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Abstract 

This paper deals with systems described by constant 
coefficient linear partial differential equations. We de- 
fine dissipativity with respect to a quadratic differential 
form, i.e., a quadratic functional in the system variables 
and their partial derivatives. 'The main result states the 
equivalence of dissipativity and the existence of a stor- 
age function or of a dissipation rate. 
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1 Introduction 

One of the very useful concepts in systems theory is 
the notion of a dissipative system. The purpose of this 
paper is to develop the theory of dissipative systems 
for systems described by partial differential equations. 
The central problem in the theory of dissipative sys- 
tems is the construction of an internal function called 
the storage function. As we shall see, results analo- 
gous to those for lumped systems may be obtained for 
distributed systems described by linear constant coef- 
ficient partial differential equations and with quadratic 
differential forms as supply rates. However, there are 
important differences in the resulting theory, the most 
important one being the fact that for distributed sys- 
tems the storage functions is in general a function of 
unobservable ( "hidden") latent variables. 

A I -D  dynamical system C is a triple C = (T, W, '23) 
with T C R the time-set, W the signal space, and 
23 c W' the behavior. We consider here the gener- 
alization from a time-set that is a subset'of R to do- 
mains with more independent variables (e.g., time and 
space). These 'dynamical' systems have T C P, and 
are referred to as n-D systems. Define a distributed 
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dioerential system as an n-D system C = (R", Rw , B), 
with behavior 23 consisting of the solution set of a sys- 
tem of partial differential equations 

R(-, d ... , -)w=O a 
ax, 

viewed as an equation in the functions 

(21,. . . ,xn) = x E R" t) 
(WI(X), . . . ,ww(z)) = w(x) E R' 

Here, R E Rex' [SI,. . . , en] is a matrix of polynomials 
in Iw[&, . . . , En]. The behavior of this system of partial 
differential equations is defined as 

'13 = {w E Cm(P,RW) I (I.) is satisfied}. 

We denote the behavior of (1) as defined above by 
ker(R( &, . . . , &)), and the set of distributed differ- 
ential systems thus obtained by 2;. Note that we may 
as well write 'L3 E .C:, instead of C E C:, since the set 
of independent variables (R") and the signal space (Rw) 
are evident from this notation. We call (1) a kernel 

We will meet other representations later. A typical ex- 
ample of a distributed dynamical system is given by 
Maxwell's equations. 

representation of C = (E", R", ker(R(&, . . . , G))). B 

2 Elimination 

Mathematical models often contain, in addition to the 
variables whose dynamic relation one wants to model 
(we call these manifest variables), auxiliary variables 
(we call these latent variables) that have been intro- 
duced in the modeling process. For distributed cliffer- 
entia1 systems this leads to equations of the form 

d d a a R(-,.. . , -)w = M ( -  ,... , -)[, 
d ~ l  6x1 axn 

(2) 

with R and M matrices of polynomials in qt1,. . . , en]. 
This equation relates the (vector of) manifest variables 
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w to the (vector of) latent variables e.  Define the fi lZ 
behavior of this system as 

23f"ll = {(W,l) E C"(P,RW) x C"(R",Rdd"(q 
I (2) holds} 

and the manifest behavior as 

23 = {w E &"(P,RW) 13 e E C " ( P , R d B d " @ )  ) 
such that (2) holds} 

We call (2) a latent variable representation of 23. The 
question occurs whether B is in 2:. This is the case 
indeed. 

Theorem 1 (Elimination theorem) : For any real 
matrices of polynomials (R, M )  in R[t1, &, . . . , tn3 
with rowdim(R) = rowdim(M), there exists a ma- 
trix of polynomials R' in R[&, 52, , . . , &] such that 
the manifest behavior of ( 2  ) has kernel representation 
R ' p - ,  ... a 

BZl 7 =)w = 0. 

The above theorem implies that a distributed differen- 
tial system (13 E 2: admits not only many kernel, but 
also many latent variable representations. Latent vari- 
able representations are very useful. Not only because 
first principles models usually come in this form, but 
also because latent variables routinely enter in repre- 
sentation questions. As we shall see in this paper, they 
allow to express conservation and dissipation laws in 
terms of local storage functions and dissipation rates. 

3 Controllability and observability 

An important property in the analysis and synthesis of 
dynamical systems is controllability. A system B E 2: 
is said to be controllable if for all w1, w2 E 23 and for 
all bounded open subsets 0 1 , 0 2  of R" with disjoint 
closure, there exists w E B such that wlo, = wl)ol 
and w[02 = w2(02. We denote the set of controllable 
elements of 2: by Z:,cont. 

Note that it follows from the elimination theorem that 
the manifest behavior of a system in image representa- 
tion, i.e., a latent variable system of the special form 

a a w = M(-, . . . , ---).e 8x1 dxn (3) 

belongs to 2:. However, not every kernel of a constant 
coefficient linear partial differential operator is the im- 
age of a constant coefficient linear partial differential 
operator. The following theorem, obtained in [l], shows 
that it are precisely the controllable systems that admit 
an image representation. 

Theorem 2 (Controllability) : The following state- 
ments  are equivalent for  (13 E s:: 

1. 93 defines a controllable system, 

2. (13 admits an  image representation, 

3. The trajectories of compact support are dense in 
(13. 

In the context of distributed differential systems the 
notion of observability is as follows. 

Let C = (Rn,Rwl x I W y 2 , B )  E 2v,l+v2. We call w2 ob- 
servable from w1 in (13 if (w1, wi), (w1, wi) E '23 implies 
w: = w;. 

For 1-D systems it is easy to show that every control- 
lable 23 E Cy admits an observable image representa- 
tion. This, however, does not hold for n-D systems, 
and hence the representation of controllable systems 
in image representation may require the introduction 
of latent variables that are 'hidden', in the sense that 
M (  &, . . . , &)e = 0 has solutions C # 0. 

4 Conservative and dissipative systems 

We are interested in this paper in distributed dynam- 
ical systems that are conservative or dissipative with 
respect to a supply rate that is a quadratic func- 
tion of the manifest variables and their partial deriva- 
tives. These are defined by matrices @ k l  ,... ,k,,el ,... , e ,  E 
Iwwxv,kl,. . . ,kn,C1,. . . ,en E Z+, with all but a finite 
number of these matrices equal to zero. We call the 
map from e" (R", Rw) to Coo (En, R) defined by 

w E &"(IWI1,RW) cs 

del ben . , . -w) (e 8x5 
a quadratic differential form on C"(IW", Rw). Note that 
a quadratic differential form is completely specified by 
the (w x w)-matrix 9 of 2n-variable polynomials in 
W l ,  . . . 7 G L ,  771,. * .  9 77n1, defined by 

@(Cl,  ... , c n , m , - . -  7 % )  = 

ski, ..., k , , e i ,  ..., e , C f l  ...C?r]:' *'.qk. 
k i  ,... , k n , l i  ,... ,e ,  

We denote the quadratic differential form that corre- 
sponds to the matrix of polynomials 9 by Q+, Define 
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9*, the matrix of 2n-variable polynomials, by 

@*(Cl,. . * , G, VI,. * 7 qn) 
= a T ( ~ 1 , . - .  ,Vn,Cl,.-. 71n). 

If 9 = 4,*, we call 9 symmetric. We may (and will) 
assume, since obviously Qo = &+e = Q , that in 
a quadratic differential form the matrix of polynomials 
4, is symmetric. 

Let 23 E C~,,,,, and 4, = @* E 
Rwxw[Ci,. . . , <n,q1,. . . ,qn]. Define 93 to be con- 
servative with respect to the supply rate Qo if 

ln Qo (w) = 0 

for all w E 23 of compact support, and dissipative if 

for all w E 93 of compact support. 

5 Local version of a conservation law 

The following result shows in what sense a conservation 
law can be expressed as a local law. 

Theorem 3 (Local version of a conservation law) 
Consider the controllable n-D distributed dynamical 
system 93 E and the supply rate defined 
by  the quadratic differential form QG. Let w = 
M ( & ,  ... ,&)e be an image representation of 23. 
Then 23 is conservative with respect to Q+ i f  and only if 
there exist an n-vector of quadratic differential forms 
Qq = (Qql , .  . . , Qq,,) on C'(R", Rv+dim(e)), called the 
flux density, such that 

V .  QQ(w, e )  = Q+(w) 

f o r  all (w,e) E Bfull, the full  behavior of w = 
M ( & ,  * * .  7 &)e. 

When the first independent variable is time, and the 
others are space variables, then the local version of the 
conservation law can be expressed a bit more intuitively 
in terms of a quadratic differential form Qs, the storage 
density, and a 3-vector of quadratic differential forms 
QF, the spatial flux density, as 

for all (w,a) E %full, the full behavior of w = 
M (  6, &, %, &)e, an image representation of C~,,,,,. 

In the I -D case, the introduction of latent variables is 
unnecessary, and we can simply claim the existence of 

a quadratic differential form Qq, on Cw (E3, Rv), such 
that -$Qq(w) = Qo(w) for all w ~i 23. However, in the 
n-D case, the introduction of latent variables cannot 
be avoided, because not every controllable distribu.ted 
parameter system 23 E 2: admits an observable im.age 
represent ation. 

The idea behind the proof of the above theorem i.j as 
follows. Using an image representation for 23 E C:,,,,, 
shows that is suffices to prove the result for the case 
23 = Cm(Rn,Rw). Next, observe that Cm(Rn,Rv) is 
conservative with respect to QG if and only if a(@) = 
0. This in turn is easily seen to be equivalent to the 
solvability of the equation 

for (!PI, ... ,qn). Note that in the n-D case, contrary 
to the 1-D case, the solution (91, . . . , Qn) to this equa- 
tion is not unique, and hence the storage function is in 
general not uniquely specified by the dynamics and the 
supply rate. 

6 Local version of a dissipation law 

We now discuss dissipative dynamical systems. A 
quadratic differential form QA on Cw(Rn, Rw) is said 
to be non-negative, denoted QA 0 ,  if QA(w) 2 0 for 
all w E Cm(Iw", Rw). The following theorem gives the lo- 
cal version of dissipativeness for distributed differential 
systems. 

Theorem 4 (Local version of a dissipation law) 
Consider the controllable n-D distributed dynamical 
system 93 E C&,,, and the supply rate defined b y  the 
quadratic differential f o rm QG. Then 23 is dissipative 
with respect to  QQ if and only if there exist: 

1. an image representation 

(5) 
a d 

ax, axn 
w = M(-, . . . , - ) l  

of B, 

(Qq l , - . .  ,Q?,,) on 
Cw (R" , Rv+d'm(e)), called the flux density, 

2. an n-vector of quadratic differential forms  Qq  = 

3. a non-negative quadratic differential Q a  on 
1, p y  (Iw" , p + d i m  ( e )  

called the dissipation rate, 
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for all (w,e) E %full, the f i l l  behavior of (5). 

When the first independent variable is time, and the 
others are space variables, then the local version of the 
dissipation law can be expressed a bit more intuitively 
in terms of a quadratic differential form Qs, the stomge 
density, a 3-vector of quadratic differential forms Q F ,  
the spatial flux density, and the quadratic differential 
form QA 2 0, the dissipation rate, such that 

:Qs(t) + V * Qdt) = Qa(w) + QA(O at 
for all (w,l) E 93full, the full behavior of a suitable 
image variable representation of 23 E 2z,cont. 

In the 1-D case, the introduction of latent variable 
is once again unnecessary, and we can simply claim 
the existence of quadratic differential forms (Qq, &A) 
on Cm(R,RY), with QA 2 0, such that $QV(W) = 
Qa(w) + QA(w) for all w E 93. 

In order to see where the introduction of latent variables 
enters in the n-D case, we will briefly sketch the proof of 
the above theorem in the 1-D case. It is easy to see, us- 
ing an observable image representation, that it suffices 
to consider the case 23 = Cw(R, R'). Next, use Fourier 
transforms to prove that the integral s_'," &a(w) dt  is 
non-negative for all w E P ( R ,  R') of compact support 
if and only if the hermitian matrix 9 ( iw ,  -iw) E Cx' 
is non-negative definite for all w E R This in turn im- 
plies that the matrix of polynomials @(e, -c) E RuXs[c] 
be factored as @(€',-c) = DT(-E)D([) with D ( [ )  E 
R*x"[<] a matrix of polynomials. The result then fol- 
lows by taking 

N c , d  = DT(C)D(rl) .  

For dissipative systems the storage function Qs, and 
hence the dissipation rate, QA, are, in general, not 
unique, not even in the 1-D case, since the factorization 
@ ( E ,  -5) = D ~ ( - [ ) D ( ~ )  is not unique. 

The generalization of this proof to the n-D case fails 
on two accounts. Firstly, because there may not exist 
an observable image representation for 23. Secondly, 
because the polynomial matrix factorization 

(6) 
@ ( E l , . . .  ,<n,-&,...  ,-m> = 
D T ( - 5 1 , . * .  , -<nn)D(G,.*.  ,en> 

with D E R*xy[&,.. . ,&I  may not be possible, 
whereas we still have that dissipativeness of 23 
with respect to the supply rate Q+ is equivalent 
to non-negative definiteness of the hermitian ma- 
trix @(iwl,. . . ,iw,, --iwl,. . . , -iwn) E Cx' for all 
w1,. . . , wn E R. However, it turns out that a factor- 
ization as (6 ) ,  with D E R*x ' ([~ ,  . . . , &) a matrix of 

rational functions in the variables {I, . . . , <,, does exist. 
This factorizability is a consequence of Hilbert's 17-th 
problem on the factorizability of nonnegative multivari- 
able rational functions as a sum of squares. The fact 
that we have to introduce rational functions accounts 
for the need to introduce an image representation of B. 

7 Conclusions 

In this paper, we studied conservative and dissipative 
systems in the context of distributed dynamical sys- 
tems described by constant-coefficient partial differen- 
tial equations. For such systems, it is possible to ex- 
press a global conservation or dissipation law as a local 
one, involving the flux density and the dissipation rate. 
There are two interesting aspects of the construction of 
the flux density and the dissipation rate. The first one is 
the relation with Hilbert's 17-th problem on the factor- 
ization of real non-negative rational functions in many 
variables as a sum of squares of real rational functions. 
The second interesting aspect is that local conservation 
or dissipation laws necessarily involve 'hidden' latent 
variables. 
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