Proceedings of the 41st IEEE
Conference on Decision and Control

Las Vegas, Nevada USA, December 200:

State Construction in Discrete Event and

Continuous Systems
Jan C. Willems

Department of Electrical Engineering,
University of Leuven, Kasteelpark Arenberg 10,
B-3001 Leuven-Heverlee, Belgium

email: Jan.Willems@esat.kuleuven.ac.be.

TuAO01-3

Abstract

We discuss the formulation of dynamics in discrete-
event and in continuous systems. It is argued that
the behavioral framework constitutes a framework that
encompasses both. This framework is applied to state
construction.
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1 Introduction

The mainstream theoretical frameworks that are used
in discrete-event systems (DES) theory on the one
hand, and continuous systems theory on the other,
show a curious discrepancy. This discrepancy is most
easily illustrated in a state space setting, i.e., by com-
paring automata with systems in state space form.

The usual model of an automaton involves an event al-
phabet A, a state set S, and state transition relation ¢,
a partial map from S x A to S (we dispense with issues
having to do with initial and final states). The inter-
pretation being that if the system is in state s € S,
then the events a € A that are possible (i.e. that the
system can accept/produce) are those such that (s, a)
belongs to the domain of ¢, upon which the automaton
moves to the next state ¢(s,a) € S.

The usual state space model for a continuous system,
on the other hand, is

a(t+1) = f(z(t),udt), y(t) = h(z),u?)),

%x(t) = f((t),u(®), y(t) = h(z(t),ut)),

depending whether we are in a discrete-time or in a
continuous-time setting. The analogue of the event
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a € A is now the input/output pair (u(t),y(t)) € UxY.
We see that in this case the event alphabet is a direct
product of the input and output ‘alphabets’ U and Y.
Hence it is assumed that whatever state the system is
in, the input event can be chosen freely from U, while
the output event then follows from h.

Thus in automata, the events that are possible when
the system is in a particular current state, is in principle
any subset of A, while in the case of continuous systems,
the set of possible events is always the graph of a map
from U to Y. Of course, the graph depends on the
current state, but the domain and co-domain do not.

It is surprising that this discrepancy has not been ques-
tioned more frequently. The situation becomes almost
caricatural in hybrid systems, where authors often use
the automata framework for the discrete-event part,
and the input/output framework for the continuous
part, as if the time structure could have such a dramatic
effect on the event structure. All this notwithstanding
the fact that a perfectly satisfactory, well-developed,
and well-motivated (by physical examples) framework,
the behavioral framework, that incorporates automata
and formal languages and that also applies to continu-
ous systems, has been available since a long time.

2 The behavioral framework

We now briefly outline the behavioral framework. De-
tails may be found in [3, 4, 5], and references therein.

A system ¥ is defined as ¥ = (T, W, ), with T the
set of independent variables, W the set of dependent
variables, and B C WT the behavior. In this presenta-
tion, we will only consider systems with T = R or Z,
thought of as time or sequencing (although T = R™, as
in PDE’s, etc. is also of interest). Note that this cov-
ers DES and formal languages (the fact that ‘words’ are
usually considered to be finite is easily accommodated
for).



The behavior B expresses the dynamics. Thus w € B
signifies that the ‘events’ w(t),¢ € T occur in orderly
sequence, in accordance with the laws of the system 3.

The specification of B is an interesting issue in its own
right. For T = Z, this could be through forbidden
strings, grammars, automata, or difference equations,
while for T = R differential or integral equations come
to mind. In this paper, we will explain the specification
of B through latent variables.

3 Latent variables

Models obtained from first principles invariably contain
auxiliary variables, in addition to the ‘event’ variables
the model aims at. We call these auxiliary variables
latent variables, and the variables the model aims at,
manifest variables.

A latent variable system is defined as
¥, = (T, W, L, Brun),

with T the set of independent variables, W the set of
manifest variables, 1L the set of latent variables, and

By C (W x L)T
the full behavior. ¥y, induces the system
¥ = (T,W,B),
with manifest behavior
B={w|ILl: (w,l) € Ban}

Examples of how such latent variable systems occur are
given in [5], chapter 1.

4 State systems

We view state systems as a special case of latent vari-
able systems. The latent variable system

EX = (T: Wa X) %full)
is said to be a state system if
(w1, 21) € Bran) A (w2, z2) € Bran)

At eT)A (z1(t) = z2(t))]
= [(w1,21) At (w2, 72) € Bian],

where Ay denotes concatenation at t,

f-@)
f+(@)

<t
>t

for
for

(o A Fo)(E) = {
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If Yx is a state system that induces the manifest system
Y, then we call Xx a state representation of . From
now on we assume that all systems considered are time-
invariant. Specifically, assume T = R or T = Z, and
oB = B, or !B = By for all ¢ € T, where ot
denotes the t-shift.

It is easy to verify that automata and the systems
introduced in section 1 are state systems. In fact,
disregarding the behavior around time = +oo, a la-
tent variable DES is a state system iff it is an au-
tomaton. For continuous discrete-time systems a sys-
tem of behavioral equations defines a state system
iff the full behavior is (pointwise in time) described
by (w(t),z(t),z(t + 1)) € Bo, with By a subset of
W x X x X. For smooth continuous-time systems iff
its full behavior is (pointwise in time) described by
(w(t), z(t), Lx(t)) € By, with By a subset of W x T'X,
and TX the tangent bundle of X.

A state system Xx = (T, W, X, By,1) is said to be irre-
ducible iff

(fOI‘ f X = X/> EX = (vaa X/7 %;ull) with
Bhun = {(w, fox) | (z,w) € B}

is a state system) = (f is a bijection).

Two state systems Yx = (T,W,X,Bpy) and X =
(T, W, X', B¢, are said to be equivalent if there exists
a bijection f : X — X’ such that

[(w, 2) € Brn] & [(w, f o) € By .

Clearly equivalent state systems represent the same
manifest behavior.

A central question for state representations is: Are all
irreducible state representations with a given manifest
behavior equivalent?

5 State construction

We now address the question: Given ¥ = (T, W, %),
find a (irreducible) state space representation Yx =
(T,W, X, ngull) fOI" it.

There are 3 canonical constructions (introduced in [1]
and [2]), leading to

1. the past canonical state representation

2. the future canonical state representation

3. the two-sided canonical state representation

All three constructions are based on an equivalence re-
lation on B. In the past canonical case, define the



equivalence relation R_ by
[’wlR_IUQ] = [(wl Now € %) = (w1 Now € %)]

In the future canonical case, define the equivalence re-
lation Ry by

[w1R+w2] & [(w No w1 € %) = (’LU No wa € %)]

In the two-sided canonical case, define the equivalence
relation Ry by

[w1 Ryws] : [((w1 Ao w € B) & (w1 Ao w € B))
A ((w Ao wy € B) & (w Ao we € B))].
Obviously,
[wlRiwg] =4 [(wlR,wg) N (w1R+w2)].
We now construct the associated state representations.

For the past-canonical state construction, define the
state space by

X_ =%B(mod R_)
and the full behavior by
Bran— = {(w, ) | (w € B)A(c'w € (o'2)(0) Vt € T)}.

For the future-canonical state construction define the
state space by

X+ = %(modR+)
and the full behavior by
Brun,+ = {(w,z) | (w € B)A(c'w € (o'x)(0) Vt € T)}.

For the (two-sided)-canonical state construction define
the state space by

Xt =B(mod Ry)
and the full behavior by

B+ = {(w,z) | (we B)A(c'w € (o'2)(0) Vt € T)}.

These canonical state representations
Y= (T,W,X_,B_)

and

E+ = (T: W, X+7 %+)

have very good properties. In particular, they are irre-
ducible.

The question when all irreducible state representations
of a given system are equivalent has a very nice answer
in terms of these canonical representations. Indeed, the
following conditions are equivalent (see [2]):
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1. All irreducible state representations of a given
system (T, W, B) are equivalent.

2. (T,W7X_,%fu]]_’_) and (T,W,X.H%fun’_;,_) are
equivalent.

3. (T, W,X_, B +) is irreducible.

4. (Ta W7 X*? %full,f) and (Ta W7 X*? %full,:t) are
equivalent.

5. (T,W,X4,Bpru+) and (T, W,X_, Bpy,+) are
equivalent,.

An important example of a class of systems for which
all irreducible state representations are equivalent are
linear systems. (T,W,B) is linear if W is a vector
space and B is a linear subspace of WT.
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