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Abstract

This paper is concerned with a behavioral approach to analysis
of hybrid system interconnections. The hybrid system interconnec-
tion is defined as a dynamical system consisting of past and future
trajectories which are switched at a certain instant by an external
switching mechanism. We define the concatenability of the behav-
iors of the past and future interconnections, and derive a necessary
and sufficient condition for the behavioral concatenability based
on the notion of a state map. If the past interconnection behavior
is concatenable with the future one, every past trajectory can be
continued by some future trajectory without causing any impulsive
phenomena. Moreover, we show that the regular feedback structure
of the future interconnection guarantees the concatenability for any
past interconnections.

1 Introduction

Control systems are composed of the interconnections
of physical components. These interconnections are some-
times reorganized instantaneously due to switching of con-
trol strategies or component failure. We call such a dynami-
cal system with a switching mechanism a hybrid system in-
terconnection.

In recent years, modeling, analysis and control of hy-
brid systems have been extensively studied based on various
frameworks such as linear complementarity systems [5, 10].
piecewise linear systems [6, 8], mixed logical dynamical
systems [1] and descriptor systems [3, 4].

It is clear that the continuity of the system variables in the
hybrid system is no longer guaranteed due to this switching
nature, Moreover, such discontinuity of variables may lead
to an impulsive phenomenon. A typical example of an im-
pulsive phenomenon is the sparking in an electrical circuit,
which may occur when a circuit is suddenly shorted or con-
nected to other electrical components. From a practical point
of view, the impulsive phenomenon is not desirable because
it may damage the system.

Impulsive phenomena in contro! systems have often been
discussed in the context of descriptor or implicit system the-
ory (e.g. [2, 11, 3, 4]}. In the theory of descriptor systems,
we consider the system behaviors based on the initial value
problem of differential/algebraic equations without giving
clear explanation about the relationship between the initial
values of the variables and the system dynamics before the
switching instant. In order to investigate the hybrid system
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interconnection in more systematically, we need a theoreti-
cal framework which explicitly takes account of the system
dynamics before switching. We will use the behavioral the-
ory [12, 7] in order to study this kind of hybrid system inter-
connections.

The solution of the hybrid system interconaection can be
viewed as a concatenation of the past and future trajectories
which are generated by the past and future interconnections,
respectively. The terms ‘past’ and ‘“future’ refer to the time
before and after the switching instant. Based on this ob-
servation, we define the concatenability of the behaviors of
past and future interconnections. If the past interconnecticn
behavior is concatenable with the future one, every past tra-
jectory can be continued by some future trajectory without
causing any impulsive phenomena. In this paper, we will de-
rive a necessary and sufficient condition for this behavioral
concatenability in terms of the state maps [9]. We also exam-
ine the relationship between the behavioral concatenability
and the feedback structure of the future interconnection.

Notations:

R[£): the set of polynomials with real coefficients

R™"[£]: the set of m x n polynomial matrices with real coefficients
@R, R9): the set of k-times differentiable functions from R to R7
£he(R, R7): the set of locally integrable functions from R o R

H: the Heaviside step function

§: the Dirac delta distribution

rowdim(R): the row dimension, i.e. the number of rows of R

X1
col(x;,....x;) ={ : ]

5
The concatenation at ¢ = 1y of functions w_ and w, is denoted by

_fwo) fort<y
(w- QM)U) = { wo(fy fore=g

2 Preliminaries

2.1 Linear differential system

In the behavioral framework(12, 9, 13, 7], a dynamical
system is defined as a triple (T, W, 8), where T is the time
axis, W is the signal space, and B is the behavior. The signal
space W is the set in which the trajectories generated by the
system take on their values. The behavior 8 € W7 is the set
of the trajectories of system variables under consideration.

In this paper, we are mainly interested in linear differential
systems described by high-order differential equation with
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constant coefficient matrices
dhw

2 =0

dw
Row+Ri— +.--+R
ow ldt+ + KXy

or, in shorthand
d
R(a)w =0, RE =Ry+RiE+ -+ Rt"

where w : R — R? denotes the system variables, and
Ro, R1, ..., Ry are matrices that contain the system param-
eters. This system representation is called the kernel repre-
sentation. In this case, the dynamical system X is defined by
Z = (R, R4, B) with d

% = {w € 5R,RY| R =0}

where § denotes an appropriate function space such as €%
and E'I"c. If & = €, the system trajectory w is a strong so-
{ution of R{d/d)w = 0. Namely, w is L-times differentiable,
and R(d/dw(#) = 0 is satisfied for all z, On the other hand,
if we take ¥ as ﬁ'lm, then w € B should be considered as a
weak solurion since it may not be continuous. A weak solu-
tion to R(d/dtyw = 0 is defined as a function w satisfying
fw w’(t)(RT(—%)f}(r) dt =0

for all test functions f (€-functions of compact support).

We define p(X) as the number of linear differential con-
straints on w that are linearly independent over R[£]. If
the system X js described by the kernel representation
Rid/dnyw 0, then p(Z) is equal to rank(R), where the
“rank” is taken as the rank of a polynomial matrix. This
value does not depend on any particular representations.
Suppose that R has full row rank. Then, by reordering the
components of w, w and R can be partitioned as

w=col(y, u), REE)=[P() -Q&)]

with P square and det{P) # 0. The condition det(P) # O
implies that the variables u and y serve as the input and
the output in the dynamical system Z, respectively. Clearly,
dim(y), the number of output variables in w, is equal to p(Z).
Hence, we call p(Z) the output cardinality. The rational ma-
trix P~UEO(E) is called the transfer function matrix.

2.2 State map
Let a dynamical system X be given by (R, R?, B) with

B={w € 2R, R) R(%)w =0, weakly} ()
REY=Ro+RiE+ -+ R + Righ e R™I[E)
We consider a differential map defined by a polynomial ma-
trix X € R™{£1:

x=X(-CE)w, we B {2)

Definition 1 A polynomial matrix X is a state map and x is
a state vector if the following axiom of state is satisfied:
[(wy, x1), (w2, x2) € %f““] & [x1, x2: continuous at r = 0]
& [x1(0) = x2(0)]
= [(w1, 1) Aw2, x2) € B™]

an

where B®! is the full behavior defined by
Bl = {(w, x) € %R, R x R")

d d
R(E)w =0, x= X(a?)w, weakly} €3]

It is well known that x is a state vector if and only if the
full behavior admits a so-called state representation which
is first-order in x and zeroth-order in w [12]. Namely, x is a
state vector iff there exist constant matrices E, F and G such

that
E%x +Fx+Gw=0 for (w,x) ¢ B )

Then, the full state behavior in (3} can be rewritten as
qsf""={(w, x) € 2R(R, RIXR") E%E +Fx+Gw = 0, weakly}
(5)

We now introduce the shift and cut map which plays a
crucial role in construction of a state map. The shift and cut
map o : R[£] — R[£] is defined by

T(p)E) = €' [PE) — pol = p1 + paf + - + put™!
for p(&) = po+ pi&+ -+ pasi€' + pat” € RIE)
Note that this definition can obviously be extended to vectors

and matrices in a componentwise manner. Repeated appli-
cation of ¢ is denoted by

alpy=co(p)., Hp) =@ (P k=23,...

By applying the shift and cut map to R, we obtain
R+ R2§ + .-+ RL_lfL‘-z + RLEL_'I

YR
ngRi Ry +R3g + .-+ Ryg'?
Rg(f):= - =
O'L(R) gt—] + RL§

()
Lemma 1 [91 A polynomial matrix X is a state map iff there
exist @ constant matrix A and a polynomial matrix B such

that R=(6) = AX(&) + BORE) )
Definition 2 A statc map X is said to be minimal if
rowdim(X) < rowdim(X") for any state map X’ of B.

‘We henceforth denote the minimal state-space dimension
of the system X by n(¥), i.e. n(Z) = rowdim(X) for a minimat
state map X.

Lemma 2 If X is a minimal state map, then the matrix A in
(7) has full column rank.

Lemma3 [9] Ifw € E(R,R7) is a weak solution of
d
R(d/dyw = 0, then RE(E)W is absolutely continuous.

Let X be a minimal state map for Z. It then follows from
Lemmas I and 2 that

d d
Rg(d—r')w = AX(E)W =Ax YweB

where A has ful} column rank. Hence, we obtain the follow-
ing result.



Lemmad Let X € R™M[£] be a minimal state map for L.
Then, the minimal state vector x = X(%)w has the same

degree of smoothness as Rz(4Yw. Namely, forany w € B, x
is a €"~function if and only if so R=(Z)w is,
2.3 Consistent initial states

We consider the full state behavior B8 in (5). A vector
xg € R" is called consistent if there exists a smooth trajectory
(w, x) € BM 1 2 (R, RT x R") satistying x(0) = x;.

We define the space of consistent initial state vectors by

@ = {x € R"| Aw, x) € B'NE"R,RT x R") 5.t x(0) = x|

Definition 3 If the space @ is the whole state space, namely
@ = R”, then the state map X is said to be zrim.

Lemma 5 [12] Any minimal state map is trim.

Given a state representation (4), we can compute the space
of consistent initial state vectors as follows.

Lemma 6 The following subspace recursion converges to ©
within finite steps.

Oy =R"

O={xcR|IwveRist. Fx+Gwe EQ, ), i=12,...

2.4 Interconnections
Consider two dynamical systems £; = (R,R%,B,) and
L = (R, RY, By) with

B, = {w € ¢(R,R%) R,{%)w =0, wcakiy}, R € R"™4[¢]
(i=1,2)

The interconnection of Z; and Z;, denoted by I, A L5, is

defined by
S AL =@®R1, B, NBy)

The schematic diagram of X; A X, is depicted in Figure 1.

w

R =P}

Figure 1: Interconnection Zj A X,

We present the definitions of two important interconnec-
tions in terms of the cutput cardinality p{ - ) and the minimal
state-space dimension a( - ).

Definition 4 (i) The interconnection X, A Z; is said to be
a regular interconnection or a feedback interconnection if
P(EL AL = p(Zy) + p(Z2).

(ii) The interconnection %; A I, is said to be a regular
Jeedback interconnection if it is regular and n(¥; A L) =
n(Zp) + n(Z;).

We may assume without foss of generality that the poly-
nomial matrices Ry and R; are of full row rank. Then, by

Definition 4(i), £; A Z is regular iff [ ﬁ; ] has full row rank.

4

=
Yol |u y
25

Figure 2: Feedback interconnection

In this case, after an appropriate reordering of the compo-
nents of w, we obtain the equivalent kernel representations:

w=col(y, u, v)

d d .. d
D'(:i_r)y_N‘(:i?)u+N‘(dt)v
d d , d
DZ(E)M_Nz(E)y+N2(dt)V

with det(D1) # 0, det(Dn) # 0 and det| 5 /1] # 0. The
condition det(D;) # 0 implies that the first equation repre-
sents the input-output map from (u,v) to y in Z;. Similarly,
in Za, (y,v) and u can be viewed as the input and the out-
put, respectively. This implies that a reguiar interconnection
X A Zp admits a feedback structure depicted in Figure 2.
In general, the transfer function matrices D; ' (£)Ni(£) and
DIY@N(®) (i = 1,2) may not be proper. The condition
n(Z A Z2) = n(Zt) + n(Zy) in Definition 4 (ii} guarantees
that X, A Z; admits a feedback structure with proper transfer
function matrices.

3 Hybrid System Interconnection
=}

(a)Past (1 < 0)

o :

= ZfEZ}

{b) Future (r > O}
Figure 3: Hybrid System Interconnection

M
1]

L1l

LmEn

2

RN
L1l

We consider the system interconnections illustrated in
Figure 3, which consist of three sub-systems £ = (R, R9, B),
I, = (R, RY, B,) and T = (R, R7, By).

The system X is connected with X, at time ¢+ < 0. At
time r = 0, I is separated from X, and a new interconnec-
tion is formed between Z and Z¢ by some external switch-
ing mechanism. We assume that ali this happens instanta-
neously. The system Z is called the core sub-system since it
appears both in the past and future interconnected sysiems.
The sub-systems Z, and X are called the past and future
constraints, respectively. The terms ‘past’ and ‘future’ are
used for describing the time before and after the switching
instant ¢ = 0, respectively.

The system dynamics in the past and future are respec-
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tively described by the interconnections of two sub-systems:
IA Ep =(R,R?, gpic)s QSpic: =8n %p 8
AL =(R,R?, Be), B = BN Be )]

The subscripts “pic” and “fic” stand for past inrerconnec-
tion and future interconnection, respectively. Throughout
this paper, we refer to this switching system consisting of the
past and future interconnections as a hybrid interconnection,
and denote it by the triple (£, I, Z).

The hybrid system interconnection (£,%;,Xr) describes
general situations of switching systems. For example, if
we consider I as the plant and Z;, Zr as the controllers,
then (£, Z;, Zr) represents the switching of control strategies.
Moreover, if L, has nothing to do with Z, then the hybrid in-
terconnection describes the implementation of the controller
Z; to the plant Z.

Assume that the sub-systems X,
by the kernel representations.

T R w=0, RO =Ro+RiE+ o+ Rigt

Z, and Z; are described

d
I CP(E)W =0, Cplé)=Cro+Cpé+-+-+Cor k™

d
pI C,(E)w =0, Ci(&)=Crp+Cné+ - +Cp "
Then, we define

B= {w € YR, RT)

R(g;)w =0, weakly} (10)

Bp={we(£°°{R,]R") Cp(-g;)w=0} (11
Bi = {w e C°(R, RN Cf(g;)w = 0} (12)
to obtain
4
P\di
4
By, ={ w e E°(R RN [ g,((di)) ]w =0 } {14)
dr

Remark 1: It is natural to define the behavior of the core
subsystern X as the set of Q]l“c-functions (weak solutions to
R(d/dryw = 0). This is because the continuity at 7 = 0 of sys-
tem trajectories is no longer guaranteed due to the switching
of interconnections.

Remark 2: It is possible to consider more general func-
tion space (e.g. £1%) for By and By (or By, By). Since,
however, we are interested in the jump and impulsive phe-
nomena at the switching instant + = (, we assume without
loss of generality that Byic, B € (R, R7).

The system trajectory of the hybrid interconnection can
be viewed as a concatenation of a past trajectory w, € By
and a future trajectory wy € Bse. Since the core sub-system
T appears both in the past and future interconnections, the
past and future trajectories must be concatenated in accor-
dance with the laws of . Hence, the system trajectory of
the hybrid interconnection may generally contain impulses
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due to this constraint. A typical example of impulsive phe-
nomena in hybrid system interconnections is illustrated in
Example 1.
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Figure 4: Electrical circuit with a switch (Example 1)

Example 1: As an example of hybrid interconnections,
consider a simple electrical circuit (Figure 4) which consists
of a capacitance and a energy source with constant voltage.
We assume for simplicity that the capacitance is normalized.
In the past (¢ < 0), the capacitance is connected to the energy
source (SW = 0). At time ¢ = 0, the circuit is shorted (SW =
D). Let v, i and V denote the voltage and the current across
the capacitance and the source voltage. Then this electrical
circuit is governed by the following physical laws.

d

d .
—v =1,

F . -V =u, =
ort <0 7 dtV 0,v=V
d .d
Fort>0: Ef-v-:, EV—O,V—O

Since the equations dv/dt = i and dV/dr = 0 are common
to both past and future, they define the core sub-system X.
Moreover, v = V and v = ( serve as the past constraint Iy
and the future constraint Zy, respectively. Hence, by defining
w = col(v, i, V), we obtain £ = (R, R, 8), I, = (R,R, B)
and Zy = (R, R?, B;) with

d d
w1 = w2, —

dr dr
By ={w € C°R.E") w1 = w3)
B ={w € C°R,RY) | w = 0}

B= {w € 8°(R,RY)

wy =0, weakly}

It follows that
wy=v=V{-H), wi=1i=-Vd ws =V {constant)

The derivative dv/dr is taken in the sense of distributions
since v is not contineous at r = 0if V £ 0, If V is not equal
to zero, then the current i has an impulse; the circuit will
spark. Clearly, this trajectory with V # 0 does not belong to
B because impulsive distributions are not Q'I"“-functions.

The impulsive phenomenon is undesirable from a prac-
tical viewpoint because such a phenomenon may result in
damage of the physical system; for example, the circuit will
burn out if the sparking takes place in the system of Exam-
ple 1. Therefore, it is important to consider the concatenabil-
ity conditions under which the past and future trajectories
can be concatenated without impulses.



We give the precise definitions of the concatenabilities,
Definition 5 (concatenability of trajectories)

Two smooth trajectories wp, € B N E®(R, B and wy € BN
€=(R,RY) are said to be concatenable if wp Agws € B is
satisfied.

Definition 6 (concatenability of behaviors)

The behavior By is said to be concatenable with By, if, for
any past trajectory w, € By, there exists a future trajectory
wi € By such that wy, Agwp € B,

In this paper, we will derive necessary and sufficient con-
ditions for the concatenabilities defined above. Moreover,
we will consider the relation among the concatenability con-
ditions, the state maps and the regularity of interconnection.
Remark 3: In order to deal with impulsive trajectories as
in Example i, we may need to extend the set of solutions of
R{d/dfyw = 0 to a class of distributions including the delta
distribution and its derivatives. However, for the purpose of
this paper, it suffices to restrict the behavior of £ to the set of
Slll"c—functions, since we consider the impulse-free concate-
nation of the past and future trajectories, that is, we have not
used any impulses in the definitions of the concatenabilities.

4 Concatenability of Trajectories

In this section, we derive a necessary and sufficient con-
diticn for the concatenability of two smooth trajectories.

Let wp, wr € B N E7(R,RI) be given. After simpic but
lengthy calculation including partial integration, we obtain

= d
f RT(=NT (O0wp A wet)ele

— dl lf . d
—Z( =) ) [aJ(R)(E)(wf~wp) ©)

for an arbitrary test function f. It then follows from the def-
inition of a weak sclution that wy Ap wy is 2 weak solution of
R(d/dtyw = 0iff

[G'E(R)(%)(Wf ~ Wp)] (0)=0 fori=1,2,....L

Consequently, we obtain the following theorem from the
above discussion and Lemmas 3 and 4.

Theorem 1 The following statements are equivalent.

(1) wp, wr € B NE*(R,RY) are concatenable.
. d
(i) [RE(E)(W{ - wp)} (0) = 0, where Rz is defined by(6).

{iitY) The minimal state vectors of T corresponding to wy
and wy coincide at ¢ = 0, namely
(Wes Xp), (wr, xp) € B 1 E°(R, R? x R"®))
= 5(0) = x(0)

where BYY s the full state behavior associated with
the minimal state vector x.

5 Concatenability of Behaviors
We introduce the minimal state representation for each
sub-system‘:i
Z:Ea;x+Fx+Gw=0, n =dim(x) = n(¥)
d .
I Ep-t-i—ry+ Foy+Gew =0, np =dim(y) = n(%y)

d
pPE Efaz + Frz+ Gew =0,  np = dim(z) = n(Zs)

Then, col(x, y) and col(x, z) are respectively (possibly non-
minimal} state vectors of Z A Z, and I A Xy, and their full
state behaviors are given by

gl = {(w. col(x, y)) € €°(R, R x R™*")

1 el 2l )

Bl = {(w col(x, 7)) € €= (R, R x R

[6 &gzl o AllEl-&l]--o)

Define the spaces of consistent initial state vectors as
Dpic = {col(xo, yo) € R™"% | Jw, x,) € B s.1.
x(0) = xo, y(0) = yo
fie = {col(x0, 20) € R™™ | Aw, x,2) € B s,
x0) = xp, z (0)

and the projection matrices

l—Ip =l Onxnp] v =11 Onxnr ]
Note that we can easily compute ®p;c and Oy by the recur-
sive method described in Lemma 6.

Let col(xp,y) and col{xs, z) be the state trajectories for
wy € B and wp € By, respectively, ie. (wy, col(xp, y)) €
B (e, col(xp, 2)) € BEL Recall that x, and x; are the
minimal state trajectories for Z corresponding to wp and wy,
respectively. Then, by Theorem 1, wy, € B, and wy € By
are concatenable iff xp(0) = x((0). It follows from this ob-
servation that B is concatenable with By, if and only if

Y(wp, col(xp, y)) € Qiplc R
A(wr, col(xs, 2)) € BRI 5.1 x,(0) = x¢(0)
By rewriting this condition in terms of the spaces of consis-
tent initial states, we obtain a main result of this paper.
Theorem 2 B is concatenable with By, if and only if
de)pic C [ ®Pg. holds.

If M@ = R" holds, then By is concatenable with B,
for any choice of the past constraint I, (or C;,(£)). Hence,
we are interested in the question “What type of future inter-
connection Z A Xp will satisfy I1;®Pg. = R"?,

It is trivial that [Ty®dg. = R" holds if there does not ex-
ist any essential constraints in the future, namely Bz =
B N E°(R,R7). In terms of kernel representation, the lat-
ter condition is equivalent to the existence of a polynomial
matrix K such that Cy =

In the case of regular interconnection, ITgds. = R" is not
necessarily satisfied. An example of regular interconnec-
tions such that I1;®g. # R" 1s given in the next section.
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In contrast with regular interconnection, regular feedback
interconnection has the nice preperty related to the behav-
ioral concatenability shown in the next theorem. This jus-
tifies application of a regular feedback controtler in hybrid
system interconnections.

Theorem 3 Assume that Z A X is a regular feedback inter-
connection. Then, I1;®s. = R" holds. Therefore, for any
past constraint Z,, By is concatenable with Bg.

Proof: Recall that x and z are minimal state vectors of Z and
Xr. respectively. It follows from Definition 4(ii) that £ A X¢
is regular feedback iff (x, z) is its minimal state vector. The
latter condition implies the state-trimness @, = B* x R™.
Hence, we obtain ITiydy. = R".

6 Examples
Example 1: Consider the electrical circuit in Example |
again. As shown in Section 3, B, is not concatenable with
By since there exists an impulsive trajectory for non-zero
source voltage V. The polynomial matrices associated with
the kernel representations for the sub-systems are given by

£ -1 0 G@=[(1 0 -1]
MO0 o f]’ Ce=010 0]
Hence, we get
pPEALZD =3, p&)=2, p(Z) =1
nEAZ)=1, =2, nE)=0
This implies that £ A Z; is a regular interconnection, but not

a regular feedback interconnection.
Since C,, and C are constant matrices, we have
1 0
ﬂp:]_lf‘——[ o 1 ], m=n=0

The spaces of consistent initial state vectors are computed
through the minimal state representations and the subspace
recursion of Lemma 6.

. 1 . 0
(Dpiczlm[ 1 ], q)ﬁczlm[ 1 }
Consequently, we obtain [Ty®p;e € [Mrdy.

SW=0
(t<0)

(120

“T1

Figure 5: Electrical circuit with a switch (Example 2)

®
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Example 2: Next, consider the electrical circuit in Figure 5.

This circuit is almost the same as the previous one except for

the existence of a resistor r in the future interconnection.
By defining w = col(v, i, V) as in Example 1, we obtain

[ée -1 0 Gey=[1 0 -1]
R@)_[O 0 f}’ Cl=[1 r 0]

375

X A Z; is a regular feedback interconnection because
pEAZ) =3, p(X)=2, pEn=1
nMEAZ)=2, n(Xy=2,nZ) =0

Therefore, by Theorem 3, By is concatenable with By, In

fact, any past trajectory wy = col(V, 0, V) € By (V € R)

can be concatenated, without causing any impulses, with the

future trajectory wr = col(e™/"V, ~Le™'V, V) € By,..

7 Conclusion

In this paper, we considered the analysis of the hybrid
system interconnection based on the behavioral approach.
We first defined concatenability of the behaviors of the past
and future interconnections. Then, a necessary and suffi-
cient condition for the concatenability of the behaviors By
and By, was derived in terms of the state maps of the core
sub-system Z. Moreover, we showed that, if the future in-
terconnection is regular feedback, the past interconnection
behavior By can be concatenated with Bg. for any choice
of the past constraint ;. This justifies the use of a regular
feedback controller for the hybrid system interconnections.
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