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ear Matrix Inequalities. setWT consists of all possible maps frofito W, and the
trajectories belonging ¥ are nothing but the subset of these
. which comply with the laws of the system.

1 Introduction In the rest of this paper we concentrate on a specific class

. ) _ ) . of dynamical systems, namdipear time-invariant differen-
I,n this paper we consider linear beha\_/lprs, ;peuf@d as S(?lut"lal system This class corresponds to systems for which the
tion sets of systems of constant coefficient linear dn‘ferennaltime axis isR, the signal space & for someg, and the be-

equations of arbitrary order; such systems are parameterizegh iy is specified as the set of solutions to a system of linear
in & natural way by polynomial matrices in one indetermi- .ot coefficients differential equations of the form:

nate.
ifyi i - d d*
A very natural way of speufylng funcyonalg on such sys Row+ R Zw+ Ry =0
tems, is by means of quadratic forms involving the system dt dtt

variables and their derivatives; such functionals, also caIquNith R; € RP*4 for somep. To these equations we associate
. . . {3 .
quadratic differential forms (QDF for short), are parameter-;, 5 hatural way the polynomial matrix

ized by polynomial matrices in two indeterminates. R = Ro+ Ri& + - Rp€F € RP*4[¢] and also write the

When using quadratic forms as a means of establishingystem aR(Z)w = 0. In this paper we restrict our attention
properties of linear systems it is often crucial to be able toy; ¢ so|utions to the above equations, therefore we take
determine whether a given form is non-negative when com-
puted along all trajectories of a given system. After formally B = {wee> (R,Rq)|R(i)w =0}
defining what has to be meant by non-negativity of a QDF dt
we proceed to show how such a property is equivalent to feaFor obvious reasons we also denote the above lesrizel
sibility of a suitable LMI which can be built starting from  representatiorof the behavior and writé8 = ker(R(:%)).
the problem data (i.e. from the coefficients of the differen- A behaviors5 is said to beautonomousf
tial equations specifying the behavior and those of the QDF).

Such a result is of great practical relevance because feasibif-’1: w2 € B), and(wy(t) = ws(t) fort < 0) = (w1 = w2)
ity of LMI's can be checked by means of standard softwarein other words if the future of any system trajectory is
packages such as MATLAB LMI Toolbox. uniquely specified by its past.

A situation in which the possibility of checking non- A veryimportant subclass of autonomous behaviors is rep-
negativity of a QDF along trajectories in a behavior is of resented bystable behaviors, namely behaviors whose tra-
great relevance is when one wants to assess stability of a sygectories are bounded on the half-lifi@ o). Asymptoti-

tem. We discuss this situation in detail and show how ourcally stablebehaviors, more in particular, are those for which
results generalize the well known ones for state space SYStw in®B) = (limy_oo w(t) = 0)

tems.

3 System representations
2 Linear differential systems

Given a polynomial matri € RP*?[¢] themodulespanned
In the behavioral approach to system theorydgnamical by its rows is denoted by. R > and defined as
systenis defined as a tripl&d = (T, W, B) whereT C R . 1xgq 1xp .
is the time setover which the sy(/stem ev>olves (e.g. it will < R>={v e R[] [Bv € R[] such thav = pl}
typically beR or R, for continuous-time systems , aftl  In other words< R > is the set of all possible combinations
or Z, for discrete-time),W is the signal spacen which with polynomial coefficients of the rows @k. It is not dif-
the variables of the system we are modeling take on theifficult to see that the same module is generated by different



matrices, in other words that there exi&se R? *¢[¢] such
that< R >=< R’ > .

The interesting thing from our point of view is that it can
be shown that

case® is a linear behavior, thei Yy is a vector space over
R; in particular if B = ker(R(<)) with R € RP*49[¢] then
KY is alinear subspace & 7. For this particular case we
now want to show how to build a real matriRy such that
Kg = ker(RN). _

Before doing so, we define tlwmefficient matrix? associ-
ated to any polynomial matri® = Ry + R1£+ - -+ Rp&" €
In other words a same behavior admits many different kerneR?*?[¢] as the real matri = [Ry Ry --- Rz]. One then

) = ker(R/(

:k —_— —_— = /
B er(R(dt dt)) S<R>=< R >

representations, but is associated to one and only one mod- 1,
ule, namely that spanned by the rows of one, and therefore N 3 ) ) ) )
all, of its possible kernel representations. hask = ; with I, theq x ¢ identity matrix.
It can be shown that among all such representations, 7 .gL
q

we can always find some corresponding to matrifes
RP>4[¢] which are offull row rank over the polynomial
ring R[¢] (meaning thatR has a non-singulap x p mi-

Notice now thatiy) is the set of allk € RV for which
the system of differential equations with initial conditions

nor). In this case we also talk ofminimgl kernel repre- R(L)w =

sentation ofB, because any othd®?’ € R? *?[¢] such that { S(ét)w(()) g

B = ker(R(%)) = ker(R'(:4) will be such thaty’ > p; dt

in other words, minimal representations are defined by the I,

property of containing as few equations as possible among 1€

all kernel representations of the same beha¥or with S = admits a solutionw. It then follows
In case the behavidB we are considering is autonomous, :

its minimal representations correspond to square (there- IeN . )

fore also non-singular) matriceB; in other words® = from a reSL_JIt shown in [3] that such a system has a solution

ker(R(<L)) with R € R1*9[¢], det(R) # 0. Asymptotically ~ If and only if

stable behaviors, instead, admit minimal representations with heRVY BTS e< R >= hTk =0,

R square, non-singular ar@t( R) Hurwitz, meaning that all
its zeroes lie in the open left half plane. In order to be asympy, gther words if and only if whenever a linear combination

totically stable a behavior must therefore be autonomous. ¢ the initial conditions is a consequence of the system equa-
Among minimal kernel representations, one which will tjong (375 < R >), then such a combination is equal to
turn out to be useful in the next section is the one correspondp,

ing to a row proper matrix? which we now define. Given

R € Rr*1[¢] we define its highest row coefficient matrix
Ry, as the real matrix whose-th row contains the coeffi-
cients of the highest power gfin thei—th row of R. R is
defined to beow properif R;,. is a full row rank matrix. If

R is not row proper, itgow proper formis defined as any
matrix R’ such thakk R >=< R’ > and such thaR’ is row
proper. Of courseR’ is not uniquely defined, but any row
proper form can be obtained from another by taking linear
combinations of the rows. Standard algorithms to build the
row proper form of a given matrix are described, for exam-
ple, in [2] and implemented in the functiggmowred from

the Matlab Polynomial Toolbox.

4 Initial conditions for a behavior

Associated to any behavi@® we now define the set:

ko w(0)
: | Jw e B : : =k
kn w™)(0)

In other wordsk § represents all possible values thaand
its derivatives up to ordeN can assume at timegiven that

w must belong to the given behavior. It is easily seen that in

Therefore, if we define the real vector space
Hy ={h e RV |hTS e< R >}

thenkKy = Hy.

We can now define the séfy of all differential operators
of order up toN which are zero along all trajectories in the
behavior; such a set is in fact given by

Hy = {h € R™[¢] | h €< R > and degh) < N}

It is easily seen that this set is also a finite dimensional real
vector space and that, in fact, any vectotHn, is the coef-
ficient vector of a polynomial vector it/ 5. If we can find

a polynomial matrixR, such that its rows are a basis for
H y as a vector space ovEr, then the rows of its coefficient
matrix Ry will be a basis foriy and K = ker(Ry).

Assume nowR is in row proper form; as discussed in the
previous section we can always come back to this situation
without altering theB = ker(R(%)) of interest. Letr be
the lowest degree of a row @t andt = max{0,N — o}.
Because of the row proper property ®ft is not difficoult to

R

prove thatRy can be obtained by first buildin

¢R



and then only considering the rows whose degree is smallefinite coefficient matrix

R
¢R Doy Por - - DPon
or equal toN. In other wordsRy = U . with U a & Dy Dy - - Dy
: N= . . .
ftR . .
real matrix that selects the rows with degree smaller or equal Pyo PN - Pan
toN. . .
Sometimes we refer tiy as thedegreeof the QDF and write
41 £42 N = deg(®).
Examplel: LetR = [ Sre 841 } One row Notice that we can define a polynomial matriR

£+1 €42 with an infinite number of columns given by (§) =
- +¢ 282 +1 } [Ig 1,€ 1,67 -] and recover(¢,n) = P(¢)®P"(n); also
£11 1o we can define the finite matriRy (¢) = [1, 1,€ 1,&* 1,&V]
from WthhRg — 52 +§ 62 + 25 . and recoverI)(C, 7]) = PN(C)(I)~NP]€(772' ~ ~
24 2241 By taking a decompositiod®y = MTXM with M sur-
I+ 0
0 —I-
that any® (¢, n) can be written a® (¢, n) = M7 ()M (n).
5 Quadratic differential forms If R.is a nop-singular polynomial ma.trix ant/ R~ is a
matrix of strictly proper rational functions, we say thht
Quadratic differential forms, QDF's for short, are a very nat- IS /i—canonical; such a concept will turn out to be useful
ural way of specifying functionals of a system'’s variables. A When discussing stability issues. Notice how a bound on
complete theory of QDF's has been developed in [4], in thisthe degree of ark— canonical QDF is immediately avail-
section we simply recall some basic concepts and notatior@Ple as a consequence of its definition; we have in fact

proper form ofR is given byR’ = {

jective andx = [ } a signature matrix, we see

we shall need in the following. deg(®) < deg(R) — 1 (see [2], Lemma 6.3-10).

Let R7<4[¢, 5] denote the set of real polynomial matrices Given_Q@ its de_rivative will of course still be a quadratic
in the two variableg andn; an elemen® € Re*¢[, ;] will  differential form; in other words;Qe = Qu for some
therefore be given by U((,n); actually it turns out tha¥’ (¢, n) = (¢ + n)®(¢,n).

At the level of coefficient matrices, if one defines
‘P(C,ﬁ)zz%z&ne 00 e 0 T
e Qoo Po1

- - i) i)

whered;,; ¢ R?%4¢ and itis assumed that only a finite number - 10 i

of terms in the above sum are different from zero. : : :
To such a matrix we associate in a natural wayadratic . - e Okl

differential formQs : € (R, R?) — €*°(R, R) defined as:

koo \ T 0
Qq)(w):Z(‘iltf) By (‘Z;ﬁ) and

k.t 0 @op Pos
. . . . 0 &9 P14
In the following, without loss of generality, we will deal ~ _ _
with QDF’s defined bysymmetrictwo variable polynomial or®=10 :
matrices, meaning matricésfor which® (¢, n) = ®% (5, (). 0 Okl
To such matrices we associate the coefficient mabriote- 0
fined as
Doy Doy o then one finds ) ) )
Dy Dy - o e V=0P+0.P
H — : : : Notice howdeg ¥ = deg @ + 1; the finite versions; @y and
okl - 0P are of course accoridingly defined.
We can now define the main concept we intend to investi-
gate in this paper, namely that of nonnegativity of a QDF.
Such a matrix is an infinite symmetric matrix with only a Definition 2 : A QDF Qs is called nonnegativeif

finite number of blocks not equal to zero. If we denotey Q¢ (w) > 0 Vw € €*°(R,RY); if B is any behavioQs
the index of the last non zero block, we can then define thds callednonnegative alon@ if Q¢ (w) > 0 Vw € B.



We also use the notatioh > 0 for nonnegative QDF’s and nonnegativity of a real symmetric matrix on a given linear

) § 0 for QDF's which are nonnegative alofg). subspace_. . .
- In section 3 it has been shown how to build a real ma-

We can now defing@ositiveQDF’s, which are definedas . " = N ~ ] .
being nonnegative, and moreover being identically zero onlymx Ry such thatKy, = ker(Ry). ¢From easy linear al-

H N
when evaluated along the zero trajectory; formally gebra argument it then follows thaty > 0onky <«
JM such that

Definition 3 : A QDF Qs is calledpositiveif Q¢(w) > - T -
0Vw € €*(R,R?) andQq(w) = 0 < w = 0. If B is any &y + M Ry +RLM >0 1)
behaviorQs is calledpositive alondB if Q¢ (w) > 0 Vw €

B andQo (w) = 0 < w = 0. The above is an LMI in the unknowf/ whose feasibility

is equivalent to nonnegativity @¢ along®3; it is therefore

Notice the difference between nonnegative and positiveexactly the kind of condition we had been looking for.

forms; both can become zero at one point, but while non- The parameter®y and Ry can be built starting fron®

negative ones can also be identically zero along trajectorie@nd 2 as discussed in sections 2,3, and 4; the existence of a

different from zero, this is not possible for positive ones.  solutionM to the above LMI can be checked with the com-
In the case of autonomous behaviors, one can also suitabljnandfeasp from the Matlab LMI Toolbox.

define the stronger concept of strong positivity. In the special tha® = ¢ (R, R7), equivalently tha3 is

the kernel of thé) matrix, LMI (1) returns the known fact

Definition 4 : Let B be an autonomous behavior. A QDF

Qg is calledstrongly positive alongs (indicated byd >%> ®20e ey 20

0) if If we now indicate byl the left hand side of LMI 1, we
B can then regard it as the coefficient matrix o¥&(, ). By
1L.2>0 what just said, if LMI 1 is feasible, the® > 0, in other

2. (weB, Qow)(0)=0)= (w=0) words nonnegativity of a QDF along trajectories in a be-

havior @ § 0) is equivalent to nonnegativity over all of

In other words, a strongly positive QDF can becdivat one  ¢>°(RR, R?) of another suitably defined QDR/(> 0).

point only if evaluated along the zero trajectory (in which  We now wish to investigate a little bit further the structure

case it is identically equal to zero). of such a¥'(¢,n). Premultiplying the left hand side of LMI
As shown in [4] the concepts defined above are crucial in(1) by matrix Py (¢) and postmultiply it byP% () as shown

defining concepts such as stability and dissipativity for sys-in section 4, we obtain

tems described by high order differential equations like the

ones we are interested into. W(¢,n) = @(¢,n) + GT(ORN(n) + R (OG(n)

) . with G(n) = MP(n). As shown in section 3Ry (§) =
6 Testing nonnegativity of a QDF V(€)R, (&) with R,. a row proper form of the original matrix
R we start with, and/ a suitable polynomial matrix corre-

We now come to the main issue of this paper, namely in-gn4nding to the construction discussed in section 3. More-
troducing an LMI test which allows to check whether for a over there exists a matri¥’ such thatR, — T'R, finally
T T L]

B . .
given® and a giverl8 = ker(R(-%)) there holdsP > 0 or  Yielding

B
®>> 0. - o U(C,n) = B(C,m) + FT (0. Q)R(n) + RT(O)F(¢.m)
A crucial remark at this point is that iB is a linear time

invariant behavior ané a QDF corresponding to a finite co- with F(¢,n) = TT(O)VT(¢)G(n).
efficient matrix Assuming®s is an autonomous behavior, we can now use
arguments similar to the ones shown above to obtain a nec-

goo i‘“ B gON essary condition for strong positivity of a Q@ along®s.
By = o TN It can in fact be seen that
. : : : ® ) N
dno PN1 0 - Pnn ®>>0= oy >00nKy
then B . .
5 ~ and therefore tha® >> 0 only if there exists an\/ such
>0 dy>00nKy that

T T T
where the> sign on th right has to be intended in the usual Oy + MRy + RyM >0 (2)

sense of positive definite matrices aAd) is defined as in  Notice how LMI (2) is nothing but the strict version of LMI
section 2. Thus the problem of studying nonnegativity of a(1); its feasibility, however, is only a necessary condition for
QDF along a behavior has been reduced to that of studyingtrict positivity as the following example shows



Example 5: Consider the autonomous behavi#sr =
ker(R(4)) with R(¢) = ¢2 4+ ¢ + 1 and letQq (w) = w?.
Thend, = 1 andK% = R, therefored, > 0 on K, there
are however non-zero trajectoriesiirwith w(0) = 0, show-
ing thatQ¢ is not strongly positive along.

7 Lyapunov Theory

We now wish to apply the results from the previous section
to the problem of establishing asymptotic stability of a be-
havior. We have, in fact

Theorem 6 :

Consider® = ker(R(4)) with deg(R) = N + 1 and let
Dg0  Po1 Don

- D0 D1y Dy )

Oy = ) ) . Then®s is asymp-
Pno Py Oyn

totically stable if and only if the following system of LMI in
the unknown® y, N, M is feasible

Oy + MTRy + RYM >0 3
Py +o0,.Py + NTRN+1 + RIJJ\}JFIN <-I

with I the identity matrix of suitable dimensions

Proof : =) If B is asymptotically stable, then by theorem

. B .
4.12 of [4] we know that given any > 0 there exists aiR—
canonicakb which is strongly positive alon@ and such that
its derivative is smaller or equal thaih alongB. Because
® is R— canonical, we know it can be taken of degi®e
therefore corresponding to a coefficient matbix as shown
above. By takingQg (w) = w? + --- + (wNJfl)2 we then
obtain that the system of LMI (3) must be feasible, the first
. . B
equation corresponding ® >> 0, the second one t® —
B
U <0
' . . ) B
<) If the first LMI is feasible it means we can finda> 0;
if the second one is feasible it means that the derivative of
Qs is, lanog®B smaller or equal tav? + - - + (w12,

therefore negative along. By theorem 4.3 of [4] we can
then conclude asymptotic stability of. a

With a little bit of computations it can be seen that, when
looking at state space systems= Ax, corresponding in
our notation toR = £I — A, the above theorem returns the
fact that the systems is asymptotically stable if and only if
a positive definite matri¥? can be found such that™ P +
PA < —I.

References

[1] J.W. Polderman and J.C. Willemdntroduction to
Mathematical Systems Theory: A Behavioral Ap-
proach Springer Verlag, 1998.

[2] T.Kailath,Linear System<rentice Hall, 1980.

[3] T. Cotroneo and J.C. Willems, The initial value prob-
lem for high order linear differential systeni€999 Eu-
ropean Control Conference

[4] J.C. Willems and H. Trentelman, On Quadratic Differ-
ential Forms, Siam Journal of Control and Optimiza-

tion, Vol.36, n.5, pp.1703-1749, 1998.

[5] S.Boyd, L. El Gahoui, E. Feron and V. Balakrishnan,
Linear Matrix Inequalities in System and Control The-

ory, SIAM, 1994.



