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Abstract | =(0)
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We consider estimation problems for a continuous-time [ C1DH } Y
linear system with a state disturbance and additive er-
rors on the input and the output. The problem formu- i q_' ¥
lation and the estimation principle are deterministic. U Ya

The derived filter is identical to the stochastic Kalman
filter. The problem formulation with additive error on
both the input and the output, however, is more sym-
metric then the classical Kalman filter one and allows
interpretation in terms of misfit and latent variables.

Keywords: Kalman filtering, errors-in-variables, mis-
fit, latency.

1 Introduction

Consider the continuous-time linear state space system

Ax + Bu,
Cz + Du,

at =

(1)

¥

as a model of a phenomenon. Assume that we mea-
sure an input/output trajectory (u4,y4) on the inter-
val {0,tf]. Due to modeling and measurement errors,
(ud,yq) can, in general, not be explained as a trajec-
tory of the model, i.e., there is no initial condition z(0)
such that the response of the system (1) to the signal
ugq is the signal ygq.

We further account for modeling errors by adding to the
system an auxiliary input d, later called a disturbance.
The model with the disturbance input becomes

Az + Bu+ Gd,
Cz + Du+ Hd.

x
Y

&=

_ (2)
The measurement errors are modeled by appending to
the system the equations

g = U+ i@, (3)
The measurement errors u, ¥ and the disturbance d are
(in addition to the initial state x{0)) free variables that
allow us to “explain” the measured trajectory (uq, ¥a}.

va=y+i

0-7803-7516-5/02/$17.00 ©2002 [EEE

2576

Figure 1: Errors-in-variables model

The system (2,3) is called an errors-in-variebles model
{see Figure 1).

We assume that the true input/state/output trajectory
is generated by (1) and that the measurements deviate
from the true values due to “small” initial condition,
disturbance and measurement errors according to the
errors-in-variables model. In the paper, we consider
the problem to estimate-the true input/state/output
trajectory under the above assumption.

The estimation principle used is: find the “smallest” es-
timated initial condition £(0}, disturbance d, and mea-
surement errors &, i that “explain” the measurements
by the errors-in-variables model, i.e.,
$& = Ak+ Ba+Gd,
y = Ci+ Di+ Hd,
ug =4+, ya =9+
The rationale for this deterministic estimation princi-
ple, see [Wil02], is that we assume a priori the true
initial state, disturbance, and measurement errors are
small, so that the “most likely” estimates are the small-
est possible estimates that explain the measurements.

We interpret the estimates #(0) and d as latent vari-
ables, 1.e., variables that modify the system equations
to explain the model-data mismatch. On the other
hand, 4, y are viewed as misfit variables, i.e., variables
that modify the data to make it match the system equa-
tions. In the pure lafency case, we consider the data as
being error free and blame the model as being imper-
fect description of the reality. In the pure misfit case,
we consider the model as being perfect and blame the



measurements as being error corrupted. Thus the mis-
fit and the latent variables are conceptually different.

In general, both misfit and latency can be considered si-
multaneously, which corresponds te uncertainty in both
the data and the model. The terms in the cost func-
tional, corresponding to the misfit and the latency con-
tributions are,

ts
Junste = [0 (1) — ua()I1% + 19(8) ~ wa(B)13) At

and
ty .
Jintoncy = jﬂ O dt + 12 (0} 2,

where R > 0, @ > 0, P > 0, and T" > 0 are
weighting matrices, reflecting the relative importance
of the terms. We introduce a variable weighting factor
p € [0,1], and consider the total cost

J = pJmishe + (1 - P)Jlatency-

Varying p from 0 to 1, allows smooth transition from
a purely misfit contribution to a purely latency con-
tribution. The general errors-in-variables estimation
problem considered in the paper is

o)

= A%+ Ba+Gd
Ct+ D+ Hd.

4
min _J R

o.4.2,d

(4)

54y

We distinguish two types of estimation problems —
smoothing and fltering. In the smoothing problem,
one is interested in the estimates for the whole interval
[0,%5] of observation. When the time-horizon ¢y is in-
creasing, one needs an estimation procedure that works
in real-time. This poses the filtering problem — design
a non-anticipating dynamical system that assumes as
input the measurements and produces as an output at
each time optimal estimate.

As stated, problem (4} is a smoothing problem. Our
solution, however, is derived so that with no extra work
we obtain the solution of the corresponding filtering
problem (see Remark 1).

In Section 2, we solve an optimal control problem with
cost function a general quadratic function in the state
and the control. Problem (4) is a special case of this
control problem. In Sections 3 and 4, we solve sepa-
rately the cases of pure misfit cost, and pure latency
cost. The results are stated as the solution of the cor-
responding smoothing problems, the finite horizon fil-
tering problem, and the infinite horizon fltering prob-
lems. In Section 3, we solve the general problem (4).
Section 6 gives conclusions.
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2 Preliminaries

In this section, we solve the following optimal control
problem

b [u®]” e
min f 2(t)| M) |=(6)| dt + 27 (0)Tz(0)
T Jo 1 i (5)
s.t. a”-lfa: = Az + Bu,
where
Qu Quz qult)
M(t):= | * Qr glt)],
* * a(t)
is a symmetric matrix (“*” denotes the symmetric

blocks) with @, > 0, [?;- %] 2 0,and T 2 0. We use

the “completion of squares” approach [Bro70]. First we
prove the following identity.

Lemma 1 Let K : [0,t;] — R™™, K = K7, and
s 1 [0,tf] — R™ be differentiable. Then, for x and u
related by %m = Ar + Bu, the following identily holds

0=—(z"Kz+ 23T$)|f]f+

e [u]” [0 BTK BTs 7 [u
f x| |* SEK+ATK+KA $s+ATs) |zf de
01 * * 0 1
Proof: Clearly,

d [z "Ik sl [z _[£= T s [«

dt {1 [sT o|j1| " |0 sT 01

Tra d T d
T oK 35| (= T K s| |5z
+ 1] [%ST ottt [« oll%]

Substituting Az + Bu for %x and integrating from 0
to ty the identity, we obtain

gy [«]T /0 BTk BTs] o 0 o
ozf x (0 ATK  ATs| + {0 %A ds
¢ i1 0 0 0 0 ST 0
0 0 0 u T ty
+|KB KA 0} )iz dz—m [}fn f)] m )
sTB sTA 0|/ |1 . 0
from which the lemma follows. [

Now we solve (5).

Lemma 2 LetQ, > 0, [Q*" %‘:] >0,andIl’ 2 0. De-

fine K as the unique solution of the Riccati differential
equation

0=4K+ ATK+ KA+ Q.
- (BTK + Qua)" Q7 (BTK + Quz),

K(0) = T,



and assume that K{ts) < 0. Then the unique solution

of problem (5) is
u=—Q7 ((BTK + Quz)z + BTs +qu),
and
21 = (A-BQ(B"K+Quz))z-BQ, ' B s—BQ, qu,

with final condition z(tf) = —K !
generated by

(tr)s(ty), where s is

L5 (A BQTUBTK + Que)) s — gx
+ (BTK + QuI)TQJIQu: 3(0) =

The minimum velue of the cost functional is

¢
/ ’ (- (BTs+gu)TQ7 (B s +¢g,)) dt
0

+ 8T () K tp)s(t ).

Proof:  Adding the identity from Lemma 1 to the
cost. functional, we have

u{t)
J = /t’ [w(t):‘ Mt ){w(lt)] dt

— (2T Kz + 2572} + =T (0)z(0).
Where M :=
u BTK + Qu. BTs+ g,
* %K+ATK+KA+QI %erAT.erqI
* * g

To complete the squares, we need to factor M in the
form AT N, by choosing ——s and d K. 1f we take

Ss+ ATs+qo = (BTK + Qua)TQ7 1B s + ¢u)s

and

LK +ATK + KA+ Q,
= (BTK + Quz)T QY (BTK + Qua),

then Af = MTAf, with
M=Q7'?[Qu, BTK+ Quz, BTs+qu.

We have

= f 1Qut+ (BTK + Qua)z + BTs + qull?,uja dt

eV
tr
+ f (q —(BTs + ¢ ) Q7Y (BTs + qu)) dt
0

—{eTKz + 2672) | + 2T (0)T'2(0).
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For any input u, the following inequality holds

Iz fow (g (B + )@ (BTs + qu)) dt + 27 (0)s(0)

T (OHK(0) + D)z (0) + 57 (t)K 7 (t5)s(ts)
— (z(ty) + K ep)s(tr)) K () alts) + K2 (e0)s(ty)).

If we select s(0) = 0, K(0) = T, and

u=-Q7! ((BTK 4+ Quz)z+BTs+ qu),

then
z(ty) = K7 (tg)s(ty), (6)

achieves the optimal value of the cost functional. =

Remark 1 (Final condition) The choice of the final
condition, is what we need in filtering, since the esti-
mate in the final moment of the lime is of interest.
Thus (6) gives the optimal filter as a by-product from
the solution of the smoothing problem.

3 Estimation in the pure misfit case

In this section, we consider the pure misfit case. We
assume d = 0 and add only the misfit .contribution in
the cost functional. Problem (4) becomes

tr
in [ (1) = vl + 1960 - a1
wht Jo @

A + Bil
Ci+ Di.

&l
w2y B
il

s.b.

Theorem 1 (Pure misfit smoothing) Let R > 0,
Q >0, and (A, CTQC) be observable. The unique so-
lution of (7) is

= ~N"Y(BTK +D7QC)z + BT s — DTQy4 — Ruq)
and

43— (A-BN Y(BTK 4+ DTQC)) - BN"1B s
+BN'DTQyy+ BN~ Ruy, &(t;) = —K " ts)s(ts)
where N ;= R+ DTQD, s is generated by

45— —(A—BN"YBTK + DTQC)) s + CTQyu
—(BTK+DTQC)" N1 (D" Qya+Rua), s(0)=0,
and K is generated by

(BTK + DTQCYNYBTK + DTQC)

=3K+ ATK+ KA+ CTQC, K(0)=0. (8)



The minimum value of the cost functional is

tg
ST(tf)KAl(tf)S(tf) + / (ngyd + ug;Rud
0
—(BTs—D¥Qya—Rua)" N7 (BT s— DT Qya—Ruy)) dt.
Proof:

[ E

where N := R+ DTQD. Then the misfit smoothing
problem is a special case of (5) with

The cost functional can be written as
T

+ CTQC —-CTQyy
* x  yIQuytulRug

— 8 £
—

N DTQC —DTde—RudH

Qu=N, Quz = DTQG: Qu = _DTde — Ruy,
Q:=CTQC, q:=-CTQya, q=yjQua+uj Rug,

and I' = 0. The assumptions B > 0 and ¢ > 0 ensure
T
that N > 0 and [{‘f pTec ] > 0. The observability

crge
assumption ensures that K (ty) < 0. Thus we can apply
Lemma 2, from which the result follows. »

The solution of the smoothing problem contains the
solution of the filtering problem.

Corollary 1 (Pure misfit finite-horizon filtering)

Under the assumptions of Theorem 1, the optimal
misfit filter is

&5 —(A-BNYBTK + DTQC) s + CTQua

~(B'K + DTQC)"N"H(D"Qya+ua), s(0) =0,

&=-K"'s,
a=-N"'((B” + (BTK + DTQC)K)s

~ D" Qys - Rug),
§ = C& + D, -

where N := R+ DTQD and K is generated by (8).

In the infinite-horizon case, assuming in addition that
(A, B) is controllable, the differential Riccati equation
reduces to the algebraic Riccati equation

0=ATK + KA+ CTgo
—(BTK + DYQC)'N-Y(BTK + DTQQC).
and the unique negative definite solution K_ is used

in place of the time-function K in the optimal misfit
filter.

4 Estimation in the pure latency case

In this section, we consider the pure latency case. We
assume ¢ = 0, § = 0 and add only the latency contri-
bution in the cost functional. Problem (4} becomes

ty R
min [ 1141 dt + <7 (O)T(0)
4,3 0

(9)

ja

L& Az + Bug + Gd
va = Ci+Dug+Hd

[=¥

s.t.

This corresponds to the deterministic Kalman filter dis-
cussed in [Wil02).

Theorem 2 (Pure latency smoothing) Let H £
R e pe of full row rank with n, < ng, P > 0, end
T > 0. The unigue solution of (9) is

@ = ~Q7 (BT K+H] FC)i+BTs— HI F(ya— Duq)),
and

L4 = (A- BQyY(BTK + H FC))2 ~ BQ,'Bs
+(B-BQ,'HIFD - G1H; ' D)ugy
+ (G HT + BQI HT Fyya,

with final condition z(t;) = —K~1(t;)s(t5}, where s
and K are generated by

45— —(A-BQ;Y(BTK + HIFC))Ts
HCT—(BTK+HT FC)T Q7 HY ) F(ya—Dua), s(0) =0,
and

(BTK + HTFCYTQ7 (BTK + HI FC)

=LK+ ATK+ KA+ CTFC, K(0)=-I. (10)
We define

A= A- Ginlc,
Qy := P+ HIFH,,

' B:=Gh— G H{ 'Hg,
Fw=HTPHT. (11)

Proof: Since H is with independent rows and wide
its columns can be rearranged so that H = [H; Hil,
with Hy square and invertible. Let d7 = [d] d%} be
the corresponding partitioning of d. Then

Czl = Hfl(yd — Ci‘-— Dud — H2(i2)

and we can eliminate the output equation as a con-
straint, by substituting d; into the cost functional and
the state equation. Let G = [(4; (2] corresponds to the
partitioning of d. The pure latency estimation problem
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becomes

iy .
min [ VB (salt) = C3(0) — Dua(t) — Hada(t)) |
dz, @ Jo

ty
+ / ||da| % dt + 2T (0)Tz(0)
o
st. &&= A+ Bug + Gads
+ G1H1_1(yd —-Cz— Dud - Hz(iz).

The cost functional can be written as
o [d®]" ()
[ e a0 | ate)| der s @ra0),
0 1 1

where M :=

P+ HYIFH, HIFC —Hj F(yq — Dua)
—CTF(yq — Duq}

(ya — Dug)? Fya — Dug)

* CTFC

* *

?

and F := H TPH; . The state equation becomes
43 =(A-GH'C)E + (G2 — G1H ' Ha)ds
+[B -G H'D, G HY {“d} :
Yd
which is in the form %5: = Az + Bii + v, where v is an
additional input signal
v:= (B —Gi1H ' D)ug + G1H{ 'yq.

The pure latency estimation is a special case of the
control problem-{5) with

Qu= P+ HIFH,,
gu = —HI Fya — Dug),
gr = —CT F(yg — Dug),

Que = Hi FC

Q. =CTFC

q=(ya — Dua) F(),
the substitution

A‘—A—G1HFIC, B<—G2—G1H{1H2,

and with added v to the right-hand side of the con-
straint (i.e. the state equation).

The assumption P > 0 ensures that P+ HI FHz > 0
and the assumption I' > 0 ensures that K(tf) < 0.
Thus we can apply Lemma 2. To account for the addi-
tional input v, we add it to the right-hand side of the
differential equation for the state estimate. =

Corollary 2 (Pure latency filtering) Under the
assumptions of Theorem 2, the optimal latency filter is

5= (A~ BQ7 (BTK + HTFC))"s
+(CT—(BTK +H] FCYQ7  HT) F(ya—~Dua), s{(0) =0,

&=-K's,
i=-Q;'((B"(B"K + H{FO)K)s

— Hi F(yq — Dug}),
§=Ci+ D,

where K is generated by (10), and A, B, Qu, and F
are defined in (11).

In the infinite-horizon case, assuming in addition that
(A4, B} is controllable and (4, C) is observable, the time
function K is replaced by the unique negative definite
solution of the algebraic Riccati equation

ATK+ KA+ CTFC
= (BTK + H] FC)TQ_Y(B"K + HI FC).

5 General case

In this section, we consider the general case (4) when
both misfit and latency are taken into account.

Theorem 3 (Misfit and latency smoothing) Let
R>0,Q20, P>0, and " > 0. The unique solution
of (4) for p € (0,1) is

f=—-Q Lz + BTs - Q)
and
Lz =(A-BQy L)z — BQ;'BTs — BQ. 'qu,

with final condition x(t;) = —K " 1(t;)s(ts), where s
and K are generated by

s = —(A-BQ ' LY s+pC7 Qua+LQ7 qu, 5(0) =0,
and
0=SK+ATK + KA+ pCTQC - LTQJ'L, (12)

K(0)=—(1 — p)". We define,

B:=[B G},
_ |R+DTQD DTQH
Qu =p * 1;p)P+HTQH )
.. [BTK +pD?QC (13)
T |GTK +pHTQC}”
. Rud + DTde
Qu = —p HTde .
Proof: The cutput equation is eliminated from the

optimization problem (4) by directly substituting it in
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the cost function. Then the cost functional can be writ-
ten as

at)]” a(t)
Y 1d(t) d(t) T
/; 2| M |50 at+ (1= paT(@)rs0),
1 1
where M =
N DTQH DTQC —(Ruq+ DTQya)
« AP LHTQH HTQC  -H7Qu
* * cTQC -CTQyqa
* * * ul Rug + y3 Qua

and N := R+ DTQD. Thisis a special case of prob-
lem (5) with

0 [N DreH ] Q. = pCTQC
u=F i- T ! ==P '
* L—pE)-P +H'QH
0w, = DrQeC _ Rug + D7 Qyq
wwEPHTQe|r T T TP HTQua
& = —pCTQua,  q= p(ulRua + v Qua)-

and with the substitution

B—|B G, Te(1-pl.

The assumption B > 0 ensures that N > 0 and
(1 — )T > 0 ensures that K(tf) < 0. We can apply
Lemma 2, from which the theorem follows. ]

The optimal filter is given in the following corollary.

Corollary 3 (Misfit and latency filtering) Under
the assumptions of Theorem 3, the optimal misfif and
latency filter is

~(A-BQ7'L)T 5+ pCT Qua+LQT gu. s(0) = 0,
F=—Kls

4 =-Q. ((BY — LK™ 1}s + qu),

i =—{CK™' + DQ (BT — LK™"))s - DQqu,

where K is generated by (12) and B, Q., L, q, are
defined in (13).

d
at’

The infinite horizon case, assuming in addition that
(A, B) is controllable and (A, CTQC) is ohservable, the
optimal time-invariant filter is obtained by replacing K
with the matrix K_ for all {, where K_ is the unique
negative definite solution of the algebraic Riccati equa-
tion

0=ATK + KA+ pCTQC - LTQ7 L.
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6 Conclusions

We posed an estimation problem for a continuous-time
linear time-invariant system with disturbance in the
state and the output equations and with additive er-
rors on the observed input/output signals. The distur-
bance is interpreted as a latent variable and the mea-
surement errors, as misfit variables. The estimation
problem compensates for the disturbance and the mea-
surement errors by minimizing an appropriately defined
cost functional over all trajectories of the system. The
solution of the general estimation problem and its ex-
tremes, pure misfit and pure latency, lead to one and
the same problem — minimization of a quadratic func-
tion of the state and the input subject to the state
equation.
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