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1 Introduction

In the behavioural approach, systems are often described

by high-order systems of (partial) di�erential equation-

s (for example as kernel, image or latent variable repre-

sentations). It is often very convinient to think of these

systems of di�erential equations in terms of matrices over

polynomial rings. In control theory, a lot of problems in-

volve the use of quadratic functionals (like linear quadratic

and H1-control). In [4], a study of quadratic di�erential

forms was carried out, which has greatly contributed to

the study of H1 problems in the behavioural framework.

In this paper, we wish to extend this concept of quadratic

di�erential forms to N-D systems. This opens the way to

generalization of the concept of dissipative systems, which

have been well studied in the 1-D case. This generalization

of the notion of dissipative systems and the construction

of storage functions is the aim of this paper.

2 Quadratic Di�erential Forms

Throughout this paper we let � denote (�1; : : : ; �n), � de-

note (�1; : : : ; �n), and � denote (�1; : : : ; �n). Let R
q�q

[�; �]

denote the set of real polynomial matrices in the 2n inde-

terminates � and �. We will consider quadratic forms Q�

induced by � 2 Rq�q [�; �]. Explicitly,

�(�; �) =
X
k;l

�k;l�
k�l (1)

The sum above ranges over the multi-indices k; l 2 Nn and

of course only a �nite number of the �k;l's are nonzero,

and �k;l 2 R
q�q

. Such a � induces a quadratic di�erential

form (QDF), that is, the map

Q� : C
1

(R
n ;Rq )! C

1

(R
n ;R) (2)

de�ned by

Q�(w)(x) :=
X
k;l

�
dk

dxk
w(x)

�T
�k;l

�
dl

dxl
w(x)

�
(3)

where
d
k

dxk
=

@
k1

@x
k1

1

: : : @
kn

@x
kn
n

with k = (k1; : : : ; kn).

De�ne the
�
operator

�

: R
q�q

[�; �]! R
q�q

[�; �]

by

�
�

(�; �) := �
T
(�; �) (4)

where
T
denotes transposition. If � = �

�
, then � is called

symmetric. For the purposes of QDF's induced by polyno-

mial matrices, it is enough to only consider the symmetric

quadratic di�erential forms, since Q� = Q 1

2
(�+��).

In addition, we also consider vectors [	] 2 (R
q�q

[�; �])
n
,

i.e. [	] = (	1; : : : ;	n). Analoguous to the quadratic dif-

ferential form �, [	] induces a vector quadratic di�erential

form (VQDF)

Q[	](w) : C
1

(R
n ;Rq )! (C

1

(R
n ;R))

n
(5)

de�ned by Q[	] = (Q	1
; : : : ; Q	n).



Let � 2 R
q�q

[�; �] and consider the associated quadratic

di�erential form Q�. Let us call Q� nonnegative (denoted

by Q� � 0) if

Q�(w) � 0 8w 2 C1(R
n ;Rq ) (6)

This states that the Q�(w) is pointwise nonnegative and

it can be shown that this is the case if and only if

Q�(w) =

����D(
d

dx
)w

����
2

3 Path Independence

Consider the integral

Z



Q�(w)dx (7)

where 
 is a closed bounded subset of R
n
with a non-

empty interior. This integral is said to be independent

of the \path" w (or a path integral), if the integral on-

ly depends on the value of w and its derivatives on the

boundary of 
, denoted by @
. More precisely, if for any

w1; w2 2 C
1
(R

n ;Rq ) such that
d
k
w1

dxk
(x) = d

k
w2

dxk
(x) for all

x 2 @
 and all k 2 Nn , then

Z



Q�(w1)dx =

Z



Q�(w2)dx (8)

Instead of some 
 � R
n
, if we consider the integral (7)

over all of R
n
, then the integral need not be well de�ned for

all w 2 C1(R
n ;Rq ). We can overcome this by considering

the functional Z
Q� : D(R

n ;Rq )! R (9)

de�ned by Z
Q� :=

Z
Rn

Q�(w)dx (10)

which evaluates the integral over all of R
n
. Here

D(R
n ;Rq ) denotes the compactly supported members of

C
1
(R

n ;Rq ).

The following theorem gives several conditions that are

equivalent to path independence.

Theorem 1 Let � 2 R
q�q

[�; �]. Then the following s-

tatements are equivalent:

1.
R
Q� = 0.

2.
R


Q� is independent of path for all 
, which are

closed bounded subsets of R
n
.

3. �(��; �) = 0.

4. There exist 	1; : : : ;	n 2 R
q�q

[�; �], such that

�(�; �) = (�1 + �1)	1(�; �) + � � �+

(�n + �n)	n(�; �)

5. There exists a [	] 2 (R
q�q

[�; �])n such that

divQ[	](w) = Q�(w)

By \div" in the above theorem, we mean divergence of the

vector function, i.e.

div

0
B@

f1
.
.
.

fn

1
CA =

@f1

@x1
+ : : :+

@fn

@xn
(11)

The [	] in the theorem above is not unique. This non-

uniqueness of [	] is an inherent property of N-D systems.

In the 1-D case, the 	 which satis�es the conditions of the

above theorem is unique. However, it can be shown that

all [	]'s that satisfy the above theorem with respect to a

given � are related to each other in a special form and

they form an equivalence class in (R
q�q

[�; �])n.

In [1, 3] (and elsewhere) di�erential systems have been s-

tudied in the behavioural framework where a behaviourB

is characterized as the kernel of (partial) di�erential op-

erator. Now we consider the speci�c case of a behaviour

B given as a kernel of a system of partial di�erential e-

quations. As shown in [1], this system of partial di�er-

ential operators can be written as a polynomial matrix

R 2 R
g�q

[�] in n indeterminates. We would like to know

when a QDF induced by � 2 R
q�q

[�; �] is independen-

t of path for trajectories w 2 B, i.e. if w1; w2 2 B and

d
k
w1

dxk
(x) = d

k
w2

dxk
(x) for x 2 @
 and all k 2 Nn , then

Z



Q�(w1)dx =

Z



Q�(w2)dx

We �rst de�ne the
?
operator as X?

(�) = XT
(��).

We state below a theorem, which is applicable to con-

trollable systems (see [1, 2] for de�nition of controllable

behaviours for distributed systems).

Theorem 2 Let B be a controllable system, B =

kerR( d

dx
) = imM(

d

dx
), and let � = �

� 2 R
q�q

[�; �] in-

duce a QDF on B. Then the following conditions are

equivalent :



1. QDF induced by � is independent of path on B;

2. there exists X 2 R��q [�] such that

X?
(�)R(�) +R?

(�)X(�) = �(��; �)

3. the QDF corresponding to �
0
is a path integral, where

�
0
is given by �

0
(�; �) :=MT

(�)�(�; �)M(�);

4. �
0
(��; �) = 0;

5. there exists a VQD-

F Q[	0], with [	
0
] 2 (R

m�m
[�; �])n, where m is the

number of columns of M , such that

divQ[	0](`) = Q�0(`) = Q�(w) (12)

for all ` 2 C1(R
n ;Rm ) and w =M(

d

dx
)`.

From the above theorem, it is seen that the VQDF acts

on the latent variables associated to the image representa-

tion of the given controllable behaviour. In 1-D systems,

every controllable system has an observable image repre-

sentation. This is not true in the N-D case. As a result, in

the 1-D case, we can actually �nd a quadratic di�erential

form 	 such that

d

dt
Q	(w) = Q�(w)

for all w 2 B, whereas in the N-D case, we can �nd a

VQDF [	] such that

div Q[	](w) = Q�(w)

for all w 2 B if B is a controllable behaviour which has

an observable image representation. In [2], we give which

controllable behaviours have an observable image repre-

sentation. However, in general we have to deal with the

latent variables ` in the conservation equation (12).

4 Dissipative systems

In the last section, we considered QDF's such that
R
Q�

was the zero map. Such QDF's de�ne conservation laws

for a given behaviour. In this section, we consider QD-

F's where the integral mentioned above is not equal to

zero, but is non-negative. We refer to these as dissipative

systems.

Given a � 2 R
q�q

[�; �], we call the QDF induced by �

average non-negative ifZ
Rn

Q�(w)dx � 0

for all w 2 D(Rn ;Rq ). We denote an average non-negative

QDF � by
R
Q� � 0. If the inequality in the above equa-

tion is strict for w 6= 0, then we call the QDF average

positive and denote it by
R
Q� > 0.

Proposition 3 Let � 2 Rq�q [�; �]. Then

� (
R
Q� � 0), �(�i!; i!) � 0 8! 2 Rn

� (
R
Q� > 0) , �(�i!; i!) � 0 8! 2 R

n
and the

matrix �(��; �) is non-singular.

Intuitively, we could think of these average nonnegative

QDF's as measuring the power going into the system. In

many practical examples, the power is indeed a quadratic

di�erential form of some system variables. For example,

if we consider Maxwell's equations, the power supplied

to the system is given as the
P

k
EkJk, where Ek is the

electric �eld component in the k-direction and Jk is the

current in the k-direction. Average non-negativity would

imply that the net power 
owing into a system is non-

negative. This means that the system dissipates energy.

Of course, locally the 
ow of energy could be positive or

negative, leading to variations in energy density and 
ux-

es. The energy density and 
uxes could be thought of as

a storage function for the energy. If the system is dissipa-

tive, then the rate of change of energy density and 
uxes

cannot exceed the power delivered into the system. This

interaction between supply, storage and dissipation has

been formalized for 1-D systems in [4]. We now formal-

ize the interaction between these concepts for distributed

systems.

De�nition 4 Let � 2 R
q�q

[�; �] induce a QDF Q�.

A vector quadratic di�erential form (VQDF) [	] 2

(R
q�q

[�; �])n is said to be a storage function for � if

divQ[	](`) � Q�(w) (13)

for all w 2 D(Rn ;Rq ) and some latent variables `, such

that there exists a partial di�erential relation between the

w's and the `'s of the form w =M 0
(
d

dx
)`.

A QDF Q� induced by � 2 R
q�q

[�; �] is said to be a

dissipation function for � if

Q� � 0 and

Z
Rn

Q�(`)dx =

Z
Rn

Q�(w)dx (14)

for all w 2 D(Rn ;Rq ) and some latent variables ` which

are related to the w's by some partial di�erential relation

w = D(
d

dx
)`: (15)

The next proposition shows the relationship between a

given supply function and the associated storage and dissi-

pation functions. This means that average non-negativity

can be interpreted by a local non-negativity condition in-

volving the rate of change of storage function and the

supply rate.



Proposition 5 The following conditions are equivalent :

1.
R
Q� � 0

2. � admits a storage function

3. � admits a dissipation function

In addition, the VQDF associated to storage Q[	] and the

QDF associated to dissipation Q� with respect to a given

supply QDF Q� are related by

div Q[	](`) = Q�(w)�Q�(`) (16)

where `'s are the associated latent variables, related to w

by the equation w =M 0
(
d

dx
)`.

De�nition 6 QDF's � and � alongwith a VQDF [	],

that are related by the dissipation equation (16) for all w

in D(R
n ;Rq ) would be called a matched triple and denoted

by (�; [	];�).

A triple (�; [	];�) that are related by the dissipation e-

quation (16) for all w 2 B \D(Rn ;Rq ) would be called a

matched triple on B.

Note that unlike the 1-D case, there is no one-to-one cor-

respondence between storage and dissipation functions.

Given a supply QDF and an associated dissipation QD-

F, one can �nd several VQDFs that would satisfy (16).

However, as mentioned before, one can �nd an equiva-

lence class in (R
q�q

[�; �])n which can be uniquely associ-

ated to a given supply and dissipation QDFs. Thus, for

a matched triple (�; [	];�), the [	] essentially represents

an equivalence class in (R
���

[�; �])n.

So far in this section, we have been considering QDFs

Q� which are average non-negative. Now we would like

to consider a behaviour B and a supply rate associated

to this behaviour. So for a QDF to be a supply rate as-

sociated to a behaviour, it is enough for the QDF to be

average non-negative on all w 2 B. So we de�ne a QDF

Q� to be average non-negative with respect to a behaviour

B if

Z
Rn

Q�(w)dx � 0 8w 2 B \D(R
n ;Rq ) (17)

These QDFs could now represent supply rates for a given

behaviour.

The main purpose of this paper is to announce the follow-

ing result.

Theorem 7 Let B be a controllable behaviour, B =

kerR( d

dx
) = imM(

d

dx
) and � 2 Rq�q [�; �]. If the QDF Q�

is average non-negative with respect to the behaviour B,

then there exists dissipation QDF Q� and storage VQDF

Q[	] such that

div Q[	](`) = Q�(w) �Q�(`) (18)

where w 2 B and `'s are the latent variables related to w

by the equation w =M 0
(
d

dx
)`.

Summarizing, we have obtained the following result. For

controllable systems described by constant coeÆcient lin-

ear partial di�erential equations with supply rates that

are QDF's in the system variables, assume that the sys-

tem is dissipative in the sense that (17) holds. Then it is

indeed possible to express dissipativeness as the existence

of a vector storage function Q[	] and a dissipation rate

Q�, such that the triple (�; [	];�) is a matched triple on

B. One should note the unavoidable emergence of latent

variables in the dissipation equation (17) for the N-D case.

In the 1-D case, the dissipation equation can be written

in terms of manifest variables alone, whereas in the N-

D case, this is only possible if the latent variables that

appear in the dissipation equation are observable.
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