)i:l,m,n/ 4)

It can also be shown (see Th. 6.6.1 p. 229 in [6]) thaéatisfies the axiom
controllability of B is equivalent to the existence of anage
representationfor it, meaning that there exist polynomial
matricesM € R**"[¢], N € RY**[¢] with M nonsingular
and NM ! proper, such that thenanifest behavioof the
latent variable systerwith latent variable/

of state (see p. 1058 of [7] for a for-
mal statement of the axiom of state). The matfix :=
col(2;)i=1,.n € R“/X“[g] hence induces thestate map
X(£)¢. Once a state map is known, the system matrices
A e R B e R O ¢ R and D € RY*®
corresponding to the i/s/o representation (3) can be obtained

Py — M(%)e from a solution
: [A B} € RO +)x(a'+v)
y = N ) C D
formally defined as of the following system of linear equations ! *®[¢]:
{(u,y) € €(R,R*Y) | 3 ¢ € €*(R,R*) such that (2) holds £x1(€) z1(€)
§x2(8) 5(€)
is exactly equal toB. Moreover, M and N in (2) can be . _ [A B} :
chosen such that is observablefrom the manifest variable ¢x © ¢ D . /-(5)
(u,y), meaning that for everyu, y) € B, thel € D(R,R?) ]\;(5) ]&(g)

such that (2) holds is unique. It can be shown (see Th. 5.3.3 . . . _
p. 174 of [6]) that this is the case if and only the matrixA state representation (3) associated with B, C, D is
col(M(\), N(\)) € Ct9)*2 has full column ranka for all ~ called state minimalif the numbern’ of state variables is

X € C, equivalently, if M and N are right co-prime. minimal among that of all representations (3)%f It can be
Besides kernel and image representations, we use staf®wn that this holds if and only # = n = deg(det(M)),
equations which is the case if and only ifz;},—1... » form a basis for
J X. It can also be proven that in such case the solution of
i Az + Bu [& B] to the above equation is unique.
y = Cz+Du 3) For a generafs, the notion of state minimality does not,

contrary to the classical case, correspond to the simultaneous
where A € R*® B € R**¥, C € RY**, D € RY** also controllability of (A, B) and observability ofC, A) in an
play an important role in this paper. We say that (3) is afis/o representation (3). However, B is controllable, then

input/state/output (i/s/o) representatiarf B if it can be shown (see Prop. IX.7 of [8]) that the representation
(3) of ®B is minimal if and only if the pair(A, B) is
B = {(u,y) € C°(R,R*™Y) | I z € ¢(R,R") controllable and the paiiC, A) is observable in the classical
such that (3) holds sense. Henceforth, we will concentrate on the minimal case
n’ =n.
lll. STATE CONSTRUCTION We finally recall the definition obalanced state space

We now discuss how to compute an i/s/o representatiogpresentationThe i/s/o representation (3), assumed minimal
for a system described in image form. Consider the set (i.e., controllable and observable) and stable (i.e. the matrix

) - ) A is Hurwitz), is calledbalancedif there exist real numbers
X:={f eR*[¢] | fM~" is strictly prope}
. . . e . 01203220, >0,
It is a matter of immediate verification to show th#tis _
actually a finite dimensional subspace®¥<®[¢], the latter ~called theHankel singular valugssuch that
consiQered as a vector space ofigrit is also not difficult AS +3AT+BBT = 0
to verify thatdim(X) = deg(det(M)) =: n. T T
It is shown in section 8 of [7] that any set of vector AZ+rA+CC =0
state representation @ with state Since the matrices!, B, C' and D involved in an i/s/o
representation (3) of a behavidB described in image
@ = col(zi( 2 )E)i=1,...w form as in (2) are determined by the choice of the state
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map col(z;(£))i=1,...n, being balanced is a property of thewhere the infimum is taken over all € D*(R,R") such

polynomial vectorsey, s, . . ., Ty. that £(t) = ¢'(¢) for ¢t > 0, and such that the concatenation
The question addressed in this paper is how to choose tagt = 0 of (u_,y_) := (M(£)¢', N(:£)¢') on(—o0,0) and
polynomials{zy, zs,...,z,} so that (3) defines a balanced (u.,y.) := (M ()¢, N(::)¢) on [0,+00) is an admissible
state space system. trajectory in®B. Note the slight difference with the classical
terminology where the controllability gramian corresponds
IV. THE CONTROL;A:AUIT:NASND OBSERVABILITY to the ‘inverse’ of the QD) .

An intuitive interpretation of the controllability gramian

In the classical approach to balancing, a central role is the following. Qx computes theeffort as measured by
played by two quadratic forms on the state space, nameﬁfOo lu()||* dt = ffoo | M (L) t)|? dt, it takes to join
the controllability and the observability gramians. In thighe latent variable trajectory at ¢ = 0 by a trajectory/’
section we show how they can be cast into the framework diiat is zero in the far past, and such that its concatenation at
quadratic differential forms developed in [9]. t = 0 with ¢ yields an admissible system trajectdry, ).

We first define quadratic differential forms. Consider the The observability gramianQy, (equivalently, W) is de-
real two-variablex x w polynomial matrix in the indetermi- fined as follows. Let’ € ¢>°(R,R*) and defineQw (¢) by
nates¢ andn: d

WO = [ INGEOP @

! o0 u 1 _ /
where® € R**¥. In such expressiohand are nonnegative Where ¢’ € €*(R.,R*) is such that((t) = £(¢) for

d _
integers, and the sum is assumed to be finite. This polynomiar< 0 that (M ()¢')(t) = 0 for ¢ > 0, agd suchdthat the
matrix induces the map concatenation at= 0 of (u_,y_) := (M ()¢, N(3;)¢) on

(—00,0) and (u,y) = (M ()¢, N(g)¢') on [0, +00)
Qo : C°(R,RY) — € (R,R) is an admissible trajectory i98.
An intuitive interpretation ofQy is the following: the

(¢,m) =%;,;;¢"

defined by observability gramian measures tleasewith which it is
(R R¥ possible to observe the effect of the latent variable trajectory
w € C*(R,RY) _ _ ¢ as measured by [[y(t)|| dt = [;F°IN(L)e'(t)])? dt,
7 9 H _ d H
. Eij(iw)T B, L (R, R). assuming thatu(t) = (M ()¢')(t) is zero fort > 0. _
Rt Y dtd The computation of the two-variable polynomial matrices

This map is called a quadratic differential form(in the XK andW is one of the central results of this papEneorem
following often abbreviated witfQDF) induced by®, and 1. consider the syster® represented in observable image

it .is denoted Wi'tth>. In view of the quadratic ngture of form by (2), with M Hurwitz (meaning that all the roots
this map, we will always assume thétis symmetri¢ that ¢ det(M) € R[¢] have negative real part) andv/ !

is ®; = (I)jT,i_ for all 4, j, or in other words®(¢,7) =  proper. Then the controllability gramian and the observability
®(n,¢) . Qo Is said to benon-negativef Q¢ (w) > 0 for  gramian are QDF’s; denote them b9 and Qy respec-
all w € €°(R,R). tively, with K, W € R**%[¢, 7].

The association of two-variable polynomial matrices with The controllability gramiank can be computed as fol-
QDF’s allows to develop a calculus that has many applicggys:

tions (see [9]); we now illustrate those concepts that are used
in this paper. The first one is that of derivative of a QDF. K(¢n) = M (OM(n) — AT(C)A(")’ (7)
Given a QDFQy we define itderivativeas the QDF defined C+n
by #(Qu(w)). In terms of the two-variable polynomial where A € R*%[¢] is an anti-Hurwitz matrix such that
matrices associated with the QDF's, the derivatg;é)q, IS M*M = A*A.
represented by¢ + 1) ¥ (¢, 7). The observability gramiafii’ can be computed as follows.
While it would be natural to consider the controllability Consider the unique solutiod € R®<[¢] with FM~!
and observability gramians as QDF's @) we will consider proper of the Bzout-type equation
them as QDF'’s acting on the latent variablef an observable - - -
image representation (2) 8. Observe that this entails no M (=§)F (&) + F ' (=§)M(§) — N (=§N(£) =0. (8)
loss of generality, since there is then a one-to-one relatiqhafine from such” the two variable polynomial matrix
between? and (u,y) € B.
The controllability gramian Q@ (equivalently,K) is de-  y -y _ MT(Q)F(n) + FT(Q)M(n) = NT(¢)N(n)
fined as follows. Let € ¢>°(R,R*) and defineQx (¢) by ' C+mn E9)

0 \\M(i)f/(t)HQ gt ) Moreover, bothQ x and Qy, are both quadratic functions
. dt ’ of the state ofB, meaning that for every state map <

Que(0)0) =t |
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R® *u ¢ for B there exist real symmetric matricds, W € with ¥ a diagonal matrix:
R* %2’ with both X', W > 0, such that

Y= diag(ai)izl,__m, (10)
d __d d
Q) = (X(5)0TKX(5)=:|X(=-)ll% whereo; > 0;41,i =1,...,n— 1, ando, > 0. Conse-
dt dt dt
d. o= d d. guently, the following equations hold:
= (X(— X(—=)=|X(— = ~ ~ ~
Qu(t) = (X(OTWX ()= X0l o
If in addition X is minimal, thenK,W € R¥** are W = X'T'sTX
nonsingular, andik’, W > 0.
S . : and therefore
The proof is given in the appendix.
_ bal, T —1 y-bal
V. BALANCED STATE REPRESENTATION K(Gm) = X7 (Ox XHn)
. W(Gm) = XPTORX(m) (11)
In this section we show how to compute a balanced state _ _
representation for a system described in observable imagéere the polynomial matrixX®® =: col(z?¥);_; . €
form as in (2). R**1[¢] is defined as
We begin by reconciling the notion of balanced state Xbal(f) — TX(€).

representation as introduced in section II, with the notion of

state map and with the point of view introduced in section IV These considerations lead to the main result of this paper.
of the controllability and observability gramians as quadratidheorem 2: Assume that the QDF'% and W have been
differential forms.

. _ _ computed. Define the polynomial matk® and the real
We call the minimal state representation (4) with stat b PO’y

%umber&ri, i=1,...,n, as (10, 11), respectively. Then the

(#1,22, ..., 7a) balancedif o;'s are the Hankel singular values of the syst&mand
1) for El € Q:OC(R,RII) such thaf(l’](%)&)(()) = 57] (513 d d d
denotes the Kronecker delta), there holds u= M(&)g, Y= N(%)g, ghal — Xbal(&)g
Qw (£:)(0) = é, is a balanced state space representatiofofThe associated
Qx (¢:)(0) balanced system matrices are obtained as the solution matrix
i.e., the state components that are difficult to reach are Abal  pgbal
also difficult to observe, and |:C«bal Dba1:|

2) the state components are ordered so that

0<Qr(£1)0) <Qk(£2)(0) < - < Qk(£)(0),

of the following system of linear equationsTit**[¢]:

Exbal(€) zhl(€)

and hence fff'z”.”(f) T x'ﬁa.l(ﬁ)
Qw (£1)(0) = Qw (£2)(0) = - = Qw (£a)(0) > 0. : = [Cbal Dbal} - (12

| d f h i f a bal d {x,‘f‘“(é‘) xsal(f)

n order to perform the computation of a balanced state N(€) M(€)

map, we proceed as follows. Assume that the two-variable
polynomial matricesK ({,n) and W (¢, n) corresponding to . o . :
the controllability and the observability gramians have been The proof of this theorem is given in the appendix.

computed as in (7) and (9). From the result of theorem 1 it We summarize the results of this section in the following
follows that there exist mat.riceé € R[] and K, W € algorithm to compute a balanced state representation for a

R™>® such thatk (¢,n) = X (O)KX(y) and W((,n) = behavior®® given in observable image form as in (2).

X T(¢)WX(n). Such equalities can be rewritten in terms of ALGORITHM

the corresponding coefficient matrices as DATA: M € R™[g, N e RV[¢ right coprime,
K = X'KX degdet(M) =:n, M Hurwitz.

W o= XWX
COMPUTE:
Observe that it follows from theorem 1 that and W are 1) K € R¥¥¢[¢,n] by (7),
symmetric and nonsingular. It is a standard result in linear 2) F ¢ R [¢] by (8) andW € R**[¢,7] by (9),

algebra that there existsrax n nonsingular transformation  3) xbal ¢ R*®[¢] andoy > 09 > --- > o > 0 by (10,

matrix 7' such that 11):
T-TRT-1 — yn-1 K(¢n) = 22:101-_133?‘“(()96?31(77),
T-TWr! = % W(¢n) =Ziyov 2™ (O™ (),
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bal bal . . . .
4) the system matrice% B } by solving (12). from this (see section 2 of [9D) tha@K is a quadratlc

Lo 2 function of the state of8 = im (col(M (4),N(%)). Con-

Remarks: sequently, there exists a matnK such thatK(g n) =
1. Our algorithms for obtaining the controllability andXT(g)KX( ), so that we can write

observability gramians and balanced state representations,

being based on polynomial computations, offer a number 0 d., )
of advantages over the classical matrix based algorithms. / H(M(@)f)(t)ﬂ di
In particular, they open up the possibility to involve the
know-how on Eezoutians, Bzout and Sylvester matrices d _ d 0 d

and equations (see for example [9],[4]), and bring ‘fast= (X(%W)(O)TK( (70 )+/ ||(A(§)f/)(t)||2dt
polynomial computations to bear on the problem of model o

reduction. d _ d 0 d

2. Instead of computing the,'s and thez's by the = (X(@)f)(O)TK(X(%)@(O) +/ ||(A(£)5/)(t)||2dt
factorization of K, W given by (10), (7), (9), we can also -
obtain the balanced state representation by evaludirmd Conclude from this expression that for a fixed :=

—00

W atn points of the complex plane. Such an approach resul{s{()¢)(0) € R®, the minimum of [°__||(M (-£)¢')(t)||*dt
in a two-variable interpolation problem which, for specialis taken for those trajectories such tl(um( 4 )(0) =aand
choices of then interpolation points, could perhaps exhibitA(4£)¢’ = 0 on (—oc,0]; this implies aIsoQK(é)(O) > 0.

some advantages over the computation of such matrices Iascan also be proved that sinc& is minimal, then for
described in theorem 1. This is explained for the SISO casery choice of: there exists exactly one such trajectory; an
in [10]. argument by contradiction then yields tH&t> 0. In order to

3. The algorithms discussed have obvious counterpart®mplete the proof and prove the claim #re DT (R, R®),
for discrete-time systems. It is interesting to compare owind use an approximation argument.
algorithm for obtaining a balanced state representation with We proceed proving the claim regarding the observability
the classical SVD-based algorithm of Kung [2]. Kung'sgramian. The claim on the existence of a unique solution
algorithm starts from the Hankel matrix formed by theF to the Bezout equationf™*M + M*F = N*N such
impulse response and requires the computation of the S\Rat FM ~! is strictly proper follows from the fact that
of aninfinite matrix. In contrast, our algorithm requires firstA/ is Hurwitz, that NAM ! is strictly proper, and from
finding the governing difference equation, followed by finiteProposition 4.4 p. 120 of [4]. Thu8/(¢,n) as defined in

polynomial algebra. (9) is well-defined. Now apply Proposition 4.1 of [4] in
. order to conclude that/ =7 ()W (¢, n)M~*(n) is a strictly
Appendix: proofs proper rational function inC and 7, and consequently that
The proofs are an adaptation to the MIMO case of théor every state mapX there exists a matriXy such that
proof of the SISO case given in [10]. W(¢,n) =XT(OWX(n).

Proof of theorem 1: Let X € R***[¢] be a minimal state = Now observe that for every € ¢>°(R,R*) here holds
map for %B. We consider the claim on the controllability d d d
Gramian first. We begin the proof of the claim by showing —QW( )= 2(M(dt)€) (F(=)0) — ||N(—)£||2. (13)

that 0 dt
min/ e )f/|| dt = Qi (£)(0) Therefore, ift’ ¢ QOO(R+7R“) is such tha(M(ddt) Nt)=0
—o0 for ¢ > 0, and moreove(X (£)¢)(0) = (X (4)¢)(0), then
where ¢ € ¢=(R_,R) is such that(X(%)é’)(O) _ Eyléntiﬁr?tmg (13) and usmg the fact thiat |s Hurwitz, it
(X(£)6)(0) andlim,_, o £ = 0. olds tha
From the definition of K((,n) it follows that /OC N ig' 2 g — (0
2Qx(E)0) + [ADOOI =  [MEOO o IVt = Qwe)0)
integrating between-oo and0, we obtain: J J
oy = (X()E)O) W (X()¢)(0)
| e - ) )
, 0 d o, :(X(@)ﬂ)(O)TW(X(a)f)(O):Qw(f)(O)-
Q)0+ [ IACHO @I
—o© This proves that)y, is the observability gramian. From the

We now show that)x is a quadratic function of the state. last equation it also follows thafy, > 0; then, using the
Observe that from the equality/*M = A*A and from the observability of the image representation and the minimality
definition of K (¢, n) it follows that M~ (¢)K(¢,n)M~*(n)  of the state map\, an argument by contradiction yields that
is a matrix of strictly proper rational functions. ConcludelV > 0.
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Proof of theorem ??:Using the factorization (11) oK' (¢, n)
andW(¢,n) and the definition (10) oE, we obtain

Que() = Sty b ()01,

and
bal(

Qw(l) =

Hence, if¢; € €°(R,R*) is such tha{zb*(£)¢;)(0) = 6; 5,
then

¥ oilx

0.
t)l

Qx (£:)(0) = o, ", and Quw (£:)(0) = a;.
This shows that the polynomial vector$®, i = 1,... n,

the theory of balanced state representations.

V1. EXAMPLE

We took example 2 of [3]. The transfer function is

(£+4)
(E+1D)(E+3)(E+5)(E+10

p(€) = 150 + 245¢ + 113¢% + 19¢° 4 ¢*
q(§) =& +4
For K, the anti-Hurwitz factorization ofp(—¢)p(¢) =

a(—€)a(€), with a(€) = 150 — 245¢ + 113¢2 — 1963 + €2,
yields

) In our notation,

K(¢,n) = 73500 + 57000 4 5700¢2 4 49670¢n
+490m¢ + 490¢n> + 3804¢%n? + 38¢%n?
In order to obtainM ({,n) we need to solve the &out
equation. This yields

4 102181 35131
1€) = 75 3432000§ + 6864000
is such a solution. From it we obtain

1
M = 2 4
(¢.1) = saaanag (92887900 + 46636690(C + 1)

+ 7232870(n% + ¢2) + 366080(¢C> + 1°) + 24467131¢n
+ 3969803¢n* + 3969803¢2n + 204362¢n>
+204362¢3n 4 672064¢%n? 4 35131¢3%n°

+35131¢3n* + 1849¢3n%)

1849

2 3
& 6864000E

We next obtain ther’s and the X, The Hankel singular
values obtained through our procedure are

0.01593838752113, 0.00272425189843,
0.00012720366224, 0.00000800595148.

which are indeed those given in Moore’s paper.
The 2P polynomials obtained are
253(€) = 29.0903 + 14.7840¢ + 2.3226¢% + 0.1181¢3
253(€) = —4.0562 + 5.4494¢ + 2.0930£2 4 0.1307¢°
283(€) = 0.5526 — 0.5565¢ — 0.0296¢2 + 0.0563¢°
2P(€) = 0.3095 — 0.4256¢ + 0.1217¢2 — 0.0069¢°

1638

In order to find the matrices corresponding to a balanced
i/s/o representation, we solve the equations (12). This yields

—0.43781 1.1685 —0.41426 —0.05098
Abal — | —1.1685 —3.1353 2.8352  0.32885
= | —0.41426 —2.8352 —12.475 —3.2492 | >
0.05098 0.32885 3.2492 —2.9516
0.11814
phal — 0.1307
= | 0.056337 |-
—0.0068746
Chal — [0.11814 —0.1307 0.056337 0.0068746 | .
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