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1 Introduction

In this paper we treat the problem ofH∞ filtering. This prob-
lem has been studied in the context ofH∞ control for linear
time invariant systems before. Without exception, earlier pa-
pers on this subject assume that the plant whose signals we
try to estimate in the presence of disturbances, is given by
equations in the usual state space format.

One of the basic philosophies of thebehavioral approach
is, that in the analysis and synthesis of control systems, one
shouldnot consider the system to be identical to the set of
equations by which it happens to be given. Instead, one
should identify the system with theset of all possible time-
trajectoriesthat are compatible with these equations. This
set of trajectories is called thebehaviorof the system. The
idea is, of course, that the set of equations describing a sys-
tem is not unique, so that there is an obvious arbitrariness
in the choice of representation. Our point of view adcocates
that in a theory of analysis and synthesis, one should try, as
much as possible, to work with the behavior of the system,
and not with one of its particular representations. Obviously,
results obtained by applying this point of view will be more
general than those obtained for just one particular represen-
tation. In fact, one big advantage of the behavioral approach
is, that the results will apply toanyrepresentation in which a
certain plant happens to be given.

In the present paper, we will illustrate this point of view
by setting up a theory ofH∞ filtering in a behavioral frame-
work. We will arrive at necessary and sufficient conditions
for the existence of a filter. In line with the basic philosophy
explained in the previous paragraph, these conditions will not
be in terms of a particular representation of the plant, but in
terms of properties of its behavior. An important role will
be played by two-variable polynomial matrices, qudratic dif-
ferential forms and the concept of dissipative system. It will
be shown that the existence of anH∞ filter is equivalent to
certain dissipativity properties of the system. Furthermore,
we formulate a theorem which states that under certain as-
sumptions on the plant, the filter can be implemented as an
input/output processor with a proper transfer matrix.

The outline of this paper is as follows. In section 2 we

give a brief review of linear differential systems, which is the
class of systems that we deal with in this paper. In section
3 we review some material on quadratic differential forms,
two-variable polynomial matrices, and dissipative systems.
In section 4, we formulate theH∞ filtering problem and give
necessary and sufficient conditions for the existence of a fil-
ter. Furthermore, we formulate a theorem which states that
under certain assumptions on the plant, the filter can be im-
plemented as an input/output processor with a proper transfer
matrix. Due to space limitations, we have omitted the proofs.
For these we refer to [11].

Some words on notation. We use the standard notation
Rn,Rn1×n2 , etc., for finite-dimensional vectors and matri-
ces. When the dimension is not specified (but, of course, fi-
nite), we writeR•,Rn×•,R•×•, etc. The space of infinitely
differentiable functions with domainR and co-domainRn is
denoted byC∞(R,Rn), and its subspace consisting of the
elements with compact support byD(R,Rn). In order to
avoid convergence issues, we frequently restrict attention to
compact support elements of a behavior. For this reason, we
introduce the notationB ∩D = B ∩D(R,R•).

2 Linear Differential Systems

Dynamical systems from a behavioral point of view were ex-
tensively discussed before in [4, 8, 9]. Here we review only
the most basic concepts. A subsetB ⊂ C∞(R,R•) (called
a behavior) is said to be a linear time-invariant differential
system (briefly, adifferentialsystem) if there exists a polyno-
mial matrixR ∈ R•×•[ξ] such thatB = {w ∈ C∞(R,R•) |
R( d

dt )w = 0}. By L• we denote the set of linear time-
invariant differential systems, and byLw those withw real
variables (in other words, with behaviorsB ⊂ C∞(R,Rw)).
This class of systems is a very general one, with nice math-
ematical structure. It includes finite-dimensional linear state
systems, systems described by rational transfer functions,
systems described by (high order) linear differential equa-
tions, etc.. Important is to note that while wedefineB ∈ L•

as the kernel of a differential operator, byR( d
dt )w = 0, in

actual applications,B is oftennot specifiedin this way. We
call B ∈ L• controllableif for all w1, w2 ∈ B, there exists
aT ≥ 0 and aw ∈ B such thatw(t) = w1(t) for t < 0 and
w(t + T ) = w2(t) for t ≥ 0. By L•cont, L

w
cont, we denote the

controllable elements ofL•, Lw.



3 Quadratic Differential Forms and Dissipa-
tive Systems

In this section, we briefly review quadratic differential forms
and dissipativity. For detailed treatments, we refer to [10, 5,
6]. Let Φ ∈ Rw×w[ζ, η] be a real polynomial matrix in the
indeterminatesζ andη, i.e., an expression of the form

Φ(ζ, η) =
∑

k,j

Φk,jζkηj (1)

whereΦk,j ∈ Rw×w. The sum in (1) is a finite one, andk, j ∈
N. EachΦ ∈ Rw×w[ζ, η] induces aquadratic differential form
(QDF), i.e., a mapQΦ : C∞(R,Rw) → C∞(R,R) defined by

QΦ(w) :=
∑

k,j

(
dkw
dtk

)T Φk,j(
djw
dtj

)

Let Φ ∈ Rw×w[ζ, η] andB ∈ Lw
cont. The systemB is said to

bedissipative with respect toQΦ, (briefly, Φ–dissipative) if
∫ +∞
−∞ QΦ(w) dt ≥ 0 for all w ∈ B ∩D. It is said to bedis-

sipative onR− with respect toQΦ, (briefly, Φ– dissipative
on R−) if

∫ 0
−∞QΦ(w) dt ≥ 0 for all w ∈ B ∩ D; dissi-

pativity onR+ is analogously defined. It is easy to see that
dissipativity onR− orR+ implies dissipativity.

Let B ∈ Lw, Φ ∈ Rw×w[ζ, η], andΨ ∈ Rw×w[ζ, η]. Then
QΨ is said to be astorage function forB with respect to the
supply rateQΦ if the dissipation inequality

d
dt

QΨ(w) ≤ QΦ(w)

holds for allw ∈ B.

4 TheH∞ Filtering problem

We consider the signal processing problem depicted in fig-
ure 1. In this set-up, theplant relates 3 types of variables:
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Figure 1: Plant and filter configuration

disturbancesd, to-be-estimated variablesf , andmeasured
variablesy. The problem is to design afilter that connects
the measured variablesy to theestimatef̂ , such that in the
interconnected system theestimation errore = f−f̂ is small
in an appropriate sense. Denote the number of components
of d by d, of f (and hencef̂ and e) by f, and ofy by y.
The variables of interest whose relationship we are trying to
shape by means of a filter ared ande.

Define thefull plant behavior,Pfull, to be the signals
(d, f, y) that the plant allows, themanifest plant behavior,
P, to be the signals(d, f) that the plant allows, hence with
the measured variablesy eliminated, and thehidden behav-
ior, N , to be those signals(d, f)’s that are compatible with
the plant equationsandwith the measured variables equal to
zero. Define furtherD, thedisturbance behavior, to be the
signalsd that are possible, whence withf andy eliminated
fromPfull. The formal definition of these behaviors is hence

Pfull = {(d, f, y) ∈ C∞(R,Rd+f+y) | (d, f, y) satisfies

the plant equations},
P = {(d, f) ∈ C∞(R,Rd+f) | ∃ y such that

(d, f, y) ∈ Pfull},
N = {(d, f) ∈ C∞(R,Rd+f) | (d, f, 0) ∈ Pfull},
D = {d ∈ C∞(R,Rd) | ∃ (f, y) such that

(d, f, y) ∈ Pfull}.

We assume throughout this section that inPfull d is free, i.e.,
D = C∞(R,Rd).

A filter is a dynamical system that relates the measured
variablesy to the estimatêf of f . The filter imposes a rela-
tion on the variables(y, f̂). We take this to mean(y, f̂) ∈ F ,
with F ∈ Ly+f the behavior of the filter. Before the filter
acts, the variablesd, f, y, f̂ ande are constrained to satisfy
(d, f, y) ∈ Pfull ande = f − f̂ . However, with the filter in
action, they have to obey also(y, f̂) ∈ F . This yields the
manifest behaviorE of the variables(d, e) in the intercon-
nected system shown in figure 1, formally defined as

E = {(d, e) ∈ C∞(R,Rd+f) | ∃ (f, y, f̂)

∈ C∞(R,Rf+y+f) such that

(d, f, y) ∈ Pfull, (y, f̂) ∈ F , e = f − f̂}.

The behaviorE is calledthe estimation error behavior. Ob-
viously, by the elimination theorem ([4], theorem 6.2.6),
E ∈ Ld+f. If, for a given elementE ∈ Ld+f, there exists
F ∈ Ly+f such that the above relation holds, then we say
that the filterF implementsE . The question whatE ’s are
implementable is answered in the following theorem.

Theorem 1 (Filter implementability theorem) : The be-
havior E ∈ Ld+f is implementable by a filterF ∈ Ly+f

if and only ifN ⊂ E . Moreover, ifE is implementable, then
it can be implemented by a filterF ∈ Ly+f

cont such that inF , y
is input andf̂ output.

The problem that we consider is to find a filter that ren-
ders the estimation error behavior dissipative with respect
to a QDFQΦ in the variables(d, e). We consider only the
case ofH∞–filtering, which corresponds to choosingΦ to
be the constant two-variable polynomial matrixΦ(ζ, η) = Σ,
whereΣ is defined to be the signature matrixdiag(Id,−If).
The following theorem shows when such a filter exists.

Theorem 2 (H∞-filtering) : Assume thatN ∈ Ld+f
cont. Then

there existsE ∈ Ld+f
cont such that:



1. N ⊂ E (implementability),

2. the disturbancesd remain free inE (liveness),

3. (d, e) ∈ E∩D implies||e||L2(R,Rf) ≤ ||d||L2(R,Rd) (dis-
turbance attenuation),

4. (d, e) ∈ E andd(t) = 0 for t ≥ 0 impliese(t) → ∞
(stability),

if and only if N is Σ–dissipative onR−, with Σ =
diag(Id,−If), equivalently, if and only if there exists a two-
variable polynomial matrixΨN ∈ R(d+f)×(d+f)[ζ, η], such
that QΨN (d, e) ≥ 0 and d

dtQΨN (d, e) ≤ |d|2 − |e|2 for
(d, e) ∈ N , i.e.,N is aΣ-dissipative system and has at least
one non-negative storage function.

Let us explain the meaning of these conditions. The idea
is that before the filter acts, the variables(d, e) are free:
for e, this is trivially so, and ford, it holds by assumption.
With the filter put into place, as shown in figure 1, the vari-
ables(d, e) are constrained to belong toE . The first condi-
tion is thus merely the implementability condition of theorem
1. The second condition states that the filter is not allowed
to restrict the free exogenous disturbancesd: the intercon-
nected systems should still be allowed to accept arbitraryd’s.
The third condition expresses disturbance attenuation: for all
(d, e) ∈ E∩D there should hold

∫ +∞
−∞ |e|2 dt ≤

∫ +∞
−∞ |d|2 dt.

The fourth condition states that without the disturbances act-
ing, the estimation error must go to zero. Actually con-
ditions 3 and 4 combined are equivalent toΣ–dissipativity
of E on R−: for all (d, e) ∈ E ∩ D there should hold
∫ 0
−∞ |e|

2 dt ≤
∫ 0
−∞ |d|

2 dt. The theorem states that dissi-
pativity ofN onR−, an obvious necessary condition (since
N ⊂ E), is also sufficient.

Assume that the dissipativity requirement of theorem 2 is
satisfied. Theorem 1 then implies that there exists a filter
which implementsE , and hasy as input andf̂ as output. In
other words, the filter can be viewed as a signal processor
that accepts any input signaly ∈ C∞(R,Ry) and produces
as output the estimatêf of f . There is no a priori reason,
of course, for the transfer function of this signal processor
from y to f̂ to be proper, since singular filtering is very much
part of our set-up. However, properness may be obtained by
imposing some additional structure on the plant. In the next
theorem, we assume that in the plantd is input andy andf
are output. Denote the transfer functions fromd to (f, y) in
Pfull by Gd7→f andGd 7→y, respectively.

Theorem 3 : Assume that in the plantd is input andy
and f output, with the transfer functionsGd7→f and Gd7→y

proper. Assume further thatG∞d7→y := lims→∞Gd 7→y(s),
the feedthrough term ofGd 7→y, is surjective. Then the es-
timation error behaviorE of theorem 2 (assuming it exists)
can be implemented by a filterF ∈ Ly+f

cont such that inF , y
is input andf̂ output, andGy 7→f̂ , the transfer function of the
H∞–filter, is also proper.
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