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I. I NTRODUCTION

The physical processes and systems which are nowadays
being modelled mathematically exhibit an increasing com-
plexity, and the need to use them efficiently in order to
compute control actions, to run scenarios, etc. has become
critical in many applications. These requirements provide the
basic motivation for the reduction of the complexity of a
model and for its approximation by means of a simplified
one, which captures those features of the original more
relevant for the application at hand.

In the context of linear systems, complexity is usually
related to the minimal number of state variables needed
to represent the model. Among the various methods for
model reduction developed in this area, those based on
the concept ofbalanced state representationhas proven to
be remarkably effective. Such method computes a special
state-space representation of a system, one in which each
component of the state vector is roughly speaking as much
controllable as it is observable. Once such a representation
of the system has been computed, the components of the
state vector which contribute the least to its input-output
behavior can be eliminated. Among the important features of
this method is that under reasonable conditions, the stability
of the reduced model is assured, and the existence of a
remarkable error bound.

In these algorithms, it is usuallya priori assumed that a
state-space representation or the impulse response are given.
However, modeling a physical system from first principles
hardly ever results in such a description, which indeed
usually needs to beconstructedfrom the set of higher-order
differential or difference equations (possibly with auxiliary
variables and with static constraints among the variables)
describing the model. It is therefore of interest to develop
algorithms that pass directly from such a high-complexity
model to a reduced state model, without the intermediate step
required to compute a (non-balanced) state representation
from the first principles models. The purpose of this confer-

ence paper is to present an algorithm for the construction of
a balanced state representation directly from the differential
equations (or the transfer function) that describe the system,
in the MIMO case. The SISO case has been dealt with in
much more detail in [10].

A few words on notation. In this paper we denote the fields
of real and of complex numbers respectively withR and
C. The space ofn dimensional real, respectively complex,
vectors is denoted byRn, respectivelyCn, and the space
of m × n real, respectively complex, matrices, byRm×n,
respectivelyCm×n. The operatorcol stacks the elements
(numbers, vectors, or matrices) on which it operates. The ring
of polynomials with real coefficients in the indeterminateξ
is denoted byR[ξ]; the ring of two-variable polynomials with
real coefficients in the indeterminatesζ andη is denoted by
R[ζ, η]. The space of alln × m polynomial matrices in the
indeterminateξ is denoted byRn×m[ξ], and that consisting
of all n× m polynomial matrices in the indeterminatesζ and
η by Rn×m[ζ, η]. Given a matrixR ∈ Rn×m[ξ], we define
R∗(ξ) := R(−ξ)T ∈ Rm×n[ξ].

We denote withC∞(R, Rq) the set of infinitely often
differentiable functions fromR to Rq, with D(R, Rq) the
subset ofC∞(R, Rw) consisting of those compact support,
and withD+(R, Rw) the subset ofC∞(R, Rw) consisting of
all w’s such thatw|(−∞,0] has compact support.

II. T HE SYSTEM EQUATIONS

In this paper we consider continuous-time finite-
dimensional linear time-invariant systems ininput/output
form, described by the set of differential equations

P (
d

dt
)y = Q(

d

dt
)u, (1)

where P ∈ Ry×y[ξ] is assumed to be nonsingular,Q ∈
Ry×u[ξ], and the transfer functionP−1Q is a matrix of
proper rational functions. The variablesu, y are theinputs,
respectively theoutputsof the system. Equation (1) defines
the system behavior

B := {(u, y) ∈ C∞(R, Ru+y) | (1) holds}.

In the following we identify the system described by (1) with
its behaviorB.

A standing assumption in this paper is that the behavior
B is controllable, meaning that for all(u1, y1), (u2, y2) ∈ B



there existsT > 0 and (u, y) ∈ B such that(u1, y1)(t) =
(u, y)(t) for t ≤ 0 and that(u2, y2)(t) = (u, y)(t + T )
for t > 0. It can be shown (see sec. 5.2 of [6]) thatB
is controllable if and only if the polynomial matrixR :=[

P −Q
]

associated with (1) is such that the rank of the
complex matrixR(λ) ∈ Cy×(y+u) is the same for eachλ ∈
C.

It can also be shown (see Th. 6.6.1 p. 229 in [6]) that
controllability ofB is equivalent to the existence of animage
representationfor it, meaning that there exist polynomial
matricesM ∈ Ru×u[ξ], N ∈ Ry×u[ξ] with M nonsingular
and NM−1 proper, such that themanifest behaviorof the
latent variable systemwith latent variablè

u = M(
d

dt
)`

y = N(
d

dt
)`, (2)

formally defined as

{(u, y) ∈ C∞(R, Ru+y) | ∃ ` ∈ C∞(R, Ru) such that (2) holds}

is exactly equal toB. Moreover,M and N in (2) can be
chosen such that̀ is observablefrom the manifest variable
(u, y), meaning that for every(u, y) ∈ B, the ` ∈ D(R, Ru)
such that (2) holds is unique. It can be shown (see Th. 5.3.3
p. 174 of [6]) that this is the case if and only the matrix
col(M(λ), N(λ)) ∈ C(u+y)×u has full column ranku for all
λ ∈ C, equivalently, ifM andN are right co-prime.

Besides kernel and image representations, we use state
equations

d

dt
x = Ax + Bu

y = Cx + Du (3)

whereA ∈ Rn×n, B ∈ Rn×u, C ∈ Ry×n, D ∈ Ry×u also
play an important role in this paper. We say that (3) is an
input/state/output (i/s/o) representationof B if

B = {(u, y) ∈ C∞(R, Ru+y) | ∃ x ∈ C∞(R, Rn)
such that (3) holds}

III. STATE CONSTRUCTION

We now discuss how to compute an i/s/o representation
for a system described in image form. Consider the set

X := {f ∈ R1×u[ξ] | fM−1 is strictly proper}

It is a matter of immediate verification to show thatX is
actually a finite dimensional subspace ofR1×u[ξ], the latter
considered as a vector space overR; it is also not difficult
to verify thatdim(X) = deg(det(M)) =: n.

It is shown in section 8 of [7] that any set of vector
polynomials{xi}i=1,...,n′ ⊂ R1×u[ξ] spanningX defines a
state representation ofB with state

x := col(xi(
d

dt
)`)i=1,...,n′

i.e., the behavior of

u = M(
d

dt
)`

y = N(
d

dt
)`

x = col(xi(
d

dt
)`)i=1,...,n′ (4)

satisfies the axiom of state (see p. 1058 of [7] for a for-
mal statement of the axiom of state). The matrixX :=
col(xi)i=1,...,n ∈ Rn′×u[ξ] hence induces thestate map
X( d

dt )`. Once a state map is known, the system matrices
A ∈ Rn′×n′

, B ∈ Rn′×u, C ∈ Ry×n′
and D ∈ Ry×u

corresponding to the i/s/o representation (3) can be obtained
from a solution [

A B
C D

]
∈ R(n′+y)×(n′+u)

of the following system of linear equations inR1×u[ξ]:
ξx1(ξ)
ξx2(ξ)

...
ξxn′(ξ)
N(ξ)

 =
[
A B
C D

]


x1(ξ)
x2(ξ)

...
xn′(ξ)
M(ξ)

 .

A state representation (3) associated withA, B, C, D is
called state minimalif the numbern′ of state variables is
minimal among that of all representations (3) ofB. It can be
shown that this holds if and only ifn′ = n = deg(det(M)),
which is the case if and only if{xi}i=1,...,n form a basis for
X. It can also be proven that in such case the solution of
[ A B
C D ] to the above equation is unique.
For a generalB, the notion of state minimality does not,

contrary to the classical case, correspond to the simultaneous
controllability of (A,B) and observability of(C,A) in an
i/s/o representation (3). However, ifB is controllable, then
it can be shown (see Prop. IX.7 of [8]) that the representation
(3) of B is minimal if and only if the pair(A,B) is
controllable and the pair(C,A) is observable in the classical
sense. Henceforth, we will concentrate on the minimal case
n′ = n.

We finally recall the definition ofbalanced state space
representation. The i/s/o representation (3), assumed minimal
(i.e., controllable and observable) and stable (i.e. the matrix
A is Hurwitz), is calledbalancedif there exist real numbers

σ1 ≥ σ2 ≥ · · · ≥ σn > 0,

called theHankel singular values, such that

AΣ + ΣA> + BB> = 0
A>Σ + ΣA + C>C = 0

hold, whereΣ = diag(σi)i=1,...,n.
Since the matricesA, B, C and D involved in an i/s/o

representation (3) of a behaviorB described in image
form as in (2) are determined by the choice of the state



map col(xi(ξ))i=1,...,n, being balanced is a property of the
polynomial vectorsx1, x2, . . . , xn.

The question addressed in this paper is how to choose the
polynomials{x1, x2, . . . , xn} so that (3) defines a balanced
state space system.

IV. T HE CONTROLLABILITY AND OBSERVABILITY

GRAMIANS

In the classical approach to balancing, a central role is
played by two quadratic forms on the state space, namely
the controllability and the observability gramians. In this
section we show how they can be cast into the framework of
quadratic differential forms developed in [9].

We first define quadratic differential forms. Consider the
real two-variablew× w polynomial matrix in the indetermi-
natesζ andη:

Φ(ζ, η) = Σi,jΦi,jζ
iηj

whereΦ ∈ Rw×w. In such expressioni andj are nonnegative
integers, and the sum is assumed to be finite. This polynomial
matrix induces the map

QΦ : C∞(R, Rw) −→ C∞(R, R)

defined by

w ∈ C∞(R, Rw)

−→ Σi,j(
di

dti
w)> Φi,j

dj

dtj
w ∈ C∞(R, R).

This map is called a quadratic differential form(in the
following often abbreviated withQDF) induced byΦ, and
it is denoted withQΦ. In view of the quadratic nature of
this map, we will always assume thatΦ is symmetric, that
is Φi,j = Φ>j,i for all i, j, or in other wordsΦ(ζ, η) =
Φ(η, ζ)>. QΦ is said to benon-negativeif QΦ(w) ≥ 0 for
all w ∈ C∞(R, R).

The association of two-variable polynomial matrices with
QDF’s allows to develop a calculus that has many applica-
tions (see [9]); we now illustrate those concepts that are used
in this paper. The first one is that of derivative of a QDF.
Given a QDFQΨ we define itsderivativeas the QDF defined
by d

dt (QΨ(w)). In terms of the two-variable polynomial
matrices associated with the QDF’s, the derivatived

dtQΨ is
represented by(ζ + η)Ψ(ζ, η).

While it would be natural to consider the controllability
and observability gramians as QDF’s onB, we will consider
them as QDF’s acting on the latent variable` of an observable
image representation (2) ofB. Observe that this entails no
loss of generality, since there is then a one-to-one relation
betweeǹ and (u, y) ∈ B.

The controllability gramianQK (equivalently,K) is de-
fined as follows. Let̀ ∈ C∞(R, Ru) and defineQK(`) by

QK(`)(0) := inf
∫ 0

−∞
‖M(

d

dt
)`′(t)‖2 dt, (5)

where the infimum is taken over all`′ ∈ D+(R, Ru) such
that `(t) = `′(t) for t ≥ 0, and such that the concatenation
at t = 0 of (u−, y−) := (M( d

dt )`
′, N( d

dt )`
′) on (−∞, 0) and

(u+, y+) := (M( d
dt )`,N( d

dt )`) on [0,+∞) is an admissible
trajectory inB. Note the slight difference with the classical
terminology where the controllability gramian corresponds
to the ‘inverse’ of the QDFQK .

An intuitive interpretation of the controllability gramian
is the following. QK computes theeffort, as measured by∫ 0

−∞ ‖u(t)‖2 dt =
∫ 0

−∞ ‖M( d
dt )`

′(t)‖2 dt, it takes to join
the latent variable trajectorỳ at t = 0 by a trajectory`′

that is zero in the far past, and such that its concatenation at
t = 0 with ` yields an admissible system trajectory(u, y).

The observability gramianQW (equivalently,W ) is de-
fined as follows. Let̀ ∈ C∞(R, Ru) and defineQW (`) by

QW (`)(0) :=
∫ ∞

0

‖N(
d

dt
)`′(t)‖2 dt, (6)

where `′ ∈ C∞(R+, Ru) is such that`(t) = `′(t) for
t < 0, that (M( d

dt )`
′)(t) = 0 for t ≥ 0, and such that the

concatenation att = 0 of (u−, y−) := (M( d
dt )`,N( d

dt )`) on
(−∞, 0) and (u+, y+) := (M( d

dt )`
′, N( d

dt )`
′) on [0,+∞)

is an admissible trajectory inB.
An intuitive interpretation ofQW is the following: the

observability gramian measures theeasewith which it is
possible to observe the effect of the latent variable trajectory
` as measured by

∫ +∞
0

‖y(t)‖2 dt =
∫ +∞
0

‖N( d
dt )`

′(t)‖2 dt,
assuming thatu(t) = (M( d

dt )`
′)(t) is zero fort ≥ 0.

The computation of the two-variable polynomial matrices
K andW is one of the central results of this paper.Theorem

1: Consider the systemB represented in observable image
form by (2), withM Hurwitz (meaning that all the roots
of det(M) ∈ R[ξ] have negative real part) andNM−1

proper. Then the controllability gramian and the observability
gramian are QDF’s; denote them byQK and QW respec-
tively, with K, W ∈ Ru×u[ζ, η].

The controllability gramianK can be computed as fol-
lows:

K(ζ, η) =
M>(ζ)M(η)−A>(ζ)A(η)

ζ + η
, (7)

where A ∈ Ru×u[ξ] is an anti-Hurwitz matrix such that
M∗M = A∗A.

The observability gramianW can be computed as follows.
Consider the unique solutionF ∈ Ru×u[ξ] with FM−1

proper of the B́ezout-type equation

M>(−ξ)F (ξ) + F>(−ξ)M(ξ)−N>(−ξ)N(ξ) = 0. (8)

Define from suchF the two variable polynomial matrix

W (ζ, η) =
M>(ζ)F (η) + F>(ζ)M(η)−N>(ζ)N(η)

ζ + η
,

(9)
Moreover, bothQK andQW are both quadratic functions

of the state ofB, meaning that for every state mapX ∈



Rn′×u[ξ] for B there exist real symmetric matrices̄K, W̄ ∈
Rn′×n′

, with bothK̄, W̄ ≥ 0, such that

QK(`) = (X(
d

dt
)`)>K̄X(

d

dt
)` =: ‖X(

d

dt
)`‖2K̄

QW (`) = (X(
d

dt
)`)>W̄X(

d

dt
)` =: ‖X(

d

dt
)`‖2W̄

If in addition X is minimal, thenK̄, W̄ ∈ Rn′×n′
are

nonsingular, andK̄, W̄ > 0.
The proof is given in the appendix.

V. BALANCED STATE REPRESENTATION

In this section we show how to compute a balanced state
representation for a system described in observable image
form as in (2).

We begin by reconciling the notion of balanced state
representation as introduced in section II, with the notion of
state map and with the point of view introduced in section IV
of the controllability and observability gramians as quadratic
differential forms.

We call the minimal state representation (4) with state
(x1, x2, . . . , xn) balancedif

1) for `i ∈ C∞(R, Ru) such that(xj( d
dt )`i)(0) = δij (δij

denotes the Kronecker delta), there holds

QW (`i)(0) =
1

QK(`i)(0)
,

i.e., the state components that are difficult to reach are
also difficult to observe, and

2) the state components are ordered so that

0 < QK(`1)(0) ≤ QK(`2)(0) ≤ · · · ≤ QK(`n)(0),

and hence

QW (`1)(0) ≥ QW (`2)(0) ≥ · · · ≥ QW (`n)(0) > 0.

In order to perform the computation of a balanced state
map, we proceed as follows. Assume that the two-variable
polynomial matricesK(ζ, η) andW (ζ, η) corresponding to
the controllability and the observability gramians have been
computed as in (7) and (9). From the result of theorem 1 it
follows that there exist matricesX ∈ Rn×u[ξ] and K̄, W̄ ∈
Rn×n such thatK(ζ, η) = X>(ζ)K̄X(η) and W (ζ, η) =
X>(ζ)W̄X(η). Such equalities can be rewritten in terms of
the corresponding coefficient matrices as

K̃ = X̃>K̄X̃

W̃ = X̃>W̄ X̃

Observe that it follows from theorem 1 that̄K and W̄ are
symmetric and nonsingular. It is a standard result in linear
algebra that there exists an × n nonsingular transformation
matrix T such that

T−T K̄T−1 = Σ−1

T−T W̄T−1 = Σ

with Σ a diagonal matrix:

Σ = diag(σi)i=1,...,n, (10)

where σi ≥ σi+1, i = 1, . . . , n − 1, and σn > 0. Conse-
quently, the following equations hold:

K̃ = X̃>T>Σ−1TX̃

W̃ = X̃>T>ΣTX̃

and therefore

K(ζ, η) = Xbal,>(ζ)Σ−1Xbal(η)
W (ζ, η) = Xbal,>(ζ)ΣXbal(η) (11)

where the polynomial matrixXbal =: col(xbal
i )i=1,...,n ∈

Rn×u[ξ] is defined as

Xbal(ξ) := TX(ξ).

These considerations lead to the main result of this paper.
Theorem 2: Assume that the QDF’sK and W have been

computed. Define the polynomial matrixXbal and the real
numbersσi, i = 1, . . . , n, as (10, 11), respectively. Then the
σi’s are the Hankel singular values of the systemB and

u = M(
d

dt
)`, y = N(

d

dt
)`, xbal = Xbal(

d

dt
)`

is a balanced state space representation ofB. The associated
balanced system matrices are obtained as the solution matrix[

Abal Bbal

Cbal Dbal

]
of the following system of linear equations inR1×u[ξ]:

ξxbal
1 (ξ)

ξxbal
2 (ξ)
...

ξxbal
n (ξ)

N(ξ)

 =
[
Abal Bbal

Cbal Dbal

]


xbal
1 (ξ)

xbal
2 (ξ)

...
xbal
n (ξ)
M(ξ)

 . (12)

The proof of this theorem is given in the appendix.
We summarize the results of this section in the following

algorithm to compute a balanced state representation for a
behaviorB given in observable image form as in (2).

ALGORITHM

DATA : M ∈ Ru×u[ξ], N ∈ Ry×u[ξ] right coprime,
deg det(M) =: n, M Hurwitz.

COMPUTE :
1) K ∈ Ru×u[ζ, η] by (7),
2) F ∈ Ru×u[ξ] by (8) andW ∈ Ru×u[ζ, η] by (9),
3) Xbal ∈ Rn×u[ξ] andσ1 ≥ σ2 ≥ · · · ≥ σn > 0 by (10,

11):
K(ζ, η) = Σn

k=1σ
−1
i xbal

i (ζ)xbal
i (η),

W (ζ, η) = Σn
i=1σi xbal

i (ζ)xbal
i (η),



4) the system matrices

[
Abal Bbal

Cbal Dbal

]
by solving (12).

Remarks:
1. Our algorithms for obtaining the controllability and

observability gramians and balanced state representations,
being based on polynomial computations, offer a number
of advantages over the classical matrix based algorithms.
In particular, they open up the possibility to involve the
know-how on B́ezoutians, B́ezout and Sylvester matrices
and equations (see for example [9],[4]), and bring ‘fast’
polynomial computations to bear on the problem of model
reduction.

2. Instead of computing theσi’s and thexbal
i ’s by the

factorization ofK, W given by (10), (7), (9), we can also
obtain the balanced state representation by evaluatingK and
W atn points of the complex plane. Such an approach results
in a two-variable interpolation problem which, for special
choices of then interpolation points, could perhaps exhibit
some advantages over the computation of such matrices as
described in theorem 1. This is explained for the SISO case
in [10].

3. The algorithms discussed have obvious counterparts
for discrete-time systems. It is interesting to compare our
algorithm for obtaining a balanced state representation with
the classical SVD-based algorithm of Kung [2]. Kung’s
algorithm starts from the Hankel matrix formed by the
impulse response and requires the computation of the SVD
of an infinite matrix. In contrast, our algorithm requires first
finding the governing difference equation, followed by finite
polynomial algebra.

Appendix: proofs
The proofs are an adaptation to the MIMO case of the

proof of the SISO case given in [10].
Proof of theorem 1: Let X ∈ Rn×u[ξ] be a minimal state
map for B. We consider the claim on the controllability
Gramian first. We begin the proof of the claim by showing
that

min
∫ 0

−∞
‖M(

d

dt
)`′‖2 dt = QK(`)(0)

where `′ ∈ C∞(R−, Ru) is such that (X( d
dt )`

′)(0) =
(X( d

dt )`)(0) and limt→−∞ `′ = 0.
From the definition of K(ζ, η) it follows that

d
dtQK(`′)(t) + ‖(A( d

dt )`
′)(t)‖2 = ‖(M( d

dt )`
′)(t)‖2;

integrating between−∞ and0, we obtain:∫ 0

−∞
‖(M(

d

dt
)`′)(t)‖2 dt =

QK(`′)(0) +
∫ 0

−∞
‖(A(

d

dt
)`′)(t)‖2 dt

We now show thatQK is a quadratic function of the state.
Observe that from the equalityM∗M = A∗A and from the
definition ofK(ζ, η) it follows thatM−T (ζ)K(ζ, η)M−1(η)
is a matrix of strictly proper rational functions. Conclude

from this (see section 2 of [9]) thatQK is a quadratic
function of the state ofB = im (col(M( d

dt ), N( d
dt )). Con-

sequently, there exists a matrix̄K such thatK(ζ, η) =
X>(ζ)K̄X(η), so that we can write∫ 0

−∞
‖(M(

d

dt
)`′)(t)‖2dt

= (X(
d

dt
)`′)(0)>K̄(X(

d

dt
)`′)(0)+

∫ 0

−∞
‖(A(

d

dt
)`′)(t)‖2dt

= (X(
d

dt
)`)(0)>K̄(X(

d

dt
)`)(0) +

∫ 0

−∞
‖(A(

d

dt
)`′)(t)‖2dt

Conclude from this expression that for a fixeda :=
(X( d

dt )`)(0) ∈ Rn, the minimum of
∫ 0

−∞ ‖(M( d
dt )`

′)(t)‖2dt

is taken for those trajectories such that(X( d
dt )`

′)(0) = a and
A( d

dt )`
′ = 0 on (−∞, 0]; this implies alsoQK(`)(0) ≥ 0.

It can also be proved that sinceX is minimal, then for
every choice ofa there exists exactly one such trajectory; an
argument by contradiction then yields thatK̄ > 0. In order to
complete the proof and prove the claim for`′ ∈ D+(R, Ru),
and use an approximation argument.

We proceed proving the claim regarding the observability
gramian. The claim on the existence of a unique solution
F to the B́ezout equationF ∗M + M∗F = N∗N such
that FM−1 is strictly proper follows from the fact that
M is Hurwitz, that NM−1 is strictly proper, and from
Proposition 4.4 p. 120 of [4]. ThusW (ζ, η) as defined in
(9) is well-defined. Now apply Proposition 4.1 of [4] in
order to conclude thatM−T (ζ)W (ζ, η)M−1(η) is a strictly
proper rational function inζ and η, and consequently that
for every state mapX there exists a matrixW̄ such that
W (ζ, η) = X>(ζ)W̄X(η).

Now observe that for everỳ∈ C∞(R, Ru) here holds

d

dt
QW (`) = 2(M(

d

dt
)`)>(F (

d

dt
)`)− ‖N(

d

dt
)`‖2. (13)

Therefore, if̀ ′ ∈ C∞(R+, Ru) is such that(M( d
dt )`

′)(t) = 0
for t ≥ 0, and moreover(X( d

dt )`
′)(0) = (X( d

dt )`)(0), then
by integrating (13) and using the fact thatM is Hurwitz, it
holds that ∫ ∞

0

‖N(
d

dt
)`′‖2 dt = QW (`′)(0)

= (X(
d

dt
)`′)(0)>W̄ (X(

d

dt
)`′)(0)

= (X(
d

dt
)`)(0)>W̄ (X(

d

dt
)`)(0) = QW (`)(0).

This proves thatQW is the observability gramian. From the
last equation it also follows thatQW ≥ 0; then, using the
observability of the image representation and the minimality
of the state mapX, an argument by contradiction yields that
W̄ > 0.



Proof of theorem ??:Using the factorization (11) ofK(ζ, η)
andW (ζ, η) and the definition (10) ofΣ, we obtain

QK(`) = Σn
i=1σ

−1
i |xbal

i (
d

dt
)`|2,

and
QW (`) = Σn

i=1σi|xbal
i (

d

dt
)`|2.

Hence, if`i ∈ C∞(R, Ru) is such that(xbal
i ( d

dt )`i)(0) = δi,j ,
then

QK(`i)(0) = σ−1
i , andQW (`i)(0) = σi.

This shows that the polynomial vectorsxbal
i , i = 1, . . . , n,

define a balanced state representation. That theσi’s are the
Hankel singular values ofB is a standard consequence of
the theory of balanced state representations.

VI. EXAMPLE

We took example 2 of [3]. The transfer function is
(ξ+4)

(ξ+1)(ξ+3)(ξ+5)(ξ+10) In our notation,

p(ξ) = 150 + 245ξ + 113ξ2 + 19ξ3 + ξ4

q(ξ) = ξ + 4

For K, the anti-Hurwitz factorization ofp(−ξ)p(ξ) =
a(−ξ)a(ξ), with a(ξ) = 150 − 245ξ + 113ξ2 − 19ξ3 + ξ4,
yields

K(ζ, η) = 73500 + 5700η2 + 5700ζ2 + 49670ζη

+ 490η3ζ + 490ζη3 + 3804ζ2η2 + 38ζ3η3

In order to obtainM(ζ, η) we need to solve the B́ezout
equation. This yields

f(ξ) =
4
75

+
102181
3432000

ξ +
35131

6864000
ξ2 +

1849
6864000

ξ3

is such a solution. From it we obtain

M(ζ, η) =
1

6864000
(92887900 + 46636690(ζ + η)

+ 7232870(η2 + ζ2) + 366080(ζ3 + η3) + 24467131ζη

+ 3969803ζη2 + 3969803ζ2η + 204362ζη3

+ 204362ζ3η + 672064ζ2η2 + 35131ζ2η3

+ 35131ζ3η2 + 1849ζ3η3)

We next obtain theσ’s and theXbal. The Hankel singular
values obtained through our procedure are

0.01593838752113, 0.00272425189843,

0.00012720366224, 0.00000800595148.

which are indeed those given in Moore’s paper.
The xbal

i polynomials obtained are

xbal
1 (ξ) = 29.0903 + 14.7840ξ + 2.3226ξ2 + 0.1181ξ3

xbal
2 (ξ) = −4.0562 + 5.4494ξ + 2.0930ξ2 + 0.1307ξ3

xbal
3 (ξ) = 0.5526− 0.5565ξ − 0.0296ξ2 + 0.0563ξ3

xbal
4 (ξ) = 0.3095− 0.4256ξ + 0.1217ξ2 − 0.0069ξ3

In order to find the matrices corresponding to a balanced
i/s/o representation, we solve the equations (12). This yields

Abal =
[−0.43781 1.1685 −0.41426 −0.05098
−1.1685 −3.1353 2.8352 0.32885
−0.41426 −2.8352 −12.475 −3.2492
0.05098 0.32885 3.2492 −2.9516

]
,

Bbal =
[

0.11814
0.1307

0.056337
−0.0068746

]
,

Cbal = [ 0.11814 −0.1307 0.056337 0.0068746 ] .
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