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Abstract

We study a class of time-varying systems that we encounter when we look into
decomposition of behaviors. This class is the set of behaviors that are themselves of
polynomials in time, with coefficients as time-invariant behaviors. Operators that have
such behaviors as their kernels are studied. It turns out that autonomous behaviors
allow kernel representations of this kind. We are led to the study of skew polynomial
ring as the underlying ring for such operators.

1 Introduction

In the behavioral approach, we look at a system as the set of all trajectories that it allows

(for an introduction see for instance [5, 4]). When these trajectories are functions of one

variable, we almost always consider them as functions of ‘time’. Many such systems we

encounter are governed by laws that themselves do not depend on time. This results in

time-invariant systems. However, in this paper we study a class of systems/behaviors that

are linear but not necessarily time-invariant. More precisely, we are interested in behaviors

that are polynomials in the time variable with coefficients as time-invariant behaviors.

Our motivation for studying these systems stems from a ‘decomposition’ problem. Some-

times, decomposing a system into subsystems having certain properties helps in understand-

ing its behavior. As a well-known example, we can think of Kalman decomposition in state

space theory. The idea is to decompose the system into controllable and uncontrollable

parts. By doing so, one can check, for instance, the stabilizability of the system. A very

similar decomposition is possible also in behavioral theory: given any behavior, one can

decompose it into the controllable part (by definition the largest controllable subbehavior)

and an autonomous part. Here, what we mean by decomposition is that the direct sum

of the two subbehaviors is the behavior itself. Knowing that the above decomposition is
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possible, we might take one step further and investigate under what conditions on a given

behavior B and a subbehavior B ′ ⊆ B there exists another subbehavior B ′′ ⊆ B such that

B = B ′ ⊕B ′′. Not surprisingly, controllability plays a key role and it can be shown that

B ′′ always exists whenever B ′ is controllable. Up to now, we used the word ‘behavior’ as a

synonym for linear time-invariant differential system. However, it is sometimes necessary to

consider time-varying behaviors. For instance, in case B and B ′ are both autonomous and

time-invariant, there always exists a behavior B ′′ such that B = B ′ ⊕B ′′, however, B ′′ is

not time-invariant in general.

Although the above decomposition problem has been the main motivation, we do not restrict

ourselves to just this issue. Some peripheral questions, such as kernel representations for

this class of behaviors, are also explored. Related work on time-varying systems (though not

explicitly in the behavioral framework) has appeared before, for example in [3] and in the

references therein.

The paper is organized as follows. The rest of this section describes the notation we use.

Section 2 is an exposition on polynomials of behaviors. The behavioral decomposition prob-

lem will be addressed in section 3. This will be followed by conclusions in section 4. The

proofs of the results follow in the appendix.

1.1 Notation

We devote this subsection to main notational conventions used in the paper. The notations

that are used ‘locally’ are defined just before their first appearance.

Sets. We denote the set of real numbers by R and the set of complex numbers by C. As

usual, Rn (Cn) denotes the set of n-tuples of real (complex) numbers. The set of n × m

matrices with entries in R(C) will be denoted by Rn×m (Cn×m). When the specification of a

dimension is not necessary, we use • , i.e., we use R•×w to denote the set of matrices with w

columns.

Functions. We will mostly be interested in infinitely often differentiable functions. All such

functions from R to a set Ω will be denoted by C∞(R,Ω). The notation fn will denote the

product f · f · . . . · f where the function f ∈ C∞(R,R) appears n times. By convention, f0 is

the mapping t 7→ 1. With a (slight) abuse of notation, we write α instead of αf0 for a scalar

α. The notation f|∆ stands for the restriction of the function f to the set ∆.

Operators. The kernel of an operator T is denoted by ker T . Two special operators will

be used often. For a real number s, we define the (time-)shift operator σs : C∞(R,Rw) →
C∞(R,Rw) by (σsw)(t) := w(t + s) for all t ∈ R whereas the differentiation operator

D : C∞(R,Rw)→ C∞(R,Rw) sends a function to its derivative.

Polynomials. For any set U , U [ξ] denotes the set of polynomials in ξ with U -coefficients.

Sometimes, we consider polynomials in two (commuting) variables. Such polynomials in η

and ξ with coefficients as real-valued n×m matrices will be denoted by Rn×m[η, ξ].

Miscellaneous. Often, we add two subsets, say V and W , of a given set, say U meaning
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V +W := {v + w | v ∈ V and w ∈ W} where the addition is the usual addition in U . If

V ∩W = {0} the sum V +W is usually called the direct sum of V and W and denoted by

V⊕W. In a similar fashion, vW denotes the set {vw | w ∈ W} where v ∈ V and VW denotes

the set {vw | v ∈ V and w ∈ W}. We use span
R
V stands for all the finite linear combinations

with real-valued coefficients of the elements of the set V . Finally, for easy readability we use

col that stacks up its arguments into a column.

2 Polynomials of behaviors

First, we briefly review some elementary facts from behavioral theory: a System Σ is defined

by a pair (U,B) where U is the Universum and B ⊆ U is the Behavior. For reasons of

brevity, we will consider only the case U = C∞(R,Rw) in this paper. Once U is fixed, there

is an obvious correspondence between systems and behaviors. Keeping this correspondence

in mind, we will use the terms ‘behavior’ and ‘system’ synonymously.

We say that a behavior B is

– Linear if it is a subspace of the vector space C∞(R,Rw) over the field R.

– Time-Invariant if σs(B) ⊆ B for all real numbers s.

– Time-Varying if it is not necessarily time-invariant.

– Autonomous if for w1, w2 ∈ B, w1|(−∞,s) = w2|(−∞,s) for some s ∈ R implies w1 =

w2.

In this paper, we consider only the linear behaviors and most of the time we skip the

word ‘linear’. The most typical example of a linear time-invariant behavior can be given

as the kernel of a differential operator R(D) where R(ξ) ∈ R•×•[ξ]. It is also well-known

that not every linear time-invariant behavior can be represented in this way. Consider, for

instance, the behavior which consists of finite linear combinations (on R) of the functions

{t 7→ et(t−a) | a ∈ R}. It is a subspace of C∞(R,R) and hence linear. One can check that it

is also time-invariant. However, it is not the kernel of any operator R(D) with R(ξ) ∈ R[ξ].

We say that B is Linear Time-Invariant Differential if it is the kernel of such an

operator R(D). In this case, we say R(D) is a Kernel Representation of B. The class

of linear time-invariant differential behaviors of the universum C∞(R,Rw) is denoted by Lw
D.

Consider the polynomials in the indeterminate ζ with Lw
D-coefficients, i.e., Lw

D[ζ]. Let

B(ζ) ∈ Lw
D[ζ] . Defiine the function τ : R→ R as τ(t) := t for all t ∈ R. Clearly, B(τ) is a

subspace of the universum C∞(R,Rw) and hence a behavior. It can be trivially verified that

it is not necessarily time-invariant. Such behaviors will be the main object of study in this

paper. We denote the set of such behaviors by Lw
D[τ] and we write B ∈ Lw

D[τ] meaning that

there exists B ′(ζ) ∈ Lw
D[ζ] such that B = B ′(τ). In the sequel, we will investigate certain

properties, such as time-invariance and autonomy, of these behaviors.
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2.1 Time-invariance

The following theorem establishes necessary and sufficient conditions for time-invariance of

LD[τ]-behaviors.

Theorem 2.1. Let Bi ∈ Lw
D for each i. The behavior B = B0 + τB1 + · · ·+ τkBk ∈ Lw

D[τ]

is time-invariant if and only if τmBn ⊆ B for all m = 0, 1, . . . , n− 1 and n = 0, 1, . . . , k.

A curious class of behaviors are ‘static’ behaviors. We call a behavior B Static if for all

w ∈ B, σs(w) = w for any s ∈ R. We denote the set of all static behaviors by Sw indicating

that the underlying universum is C∞(R,Rw). It is not difficult to see that Sw ⊂ Lw
D. The

following corollary is an application of theorem 2.1 to Sw[τ].

Corollary 2.1. Let Bi ∈ Sw for each i. The behavior B0 + τB1 + · · · + τkBk ∈ Sw[τ] is

time-invariant if and only if Bk ⊆ Bk−1 ⊆ · · · ⊆ B0.

2.2 Autonomy

Define Aw as the set of all (possibly time-varying) autonomous behaviors with universum

C∞(R,Rw). We define the vector space eλ := span
R
{t 7→ eσt cos ωt, t 7→ eσt sin ωt} where

λ = σ+ iω ∈ C and σ, ω ∈ R. Note that eλ is just span
R

{t 7→ eλt} in case λ is real.

The following proposition is just a restatement of [4, theorem 3.2.16].

Proposition 2.1. For every autonomous behavior B ∈ Aw ∩ Lw
D there exist a finite set

Λ ⊂ C and for each λ ∈ Λ a unique time-invariant behavior Bλ ∈ Sw[τ] ∩ Lw
D such that

B =
⊕
λ∈Λ

Bλe
λ.

Moreover, Λ is unique up to the conjugation of every element.

As a step towards establishing an analogue of this result for autonomous behaviors of the

class LD[τ], we present the following theorem.

Theorem 2.2. Let Bi ∈ Lw
D for each i. The behavior B0 + τB1 + · · · + τkBk ∈ Lw

D[τ] is

autonomous if and only if each Bi is autonomous. Stated differently, Aw ∩ Lw
D[τ] coincides

with Aw[τ] ∩ Lw
D[τ].

Now, we are in a position to state an analogue of proposition 2.1.

Lemma 2.1. For every autonomous behavior B ∈ Aw ∩Lw
D[τ] there exist a finite set Λ ⊂ C

and for each λ ∈ Λ a unique behavior Bλ ∈ Sw[τ] such that

B =
⊕
λ∈Λ

Bλe
λ.

Moreover, Λ is unique up to the conjugation of every element.

4



2.3 Kernel representations

Our next aim is to study certain types of kernel representations for LD[τ]-type behaviors. To

do this, we begin by briefly recalling the notion of the skew polynomial ring. For a detailed

treatment, we refer to [2, 1]. Let R be a ring. An additive homomorphism δ : R→ R is said

to be a Derivation of the Ring R if δ(ab) = δ(a)b + aδ(b) for all a, b ∈ R . The set

of all polynomials in δ with R-coefficients forms a ring (called Skew Polynomial Ring

in δ over R) with respect to the operations of addition of polynomials and multiplication

induced by the relation δa = aδ+ δ(a) for all a ∈ R.

Let ξ be a derivation of the ring R[η] with

ξ(η) = 1 (2.1a)

and let ROre[η, ξ]
1 denote the skew polynomial ring in ξ over R[η]. Note that

ξη− ηξ = 1 (2.1b)

by definition of the derivation. Every element R(η, ξ) ∈ Rq×w
Ore

[η, ξ] induces a mapping from

C∞(R,Rw) to C∞(R,Rq) as follows:

R(τ,D)w = R0(D)w+ τR1(D)w+ · · ·+ τkRk(D)w

where R(η, ξ) = R0(ξ)+ηR1(ξ)+· · ·+ηkRk(ξ) with Rn(ξ) = R0n+ξR1n+· · ·+ξ`nR`nn ∈ Rq×w[ξ]

for each n and Rn(D)w = R0nw+R1nDw+· · ·+R`nn D`nw. Note that (2.1a) and (2.1b) become

D(τ) = 1, (2.2a)

(Dτ− τD)w = w for all w ∈ C∞(R,R•). (2.2b)

In particular, equation (2.2b) yields

R(τ,D)(τw) = [R ′(τ,D) + τR(τ,D)](w) for all w ∈ C∞(R,Rw) (2.3)

where R(η, ξ) ∈ Rq×w
Ore

[η, ξ] and R ′(η, ξ) denotes the partial derivative of R(η, ξ) with respect

to ξ.

We consider the kernel representations induced by the above mentioned operators. Let Lw
τ,D

denote the set {kerR(τ,D) | R(η, ξ) ∈ R•×w
Ore

[η, ξ]}. By observing that Lτ,D 3 ker [1 + (1 +

τ)D] = {c(1 + τ) | c ∈ R} 6∈ LD[τ], we can conclude that Lw
τ,D 6⊆ Lw

D[τ]. However, the time-

invariant behaviors that are contained in Lw
D[τ] or Lw

τ,D should be of the type Lw
D as stated

next.

Lemma 2.2. The following statements hold.

1. If B ∈ Lw
D[τ] is time-invariant then B ∈ Lw

D.

1Oystein Ore (1899–1968), the Norwegian mathematician who initiated the study of such rings.
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2. If B ∈ Lw
τ,D is time-invariant then B ∈ Lw

D.

Later, we will show that Lw
D[τ] 6⊆ Lw

τ,D. We first study their intersection. Consider a (time-

varying) behavior B. If there exists a subbehavior B ′ ⊆ B such that B ′ is time-invariant and

B ′′ ⊆ B ′ for all time-invariant B ′′ ⊆ B then we call B ′ the Largest Time-Invariant

Behavior Contained in B and denote it by LTIB(B). It is easy to see that the largest

time-invariant behavior is unique if it exists. In fact, for any B existence of LTIB(B) can

be shown, for instance, by invoking Zorn’s 2 lemma.

Our next result is on the LTIB of an Lτ,D-behavior.

Theorem 2.3. Let B ∈ Lw
τ,D. Also let R(η, ξ) ∈ Rq×w

Ore
[η, ξ] with R(η, ξ) = R0(ξ)+ηR1(ξ)+

· · ·+ηkRk(ξ) where Ri(ξ) ∈ Rq×w[ξ] for each i, be such that kerR(τ,D) = B. The LTIB(B)

exists and equals
⋂k
i=0 kerRi(D).

An application of this theorem is the characterization of behaviors in the intersection of

Lw
τ,D and Lw

D[τ].

Theorem 2.4. Let B ∈ Lw
τ,D ∩ Lw

D[τ]. Also let R(η, ξ) ∈ Rq×w
Ore

[η, ξ] with R(η, ξ) = R0(ξ) +

ηR1(ξ) + · · ·+ ηkRk(ξ) induce a kernel representation for B. Define

R0(ξ) := col(R0(ξ), R1(ξ), . . . , Rk(ξ))

and

Rn+1(ξ) := col(R ′n(ξ), 0q×w) + col(0q×w,Rn(ξ)) for n = 0, 1, . . .

where R ′(ξ) denotes the derivative of R(ξ) with respect to ξ. Then, there exists an ` such

that B = kerR0(D) + τkerR1(D) + · · · + τ`kerR`(D) and kerRn(D) = kerRl(D) for all

n > `.

Consider the behavior B = τC∞(R,R) ∈ LD[τ]. Suppose that B ∈ Lτ,D and R(η, ξ) =

R0(ξ) + ηR1(ξ) + · · ·+ ηkRk(ξ) ∈ R•×1Ore
[η, ξ] with Rk(ξ) 6≡ 0 induces a kernel representation

for B. Theorem 2.4 implies that kerRk(D) ⊇ kerR1(D) = C∞(R,R). But, this means

that Rk(ξ) = 0. The contradiction that we have just reached proves B 6∈ Lτ,D, and hence

Lw
D[τ] 6⊆ Lw

τ,D.

Now, we are in a position to state that at least autonomous LD[τ]-behaviors admit kernel

representations, i.e., (Aw ∩Lw
D[τ]) ⊂ Lw

τ,D. Since this is a theorem that provides much of the

our motivation for studying this class of time-varying behaviors, we refer to this theorem as

the main theorem.

Theorem 2.5. For every autonomous behavior B ∈ Aw ∩ Lw
D[τ], there exists R(η, ξ) ∈

R
w×w
Ore

[η, ξ] such that B = kerR(τ,D).

Here, B1 = τC∞(R,R), B2 = ker
(
0 1+ τ− τD

)
, B3 = {w ∈ C∞(R,R2) | w1 = c(1 +

τ) with c ∈ R}, B4 = {w ∈ C∞(R,R) | w = c(1+ τ) with c ∈ R}, and B5 = span {et(t−a) |

a ∈ R}.

2Max Zorn (1906-1993), the German mathematician who was the first one to use a maximal principle in
algebra[6].
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Figure 1: Venn diagram for some classes of behaviors

3 Decompositions of behaviors

In this section, we investigate decomposition of a behavior into a direct sum of two sub-

behaviors. The motivation for this may come from the need to capture a certain property

(such as controllability, losslessness, or time-reversibility etc.) into one of the subbehaviors.

The formulation of the decomposition problem can be stated as follows: given a time-

invariant behavior B ∈ Lw
D and a time-invariant subbehavior Lw

D 3 B ′ ⊆ B find B ′′ ∈ Lw
D

such that B = B ′ ⊕B ′′.

It turns out that ‘controllability’ plays a key role here. We say a behavior B ∈ Lw
D is

Controllable if for any w1 and w2 ∈ B there exists a w ∈ B such that w|(−∞,0] =

w1|(−∞,0] and w|[s,∞) = w2|[s,∞) for some real number s > 0. The following well-known

proposition solves the above problem for the controllability property.

Proposition 3.1. [4, theorem 5.2.14] Let B ∈ Lw
D. There exist subbehaviors Bc and Ba of

B such that B = Bc ⊕Ba where Bc is controllable and Ba is autonomous. Moreover, the

controllable part Bc is unique.

The importance of controllability is already well-acknowledged in the study of open sys-

tems. It also comes into play in our context as stated below.

Theorem 3.1. Let B, B ′ ∈ Lw
D be such that B ′ ⊆ B and let B ′ be controllable. Then,

there exists a B ′′ ∈ Lw
D such that B = B ′ ⊕B ′′. Moreover, if B is also controllable, then

B ′′ is controllable.

One can view proposition 3.1 as a special case of the above theorem. When the behavior

B does not contain any nontrivial controllable subbehaviors (in other words when it is

autonomous), LD[τ]-behaviors have to be called in. In this case, the following theorem

solves the decomposition problem in a slightly more general framework.
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Theorem 3.2. Let autonomous behaviors B, B ′ ∈ Lw
D[τ] be such that B ′ ⊆ B. Then, there

exists an autonomous behavior B ′′ ∈ Lw
D[τ] such that B = B ′ ⊕B ′′.

Even if B and B ′ are both time-invariant there is no escape from LD[τ], in general. This

makes worthwhile stating the following corollary separately.

Corollary 3.1. Consider time-invariant autonomous behaviors B, B ′ ∈ Lw
D such that B ′ ⊆

B. Then, there exists an autonomous behavior B ′′ ∈ Lw
D[τ] such that B = B ′ ⊕ B ′′.

Moreover, there exists an R(η, ξ) ∈ R•×w
Ore

[η, ξ] such that B ′′ = kerR(τ,D).

4 Conclusions

As a prelude for the behavioral decomposition problem, we discussed a class of time-varying

behaviors, more precisely, polynomials in the time variable of time-invariant differential

behaviors. Of course, this class is interesting in its own right. Sometimes by digressing from

the main course, we investigated some issues which are not directly related to our initial

motivation. We addressed issues like time-invariance and autonomy. We also showed that

such autonomous behaviors admit a certain type of kernel representation. By means of an

example, it was illustrated that not every nonautonomous behavior can be described by such

representations. The question under what conditions a behavior can be represented as such

remains unresolved.

Furthermore, we solved the decomposition problem for controllable and for autonomous

behaviors. It turned out that one has to consider time-varying systems for the autonomous

case. Still, the problem needs to be solved in the most general setting. This will be a subject

of future research.

A Appendix

Before we begin with the proofs, we collect some basic results into the following subsection.

A.1 Preliminaries

We denote the i-th derivative of R(ξ) ∈ R•×w[ξ] with respect to ξ by R(i)(ξ).

Lemma A.1. Let P(ξ) ∈ R•×w[ξ] and Q(η, ξ) ∈ R•×w
Ore

[η, ξ]. The following statements hold

for all w ∈ C∞(R,Rw).

1. For any integer m,

P(D)(τmw) =

m∑
`=0

(
m
`

)
τ`P(m−`)(D)w.

2. For any real number s,

Q(τ,D)(σsw) = Q(τ− s,D)w.
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A.2 Proofs for section 2

This subsection of the appendix contains the proofs of the results in section 2 of this paper.

Proof of theorem 2.1

‘if ’ : Note that σs(B
′+ B ′′) = σsB

′+σsB
′′ for all real numbers s and subspaces B ′,B ′′ of

C∞(R,Rw). Hence, we have σsB = σsB0 + σs(τB1) + · · · + σs(τkBk). By using linearity,

one can show that σs(τ
nBn) ⊆ Bn + τBn + · · · + τnBn. It follows that σsB ⊆ B for all

real numbers s.

‘only if ’ : Note that the implication

w ∈ B ′ ⇒ Dw ∈ B ′ (A.4)

holds for B ′ ∈ Lw
D. Since we already know that τnBn ⊆ B for each n = 0, 1, . . . , k, the

following implication for m = 0, 1, . . . , n− 1

τm+1Bn ⊆ B⇒ τmBn ⊆ B (A.5)

would complete the proof. Take any w ′ ∈ Bn. Clearly, w := τm+1w ′ ∈ τm+1Bn. If

τm+1Bn ⊆ B, we have w ∈ B. It follows from time-invariance of B and the implication

(A.4) that

Dw = (m+ 1)τmw ′ + τm+1Dw ′ ∈ B. (A.6)

Note that Dw ′ ∈ Bn due to the implication (A.4) again. This means that the second

summand on the right hand side of equation (A.6) is an element of τm+1Bn and hence B.

Consequently, τmw ′ ∈ B. This proves the implication (A.5). �

Proof of corollary 2.1

Since all the concerned behaviors are static, the following statements are equivalent.

1. For all n = 0, 1, . . . , k and m = 0, 1, . . . , n− 1, τmBn ⊆ B.

2. For all n = 0, 1, . . . , k and m = 0, 1, . . . , n− 1, τmBn ⊆ τmBm.

3. Bk ⊆ Bk−1 ⊆ · · · ⊆ B0. �

Proof of theorem 2.2

(if part:) Here, we note that if a behavior B is autonomous, then every subbehavior B ′ ⊆ B

is also autonomous. Let Lw
D[τ] 3 B = B0+τB1+ · · ·+τkBk with Bi ∈ Lw

D, then τiBi ⊆ B.

Hence we have that τiBi is autonomous for each i. This implies that Bi is autonomous too.

(only if part:) An interesting fact about autonomous behaviors in Lw
D[τ] or in Lw

D is that they

are subspaces of the space of real analytic functions. Hence, finite sums of these behaviors

are still subspaces of this space. Hence, for B ∈ Lw
D[τ], if w ∈ B is such that w|I = 0 for

some open interval I ⊂ R, then w = 0. Thus B is autonomous. �
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Proof of lemma 2.1

Let B ∈ Aw ∩ Lw
D[τ], i.e., B = B0 + τB1 + · · · + τkBk with Bi ∈ Lw

D. Using theorem 2.2,

we have that each Bi is autonomous. Further, by proposition 2.1, each Bi can be written as

Bi =
⊕

λ∈Λi Bλe
λ with Bλ ∈ Sw[τ]∩Lw

D and Λi ⊂ C, a finite set. In addition, Sw[τ] is closed

under addition and multiplication with τ, i.e., for B1,B2 ∈ Sw[τ], B1 + B2 ∈ Sw[τ] and

τSw[τ] ⊂ Sw[τ]. Hence if the Λi are disjoint, then
∑k
i=0 τ

iBi ∈ Sw[τ]. Suppose there are

common elements in Λi. Let λ ∈ Λi1∩Λi2 for some i1, i2 , then (τi1Bλ,i1+τ
i2Bλ,i2) ∈ Sw[τ],

and hence for the case of some Λi not disjoint also, the theorem is proved. �

Proof of lemma 2.2

1: We will need the following lemma.

Lemma A.2. Let B ∈ Lw
D and B̃k = B+τB+ · · ·+τkB for k = 0, 1, . . . . Then, B̃k ∈ Lw

D.

Proof: We have the following facts.

i. B̃0 ∈ Lw
D.

ii. Suppose that B̃n ∈ Lw
D, i.e., there exists R(ξ) ∈ Rq×w[ξ] such that

B̃n = kerR(D). (A.7)

iii. Since for m ≤ n, τmB ⊆ B̃n = kerR(D), we have

R(D)(τmw) = 0

for all w ∈ B and m = 0, 1, . . . , n. Together with lemma A.1, this results in

R(m)(D)w = 0. (A.8)

It follows from the same lemma that

R(n+1)(D)w = R(D)(τn+1w) (A.9)

for all w ∈ B.

iv. Let F(ξ) ∈ R•×q[ξ] be such that

ker F(D) = R(n+1)(D)B. (A.10)

v. Let w ∈ B̃n+1. Since B̃n+1 = B̃n + τn+1B, w = w1 + τn+1w2 for some w1 ∈ B̃n and

w2 ∈ B. Then,

F(D)R(D)w = F(D)R(D)w1 + F(D)R(D)(τn+1w2)

= F(D)R(n+1)(D)w2 (by (A.7) and (A.9))

= 0 (by (A.10)).

Consequently, B̃n+1 ⊆ ker F(D)R(D).
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vi. Let w ∈ ker F(D)R(D). This implies that R(D)w ∈ ker F(D). Hence, R(D)w =

R(n+1)(D)w1 for some w1 ∈ B due to (A.10). By employing (A.9), one can get

R(D)w = R(D)(τn+1w1). Therefore, w = τn+1w1 + w2 where w2 ∈ kerR(D) = B̃n.

Consequently, w ∈ B̃n+1 and ker F(D)R(D) ⊆ B̃n+1.

The facts, i, ii, v, and vi constitute a proof by induction for the claim. �

Now, we turn to the proof of lemma 2.2 item 1. The following facts will lead us to the proof.

1. Define Bn := Bn+τBn+· · ·+τn−1Bnfor n = 1, 2, . . . , k and B := B1+B2+· · ·+Bk.

It follows from theorem 2.1 that B ⊆ B since B is time-invariant.

2. Lemma A.2 implies that Bn ∈ Lw
D and hence B ∈ Lw

D. Let R(ξ) ∈ Rq×w[ξ] be such

that kerR(D) = B. Since τmBn ⊆ B for all m = 0, 1, . . . , n − 1 and n = 1, 2, . . . , k,

from lemma A.1 we have for all w ∈ Bn

R(m)(D)w =

{
0 if m = 0, 1, . . . , n− 1,

R(D)(τnw) if m = n.
(A.12)

3. Let F(ξ) ∈ R•×q[ξ] be such that

ker F(D) = R(D)B0 + R(1)(D)B1 + · · ·+ R(k)(D)Bk. (A.13)

4. Let w ∈ B. Clearly, w = w0 + τw1 + · · · + τkwk where wn ∈ Bn. So, (A.12)

gives R(D)w = R(D)w0 + R(1)(D)w1 + · · · + R(k)(D)wk. Hence, F(D)R(D)w = 0.

Consequently, w ∈ ker F(D)R(D).

5. Let w ∈ ker F(D)R(D). This immediately means that R(D)w ∈ ker F(D). Then, we

have

R(D)w = R(D)w0 + R(1)(D)w1 + · · ·+ R(k)(D)wk (from (A.13)),

= R(D)(w0 + τw1 + · · ·+ τkwk) (from (A.12))

for some wn ∈ Bn. Therefore, w = (w0+τw1+ · · ·+τkwk)+w where w ∈ kerR(D) =

B. This implies that w ∈ B since B ⊆ B due to 1.

It follows from 4 and 5 that B = ker F(D)R(D) and thus B ∈ Lw
D.

2: Let R(η, ξ) ∈ R•×w
Ore

[η, ξ] be such that B = kerR(τ,D). Also let R(η, ξ) be of the form

R0(ξ)+ηR1(ξ)+. . .+η
kRk(ξ). It can be verified that ker col(R0(D), R1(D), . . . , Rk(D)) ⊆ B.

We claim that the time-invariance of B yields, in fact, an equality in the last inclusion. To

see this, take any w ∈ B. Since B is time-invariant, we get R(τ,D)(σsw) = 0 for all w ∈ B

and s ∈ R. Lemma A.1 implies that

0 = R(τ,D)(σsw) = R(τ− s,D)w

= R0(D)w+ (τ− s)R1(D)w+ . . .+ (τ− s)kRk(D)w (A.14)
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for all w ∈ B and s ∈ R. Note that the left hand side is a polynomial in s. This means

that (A.14) holds if and only if the coefficients of the monomials sn are all zero for n =

0, 1, 2, . . . , k. Therefore, Rk(D)w = Rk−1(D)w = · · · = R0(D)w = 0. In other words,

B ⊆
⋂k
i=0 kerRi(D) = ker col(R0(D), R1(D), . . . , Rk(D)). �

Proof of theorem 2.3

Clearly, B̃ :=
⋂k
i=0 kerRi(D) is time-invariant and contained in B. By the definition of

LTIB(B), we have already B := LTIB(B) ⊇ B̃. So, it remains to show that B ⊆ B̃. To

see this, take any w ∈ B. It follows from time-invariance that σsw ∈ B for all s ∈ R. Since

B ⊆ B, we have even σsw ∈ B. Therefore, R(τ,D)(σsw) = 0 for all s ∈ R. Lemma A.1

implies that

0 = R(τ,D)(σsw) = R(τ− s,D)w

= R0(D)w+ (τ− s)R1(D)w+ . . .+ (τ− s)kRk(D)w. (A.15)

Note that (A.15) holds if and only if the coefficients of each monomial sn are zero. This

results in Rk(D)w = Rk−1(D)w = · · · = R0(D)w = 0. Thus, w ∈ B̃. Consequently,

B ⊆ B̃. �

Proof of theorem 2.4

From theorem 2.3 we have ker(R0) = LTIB(B). Now, we show that kerRi(D) is the largest

time-invariant behavior (say Bi) such that τiBi ⊆ B. To see this for i = 1, we write

R(τ,D)(τw) = R0(D)τw+ τR1(D)τw+ · · ·+ τkRk(D)τw .

Now we use the identity R(D)τ = R ′(D) + τR(D) where R ′(ξ) denotes the derivative of

the polynomial matrix R(ξ) with respect to ξ. The LTIB(ker(R(τ,D)τ)) is precisely equal

to ker(R1(D)). Similarly, ker(Rn(D)) is the largest time invariant behavior Bn such that

τnBn ⊆ B. This recursion terminates when τker(Rn+1(D)) ⊆ ker(Rn(D)) for some n. Now

because B ∈ Lw
D[τ] also, there exists an n <∞ for which the recursion terminates. �

A.3 Proof of theorem 2.5

The proof is split into intermediate steps which can be formulated into auxiliary results in

themselves. Hence we state them as lemmas and prove them also.

Let B = B0 + τB1 + · · · + τkBk with Bi ∈ Lw
D be autonomous. We know that B is

finite dimensional. For simplicity, we assume that each Bi has only real exponents, i.e., if

Ri(ξ) ∈ Rw×w[ξ] induces a kernel representation for Bi, then det(Ri(ξ)) has only real roots.

The general case can be treated by following the proof of the case of real roots, except that

it involves more complicated computations.
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A.3.1 The scalar case

We first prove the theorem for w = 1. We need to introduce a few notations here. For

polynomials p(η), q(η) ∈ R[η] and λ, µ ∈ R we define the function vp,λ := t → p(t)eλt and

the operator rq,µ ∈ ROre[η, ξ] by rq,µ(τ,D) = [(q̇(τ) + µq(τ)) − q(τ)D] . In what follows,

we will sometimes skip the arguments η, τ, ξ,D if they are evident from the context. The

following result is useful and is proved by straightforward computation.

Lemma A.3. Given vp,λ and rq,µ ∈ ROre[η, ξ] the following hold:

rq,µvp,λ = vp̄,λ (A.16)

where p̄ = (pq̇ − ṗq + (µ − λ)pq) . Further, rq,µvp,λ = 0 if and only if µ = λ and

p = constant · q .

Now, we are in a position to complete the proof of the scalar case. Let B be expressed as the

span of functions {vpi,λi}
k
i=1 for a suitable choice of pi ∈ R[η] and λi ∈ R. By employing A.3,

we find an r1 ∈ ROre[η, ξ] such that ker r1(τ,D) = span{vp1,λ1} . Lemma A.3 also guarantees

that r1(τ,D)V = span{vp̄i,λi}
k
i=2 for some polynomials p̄i ∈ R[η]. By repeating the above

argument one finds r2, r3, . . . , rk such that B is the kernel of rk(τ,D)rk−1(τ,D) · · · r1(τ,D) .

A.3.2 Multivariable case

Let W = {wij} be a matrix whose columns form a basis for B. Since B ∈ Lw
D[τ], wij can

be chosen such that any two elements in each column are linearly dependent over R, i.e.,

wij = t → αijt
njeλjt. Without loss of generality, we can assume that (nj1 , λj1) = (nj2 , λj2)

implies that either αij1 or αij2 is zero. Otherwise, one can always achieve this by post-

multiplying W by a real nonsingular matrix (which amounts to a basis transformation).

Suppose W has the following special form:

W =

 w̃
T
1 0 ··· 0

0 w̃T2 ··· 0

...
...

...
...

0 0 ··· w̃Tw

 . (A.17)

We can construct kernel representations for the span of elements of each w̃i. This would

yield a kernel representation for the corresponding behavior and hence for B.

We claim that anyW can be brought to this form by elementary row and column operations

on W. To show this we first need the following two lemmas.

Lemma A.4. Let p, q ∈ R[η] with p 6= 0. Then there exists an s ∈ ROre[η, ξ] such that

s(τ,D)vp,λ = vq,λ.

Proof: Define s(τ,D) := q(τ) (−λ+D)deg(p)

α(deg(p))!
where α is the coefficient of the highest term of p.

Note that (−λ+D)deg(p)p(τ) = α(deg(p))! . �
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Lemma A.5. Let αi, βi, λi ∈ R with αi 6= 0 for i = 1, · · · , ` , and distinct functions tnieλit

be given. Then, there exists an r ∈ ROre[η, ξ] such that

r(τ,D)αit
nieλit = βit

nieλit (A.18)

for i = 1, . . . , `.

Proof: The proof goes by induction on `. For ` = 1, r := β1/α1 does the job. Suppose

there exists an r`−1 such that equation (A.18) holds for i = 1, . . . , ` − 1. Define r` :=

r`−1 + qradd where q, radd ∈ ROre[η, ξ] are chosen in the following way. We choose radd such

that ker radd(τ,D) = span{tnieλit}`−1i=1 by invoking the scalar version of theorem 2.5. Using

lemma A.4 we define q as the solution of the following equation

α`q(τ)radd(τ,D)tn`eλ`t = β`t
n`eλ`t − β`r`−1(τ,D)tn`eλ`t.

It can be verified that

r`(τ,D)(αit
nieλit) = βit

nieλit

for i = 1, . . . , `. �

We now turn to the proof of theorem 2.5. Let P1 be a permutation matrix such that

WP1 =


w̃11 w̃12 · · · w̃1`1 0 0 · · · 0

∗ ∗ · · · ∗ ∗ ∗ · · · ∗
...

...
...

...
...

...

∗ ∗ · · · ∗ ∗ ∗ · · · ∗

 .
Lemma A.5 gives r2, r3, . . . , rw ∈ ROre[η, ξ] such that

1 0 · · · 0

−r2 1 · · · 0
...

...
...

−rw 0 · · · 1


︸ ︷︷ ︸

R1

WP1 =


w̃11 w̃12 · · · w̃1`1 0 0 · · · 0

0 0 · · · 0 ∗ ∗ · · · ∗
...

...
...

...
...

...

0 0 · · · 0 ∗ ∗ · · · ∗

 .

By repeating this process, we find R1, R2, . . . , Rw ∈ Rw×w
Ore

[η, ξ] and P1, P2, . . . , Pw ∈ Rw×w

such that

Rw · · ·R2R1WP1P2 · · ·Pw =


w̃T1 0 · · · 0

0 w̃T2 · · · 0
...

...
. . .

...

0 0 · · · w̃Tw

 .
If R̃ ∈ Rw×w

Ore
[η, ξ] induces a kernel representation for the behavior spanned by the columns

of the right hand side, then R := R̃Rw · · ·R2R1 is a kernel representation for the behavior B.

This completes the proof of theorem 2.5. �
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A.4 Proofs for section 3

Proof of theorem 3.1

We first prove the case when B is controllable. Since B ′ is controllable, it admits an

observable image representation, say w = M1(D)` . Since B ′ ⊆ B , we can find an

M2 ∈ Rw×•[ξ] such that B = Im[M1(D) M2(D)] and the representation is observable. By

defining B ′′ = Im[M2(D)] , we have that B = B ′ ⊕B ′′. Note that B ′′ is not unique

For the case when B is not controllable, we first decompose B = Bcont ⊕Baut using propo-

sition 3.1, and then it follows that B ′ ⊆ Bcont . We first find B ′′′ ∈ Lw
D such that

B ′ ⊕ B ′′′ = Bcont and then define B ′′ := B ′′′ ⊕ Baut for the required decomposition of

B .
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