H . filtering in a behavioral framework

H.L. Trentelman, J.C. Willems and S. Shankar,
Mathematics Institute, University of Groningen
P.O. Box 800, 9700 AV Groningen, The Netherlands.
email: h.l.trentelman@math.rug.nl, j.c.willems@math.rug.nl

Keywords: Behaviors, Quadratic Differential Formg,.. give a brief review of linear differential systems, which is the
filtering. class of systems that we deal with in this paper. In section
3 we review some material on quadratic differential forms,
two-variable polynomial matrices, and dissipative systems.
1 Introduction In section 4, we formulate th¥ ., filtering problem and give
necessary and sufficient conditions for the existence of a fil-
In this paper we treat the problemf,, filtering. This prob-  ter. Furthermore, we formulate a theorem which states that
lem has been studied in the context’of, control for linear  under certain assumptions on the plant, the filter can be im-
time invariant systems before. Without exception, earlier pa-plemented as an input/output processor with a proper transfer
pers on this subject assume that the plant whose signals waatrix. Due to space limitations, we have omitted the proofs.
try to estimate in the presence of disturbances, is given byFor these we refer to [11].
equations in the usual state space format. Some words on notation. We use the standard notation
One of the basic philosophies of tbehavioral approach ~ R™, R™*"2_etc., for finite-dimensional vectors and matri-
is, that in the analysis and synthesis of control systems, onees. When the dimension is not specified (but, of course, fi-
shouldnot consider the system to be identical to the set of nite), we writeR®, R"** R**®, etc. The space of infinitely
equations by which it happens to be given. Instead, onelifferentiable functions with domaiR and co-domaiR” is
should identify the system with theet of all possible time- denoted by¢>(R,R"), and its subspace consisting of the
trajectoriesthat are compatible with these equations. This elements with compact support (R, R™). In order to
set of trajectories is called tHeehaviorof the system. The avoid convergence issues, we frequently restrict attention to
idea is, of course, that the set of equations describing a syssompact support elements of a behavior. For this reason, we
tem is not unique, so that there is an obvious arbitrariness$ntroduce the notatio® N® = B N D(R, R®).
in the choice of representation. Our point of view adcocates
that in a theory of analysis and synthesis, one should try, as
much as possible, to work with the behavior of the system,2 Linear Differential Systems
and not with one of its particular representations. Obviously,
results obtained by applying this point of view will be more Dynamical systems from a behavioral point of view were ex-
general than those obtained for just one particular represenensively discussed before in [4, 8, 9]. Here we review only
tation. In fact, one big advantage of the behavioral approachhe most basic concepts. A sub&tc ¢ (R, R*) (called
is, that the results will apply tanyrepresentation in whicha 3 behavio) is said to be a linear time-invariant differential
certain plant happens to be given. system (briefly, alifferentialsystem) if there exists a polyno-
In the present paper, we will illustrate this point of view mial matrix R € R***[¢] such thatB = {w € €*°(R,R®) |
by setting up a theory dfi filtering in a behavioral frame-  R(4)w = 0}. By £° we denote the set of linear time-
work. We will arrive at necessary and sufficient conditions invariant differential systems, and g those withw real
for the existence of a filter. In line with the basic philosophy variables (in other words, with behavidk c ¢ (R, RY)).
explained in the previous paragraph, these conditions will notThis class of systems is a very general one, with nice math-
be in terms of a particular representation of the plant, but inematical structure. It includes finite-dimensional linear state
terms of properties of its behavior. An important role will systems, systems described by rational transfer functions,
be played by two-variable polynomial matrices, qudratic dif- systems described by (high order) linear differential equa-
ferential forms and the concept of dissipative system. It will tions, etc.. Important is to note that while wefine® ¢ £°
be shown that the existence of a1, filter is equivalentto  as the kernel of a differential operator, B(%)w = 0, in
certain dissipativity properties of the system. Furthermore,actual applications is oftennot specifiedn this way. We
we formulate a theorem which states that under certain aseall %5 < £* controllableif for all wy,ws € 9B, there exists
sumptions on the plant, the filter can be implemented as am T > 0 and aw € 9B such thatw(t) = w, (¢) fort < 0 and
input/output processor with a proper transfer matrix. w(t +T) = wo(t) fort > 0. By £2..., £%. .., We denote the
The outline of this paper is as follows. In section 2 we controllable elements df®, £7.



disturbances d °

3 Quadratic Differential Forms and Dissipa-
tive Systems

In this section, we briefly review quadratic differential forms
and dissipativity. For detailed treatments, we refer to [10, 5
6]. Let® € R"*¥[(,n] be a real polynomial matrix in the
indeterminateg andv, i.e., an expression of the form

() =Y By CFn) (1)
k,j

where®;, ; € R"*¥. The sumin (1) is afinite one, artdj €
N. Each® € R"*¥[(, n] induces ajuadratic differential form
(QDF), i.e.,amaf)s : €°(R,R") — ¢€>*(R, R) defined by

dFw d?w

Qo(w) == Z(W)T ku‘(w)
k,j
Let® € R™¥[¢,n] andB € £¥ .. The systens is said to

be dissipative with respect tQ¢, (briefly, d—dissipative) if

1 Qa(w) dt > 0forallw € BND. Itis said to bedis-
sipative onR_ with respect toQ¢, (briefly, ®— dissipative
onR_)if [°_ Qq(w)dt > 0forallw € B ND; dissi-

pativity on R is analogously defined. It is easy to see that!l

dissipativity onR_ or R implies dissipativity.

Let®B € £¥, & € R"™¥[(,n], and¥ € R"¥[¢,n]. Then
Qv is said to be atorage function fof8 with respect to the
supply rateQ)¢ if the dissipation inequality

d

%Q\p(w) < Qo(w)

holds for allw € 8.

4 The'H Filtering problem

Define thefull plant behavior, P, to be the signals
(d, f,y) that the plant allows, thenanifest plant behavior,
P, to be the signaléd, f) that the plant allows, hence with
the measured variablgseliminated, and théidden behav-
Jior, A/, to be those signal&l, f)'s that are compatible with
the plant equationand with the measured variables equal to
zero. Define furthe®D, the disturbance behavigrto be the
signalsd that are possible, whence withandy eliminated
from Pr1. The formal definition of these behaviors is hence

Prn = {(d, f,y) € €°(R, R | (d, f,y) satisfies
the plant equatior}s
P = {(d,f) € €(R,R*T) | Iy such that
(d, f,y) € Pran},
N = {(d f) e €R,R™) | (d, [,0) € Prn},
D = {dec¢>®R,R?Y |3 (f,y) such that

(d> f> y) € Pfull}~

We assume throughout this section thaPi, d is free, i.e.,
D = ¢ (R, RY).

A filter is a dynamical system that relates the measured
variablesy to the estimatef of f. The filter imposes a rela-
ion on the variablegy, f). We take this to meafy, f) € F,
with 7 € £+ the behavior of the filter. Before the filter
acts, the variablesd, f,y, f ande are constrained to satisfy
(d, f,y) € Pry ande = f — f. However, with the filter in
action, they have to obey algg, f) € F. This yields the
manifest behavio€ of the variablegd, e) in the intercon-
nected system shown in figure 1, formally defined as

{(d,e) € € (R,R) [ 3 (f,y, f)
€ ¢ (R, R*¥*) such that
(d7fay) Elpfullv(ymf) €f7e:f_f}'

The behaviok is calledthe estimation error behaviorOb-

&

We consider the signal processing problem depicted in ﬁg\/iously, by the elimination theorem ([4], theorem 6.2.6),

ure 1. In this set-up, thplant relates 3 types of variables:

to-be-estimated
variables

estimation
error

f

FILTER

measured
variables

estimate

Figure 1: Plant and filter configuration

disturbancesi, to-be-estimated variableg, and measured
variablesy. The problem is to design fdter that connects
the measured variablesto theestimatef, such that in the
interconnected system testimation errore = f— f is small

in an appropriate sense. Denote the number of componen
of d by d, of f (and hencef ande) by £, and ofy by y.

£ € g3t |f, for a given elemenE ¢ £+, there exists

F € £ such that the above relation holds, then we say
that the filterF implements£. The question whaf’s are
implementable is answered in the following theorem.

Theorem 1 (Filter implementability theorem) : The be-
havior £ ¢ £3*% is implementable by a filtef# ¢ g£y+f
if and only if V' C £. Moreover, if€ is implementable, then
it can be implemented by a filtgf € £/ such thatinF, y
is input andf output.

The problem that we consider is to find a filter that ren-
ders the estimation error behavior dissipative with respect
to a QDF Q¢ in the variableqd, e). We consider only the
case ofH—filtering, which corresponds to choosidgto
be the constant two-variable polynomial matfix(, n) = %,
whereX is defined to be the signature matdiag(Zy, —I¢).
t?he following theorem shows when such a filter exists.

The variables of interest whose relationship we are trying toTheorem 2 (H.-filtering) : Assume thatv' € £31% . Then

shape by means of a filter adeande.

cont*

there exist€ € £3f such that:

cont



1. N C & (implementability)
2. the disturbanced remain free in€ (liveness)

3. (d, e) eEN®D impIiesHeHb(RRq < Hd||£2(R7Rd) (diS-
turbance attenuation)

4. (d,e) € £ andd(t) = 0fort > 0 impliese(t) — oo
(stability),

if and only if A/ is Y—dissipative onR_, with ¥ =
diag(I4, —I¢), equivalently, if and only if there exists a two-
variable polynomial matrix¥,, € RE+TOx@+)[¢ p] such
that Qu, (d,e) > 0 and £Qy, (d,e) < |d> — |e|? for
(d,e) € N, i.e.,N is aX-dissipative system and has at least
one non-negative storage function.
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