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1 Linear Time Invariant Behaviors 

Two central definitions in systems theory are control- 
lability and observability. For state space systems con- 
trollability is defined as the possibility of transferring 
the state from any initial to any terminal value, while 
observability is defined as the possibility of deducing 
the state from an observed output. Recently (see [l]) a 
more general definition has been put forward that gen- 
eralizes these notions to more general model classes. 
In [l] and related papers a number of conditions have 
been derived that allow to deduce controllability of the 
system described by the system of differential equations 

&W + R1 -W + ... RL-w = 0 
d d" 
d t  dtL 

with Ri E R p x q  and observability for 

ROW, + R ~ & w ~  +.-*Rl;; i iz~i  d L  = 
Mow2 + Mi g . 1 2  + . . . MN&W~ 

with Ri E R p x q  and with Mi E W X L .  However, the 
conditions in [l] are not explicit in the coefficient ma- 
trices (&, . . . RL)  or (MO, .  . . M N ) .  In [2] conditions 
of such an explicit nature are derived, but, in the con- 
trollability case for example, they involve checking the 
rank of a matrix of dimension Lpq x L(p + 1)q. 

The purpose of this paper is to  derive conditions in 
terms of (&, . . . RL) or (MO, .  . . M N ) .  The conditions 
involve explicit rank tests and will be presented as a re- 
cursive algorithm in MATLAB-style pseudo-code. The 
algorithm generalizes the familiar ( B ,  AB, .  . . , An-'B) 
or (CT,  ATCT, . . . (AT)n-lCT) rank test for state 
space systems and the Euclidean algorithm for checking 
co-primeness of two polynomials. 
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We now formalize the notation and definitions intro- 
duced above. 

In the behavioral approach to system theory a dynam- 
ical system is defined as a triple C = (T, W, 23) where 
T R is the t ime set over which the system evolves 
(e.g. it will typically be R or It+ for continuous-time 
systems , and Z or Z+ for discrete-time), W is the 
signal space in which the variables of the system we 
are modeling take on their values and '23 C is the 
behavior of the system. The set consists of all pos- 
sible maps from T to W, and the trajectories belonging 
to !I3 are nothing but the subset of these which comply 
with the laws of the system. The behavior can be spec- 
ified in many ways, however the most common way of 
doing so is by defining it as the set of solutions of a 
suitable system of equations; in particular we will call 
differential systems those systems with T = R whose 
behavior !I3 consists of all solutions of a system of dif- 
ferential equations of the form: 

d dN 
dtN 

f(w, &W,. . . , -w) = 0. 

Classical notions such as linearity and time-invariance 
are also very naturally defined in the behavioral set- 
ting; in particular a system is said to be linear if W 
is a vector space and !I3 a linear subspace of w, and 
time-invariant (assuming T = R or Z) if d!I3 = !I3 
for all t E T, where ot denotes the t-shift (defined by 
(a t f ) ( t ' )  := f ( t '  + t ) ) .  Putting together all the above 
notions we obtain the class of systems we shall be inter- 
ested in, namely linear time-invariant differential sys- 



tem, systems for which 

d 
dt '23 = {W E L ' o c ( $ R q ) ~ R ( - ) ~  = 0) 

with R E RoXq [<I a polynomial matrix with q columns 
and any (finite) number of rows. The differential equa- 
tion R($)w  = 0 that appears in the above definition 
must be interpreted in the sense of distributions; we 
also denote the above behavior as ker(R($)). In such 
a setting we can now introduce the definitions of con- 
trollability and observability. 

Let !B be a continuous-time, time invariant behavior; 
we will define it to be controllable if for any two tra- 
jectories w l ,  w2 E '23 there exists a tl 0 and a third 
trajectory w E 23 such that: 

The intuition behind this definition is that for a be- 
havior to be controllable one must be able to connect 
any admissible past trajectory to any admissible future 
one, through suitable steering. In the next section we 
will concentrate on the case !B = ker(R($)) and de- 
rive conditions in terms of the polynomial matrix R 
that allow us to conclude controllability. 

The notion of observability deals with systems with two 
types of variables: observed ones (denoted by w1) and 
to-be-observed ones (denoted by w2). Let ('II',Wl x 
W2,!B) be such a dynamical system. Denote a typical 
element of the behavior by w = (w1, wz);  we say that 
w2 is observable from w1 if 

( (w1,w2),  (w1,w:) E B) * (w2 

In case 23 is a linear behavior this is equivalent to asking 

((07 w2) E B) * (w2 = 0) 

In case 23 = ker(R(6)) we have to partition R conform 
with the partition of w = (w1, w2). In this case it is 
convenient to write the behavioral equations as 

with (RI , M )  the aforementioned partition of R. In the 
next section we shall derive conditions on the polyno- 
mial matrix M which allow us to conclude observability 
of w2. An extensive account of all the concepts intro- 
duced in this section can be found in [l]. 

2 Conditions for Controllability and 
Observability 

A polynomial matrix R E RPxq[J] is said to be left 
prime if R = GR' with G E RPxP[<] and R' E RPXq[<] 

implies G is unimodular; the definition of right prime- 
ness is analogous. The module spanned by a set 
01 , .. . , wp E E" [<I of polynomial vectors, is denoted 
by < v1 , .. . , v p  > and is defined as the set of all possi- 
ble linear combinations with polynomial coefficients of 
the given vectors; in other words: < V I , .  . . , w, >= 
{Cp h.w. hi E Et[<]}; of course < wl,...,wp >5 
Rn[gl  2 7  

We begin now by giving a set of conditions under which 
B = ker(R($)) is a controllable behavior under the 
assumption that R(<) is of full row rank (that is, R 
has a submatrix of dimension rowdim(R) x rowdim(R) 
that has a nonzero determinant). 

Theorem 1 : Let R(5) E RPxq[<] be a full row rank 
polynomial matrix. The following are then equivalent: 

1. !B = ker(R($)) is controllable, 

2. The Smith form of R is [ I  01, 

3. rank(R(X)) = p VX E C, 

4. R is left prime 

5. The columns of R span the full module RP[<] 

Proof: 
1 tj 2 tj 3 : See [l] Theorems 5.2.5 and 5.2.9 
3 + 4 : Assume R = GR' with G E RPxP[<] 
not unimodular; then there exists X E C such that 
rank(G(X)) < p which implies rankR(X) < p thus lead- 
ing to contradiction. 
4 3 2 : The Smith form of a polynomial matrix 
R E RPxq[<] has the structure 

[: :] 
with D = diag(d1 . . .de) where the di are monic poly- 
nomials. Having 1 < p would contradict left primeness; 
in fact call A the Smith form of R and let U, V be 
unimodular matrices such that R = UAV then, indi- 
cating by U1 the first 1 columns of U we could write 
R = [U1 O]AV with [U1 01 E RPxP[J] and not unimodu- 
lar. Therefore the Smith form of R must have the struc- 
ture A = [D 01; this means we can write R = UD[I  O]V 
which shows that D must be the identity, otherwise we 
would have UD E RPxP[<] and not unimodular. 
2 j 5 : We have R = UII O]V with U,V unimodular; 

we can find a matrix U' such that V' = 

Rqxq[<] is unimodular. Therefore R = [ I  OIV'V, with 
V'V unimodular; because the module generated by the 
columns of a matrix is invariant by right unimodular 
transformations we have that the columns of R span 
the same module as those of [I 01 which is of course 

[: ; ' ] e  

97 



the full module Kip[<]. 

5 j 4 : Because the columns of R(<) span the same 
module as I there has to exist a matrix N(<) such that 
I = R([)N([). Assume now R = G'R with G square; 
we then have I = G(R'N), equivalently R'N is an in- 
verse for G which must therefore be unimodular 0 

Proceeding analogously to theorem 1 (see also [l] The- 
orem 5.3.3) we also get conditions for observability, as 
expressed in the following 

Theorem 2 : Let 23 = {w = (w1,w2) E 
L1oc($Rq)IRl($)wl = M($)w2} and assume M E 
RPxe [<I. The following are then equiwalent: 

1. w2 i s  obseruable from w1 

2. The Smith Form of M is 

3. rank(M(X)) = 

4. M is right prime 

5. The rows of M span the full module Re[<] 

VX E C 

Theorem 1 addresses controllability in case B = 
ker(R( -$)) for R([) of full row rank; the following theo- 
rem shows what can be said when such a rank condition 
does not hold. 

Theorem 3 : The following are equivalent: 

23 = ker(R(2)) is controllable 

The Smith Form of R is [ '0 
rank(R(X)) is independent of X VX E C 

If N([)is a minimal generating set for the module 
spanned by the columns of R, then N(<) is a right 
prime matrix 

] 

Proof: 
1 H 2 
2 + 4 : Let A be the Smith for of R. We have R = U A V  
for unimodular U, V .  Partition U as [U1 UZ] conform 
to the partition of A, we then have R = [U1 O]V with 
U1 a minimal generating set for the module spanned 
by the columns of R (it is a generating set because 
[U1 01 differs from R by a right unimodular matrix, it 
is minimal because the columns of U1 are columns of an 
unimodular matrix, therefore independent over E%(()). 

3 : See again [l] Theorems 5.2.5 and 5.2.9 

Because U1 are columns from an unimodular matrix 
we also know that there exists a matrix VI such that 
V1U1 = I which (see the proof of theorem 1)implies 
that U1 is right prime. The result then follows because 
any two minimal generating sets differ by a right uni- 
modular transformation. 
4 =+ 2 : Assume A has the general structure A = 

[ ] then, again partitioning U as [U1 Uz],  we 

would have R = [UlD O]V with U 1 0  a minimal gener- 
ating set for the module spanned by the columns of R 
(one can see it exactly as above). Therefore Ul D must 

0 be right prime, which implies D = I 

Fkom a constructive point of view a minimal generating 
set for the module spanned by the columns of R can 
be built by bringing R in a canonical form such as, 
for example, the column proper form of R; in the next 
section we will show how to use this information in 
order to sketch an algorithm to test controllability. 

3 Algorithms 

3.1 Observability 
We now sketch an algorithm that allows to check 
whether variables w2 are observable from w1 in the sys- 
tem described by R l ( % ) w l  = M(%)zuz, equivalently 
whether matrix M E RPxe[4 is right prime. 

The algorithm is based on condition 5 of theorem 2,  
which can be restated as follows: consider the set of 
all row vectors of degree 0 contained in the module 
spanned by the rows of M ;  such a set is obviously an R- 
vector space for which we can build a set of generators; 
in order for M to be right prime, this set must also be a 
generating set for the whole space R' . In the following 
algorithm we will recursively build such a generating 
set and check whether it has rank equal to e in order 
to conclude right primeness of M .  

Before proceeding let us introduce some notation we 
will use: 

e Standard Matlab notation will be used to indicate 
rows and columns of a matrix (e.g. M ( i ,  :) is the 
i-th row of M ,  M ( i  : j, :) are rows i to j) 

M .  For example if M = [ " 
e MO indicates the set of all degree 0 rows of matrix 

4 ] then 

MO = [ l  11. 

e di indicates the row degree of the i-th row of M ;  
for the matrix in the above point we would have 
dl = 2 and dz = 0 
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0 Mhc E RPxl is the highest row coefficient matrix 
of M meaning that Mhc(i,:) is the coefficient of 
the highest power of 5 in M(i, :). For example, 
looking at the same M as above, we would have 

0 Mhp E RP"'[[E] is the highest row power matrix 
of M ,  meaning that Mhp(i, :) corresponds to the 
highest power of [E in M ( i ,  :) (notice that Mhp(i, : 
) = EdiMhc(i, :)). Again looking at the same M 
as above we would have: Mhp = [:" :] 

0 M=Order(M) is a procedure that reorders 
the rows of M in decreasing row degree order. r 0 1 1  
For example if M = I 5 

5 2 + ' $ + 1  2 then 

r e + t + 1  2 1  
Order(M) returns M = 

0 Assume now we have a matrix M ordered as 
by Order(M) and let p = rowdim(M). By 
standard linear algebra it is easy to find, if 
it exists, a non-zero real vector n such that 
Mhe(i,:) = nMhc(i + 1 : p , : ) .  For example 

then Mh,(l,: 

) = nMhc(2 : 3,:) for n = [l 11. The func- 
tion h=polann(n) returns a polynomial vector 
h such that Mhp(i,:) = hMhp(i + 1 : p , : ) .  In 
the above case, for example, polann(n) would 
return h = [E E2]. The way to build h starting 
from n is rather straightforward; all one needs to 
do is multiply the Ic-th entry (Ic = i + 1,. . . , p )  of 

0 M=Eliminate(M, i) is a procedure that cancels 
the i-th row of matrix M .  For example if M = 

then Eliminate(M, 2) 

if M = [ 5 2 + , + 1  t 2 + 2  1 I 1  

n times $di  - d h ) .  

1 

Let m be a polynomial vector of degree d, 
and M E RP"'[5] a matrix ordered as by 
Order; moreover let j be such that the de- 
gree of M(i,:)  is smaller or equal than d, for 
i 2 j and greater than d, for i 5 j - 1. 
Then [M,j]=Insert(M,m) is a procedure that 
replaces matrix M with col(M(1 : j - 1,: 
), m, M ( j  : p ,  :)) with, as usual, p = rowdim(M). 
The procedure also returns j, namely the po- 
sition occupied by m in the new matrix. For 

example if M = 

m = [E + 1 51 then Insert(M,m) returns M = 

and j = 2. 
1 

We can now sketch in MATLAB pseudo-code our pro- 
cedure for checking right primeness of a matrix M :  

CM , obsl =RPR(M) ; 

M=Order(M) ; 
obs=(rank(M') == 1)  ; 
p=rowdim(M); 
i=p-rowdim(M') ; 

while ((not obs) and (i 2 1)) do 

i f  (3  real n # 0 such that 
Mhc(i,  :) = nMhc(i + 1 : p ,  :)) then 

h=polann(n) ; 

M=Eliminate(M, i) ; 

i f  ( m #  0 )  then 

e l se  p = p - 1 endif; 

i f  (degree(m)==O) then 

else i = j endif; 

m = M ( i ,  :) - hM( i  + 1 : p ,  :) ; 

[ M ,  j]=Insert(M, m) 

obs=(rank(M') == I )  

e l s e  i = i - l ;  
endif; 

endwhile 

In the above algorithm obs is a boolean variable which 
tells us whether the matrix we are considering is right 
prime or not; we call this variable obs because of the 
relation between right primeness and observability ex- 
plored in theorem 2. As already discussed right prime- 
ness is checked by veryfing if the degree 0 vectors con- 
tained in the module spanned by the rows of M gen- 
erate R'. After reordering the matrix we immediately 
perform such a check to see whether the degree 0 vec- 
tors in the original matrix are already enough to  meet 
the requirement. 

If this is not the case we then enter the main while 
loop in which we try to generate additional constant 
vectors by taking combinations of rows of M .  This is 
done by replacing a row M ( i ,  :) of degree higher than 
0 (in fact starting with i=prowdim(M') corresponds 
to taking the first row from the bottom with degree 
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higher than 0) with a polynomial combination of M ( i ,  : 
) and other rows of M ;  such a combination has to be of 
lower degree than M ( i ,  :) itself. Such a degree lowering 
is only possible if the highest coefficient vector of the 
given row M ( i ,  :) is linearly dependent on the highest 
coefficient vectors of rows of equal or lower degree. This 
is exactly the condition tested in the if statement by 
looking for a real vector n # 0 of suitable dimension 
such that Mhc(i,:)  = nMhc(i + 1 : p , : ) .  In case such 
a dependence is found, starting from n we build the 
polynomial vector h such that Mhp(i, :) = hMhp(i + 1 : 
p ,  :); this ensures that the polynomial vector m = M ( i ,  : 
) - h M ( i  + 1 : p ,  :) will have degree lower than M ( i ,  :), 
as desired. 

In case such a lowering was possible, we then eliminate 
M ( i , : )  and if the new vector m is not zero, we insert 
it in matrix M in such a way as to mantain it ordered 
by degree as intially done with Order. 

If the new vector has degree 0 we then check again if 
right primeness condition is fulfilled; in case it is of or- 
der greater than 0 the next iteration of the while loop 
will check whether the degree of this newly generated 
vector can itself be lowered (this is the meaning of hav- 
ing i = j ) .  

The algorithm ends if the condition for right primeness 
is verified (obs is true) or if no more lowering of degree 
is possible; the condition (i < 1) in the while statement, 
in fact, means we have considered all possible rows in 
M and no possibility of lowering was found. Because 
at each step we are replacing a vector with one of lower 
degree it is not difficoult to see that this last condition 
will eventually always be verified so that the stopping 
rule for the algorithm is well defined. 

Example 4 : Assume M = ( ), corre- 

sponding to  the situation in which we want to observe 
state variables in a state space system. The algorithm 
presented above then gives an efficient way of checking 
the classical rank condition on the observability ma- 

trix ( ! ]. It can be recognized that the rows 

of the observability matrix are 0 degree vectors in the 
module spanned by the rows of M .  In fact the rows 
of CA can be obtained as (<I)C - C(cI - A) and are 
therefore polynomial linear combinations of degree 0 of 
the rows of M .  By induction one then sees that the 
rows of CAk obtained as (<I)CAk-' - CAk-l (<I - A) 
are also 0 degree vectors in the module spanned by the 
rows of M .  The fact that the rows of the observabil- 
ity matrix are a generating set for the space of all 0 
degree vectors spanned by the rows of M follows from 

the fact that A" is linearly dependent on A , .  . .An-' 
so that no independent row vectors would be added by 
considering CAk for k 2 n. 

Checking that the observability matrix has rank n is 
therefore equivalent to checking that the 0 degree vec- 
tors spanned by the rows of M generate the vector 
space R" . As discussed above this is exactly equivalent 
to what our algorithm checks in a, in general, more 
efficient way (e.g. just consider the case in which C 
is a non-singular matrix, then observability follows im- 
mediately without needing to compute the rest of the 
observability matrix; in this case, in fact, our algorithm 
would stop without even entering the main while loop). 

Example 5 : Assume M = ( z: ) with ml ,  m2 

polynomials and dl =degree(ml) 2 d2 =degree(mz). 
Applying division algorithm for polynomials we know 
we can write ml  = q2m2 + m3 with dz =degree(mz) > 
d3 =degree(ms). Going through our algorithm we 
see that after at most dl - d2 + 1 steps we will end 

up with M = ( z: ). We can then again write 

m2 = q3m3 + m4 and after at most d2 - d3 + 1 steps we 

will have M = ( z: ). At this point it is easily rec- 

ognized that our algorithm corresponds to  the classical 
euclidean algorithm for computing the gratest common 
divisor of two polynomials. This means that after the 
last step we will have M = m with m =GCD(ml, m2) 

and that our condition for observability is equivalent to 
asking that m is a constant, equivalently that ml and 
m2 are coprime polynomials. 

3.2 Controllability 
A matrix is left prime if and only if its transpose is right 
prime; given the algorithm from the preceding section 
it is therefore easy to build a procedure L P R  which 
checks whether a matrix R is left prime (equivalently 
whether ker(R( 6)) is controllable under the assump- 
tions of theorem 1). We would have 

CR,c t r I=LPR(R)  ; 

M = R ~ ;  

R = M ~ ;  
C M , c t r I = R P R ( M ) ;  

We know however that left primeness is equivalent to 
controllability only in case R is a full rank matrix; to 
check controllability in the general case we will have to 
verify the conditions of theorem 3. In order to  sketch 
an algorithm that does so let us make two remarks: 

1. If L P R  returns ctr=false than the matrix R 
which is returned is very close to the column 
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proper form of the original R. In fact, we see 
that in case left primeness is not verified than 
the algorithm stops when the highest column co- 
efficient vectors of all columns with degree higher 
than 0 are linearly independent; as for degree 0 
vectors, instead, we always check their rank but 
not their independence so we can’t be assured 
that they are a linearly independent set. 

The columns with degree higher than 0 therefore 
already satisfy the property that defines the col- 
umn proper form of a matrix R and all one needs 
to do to actually get the column proper form is 
replace the degree 0 columns of the returned R 
with a basis for the R-vector space they gener- 
ate. We call R=COLPRP(R) a procedure that 
brings the returned R into column proper form 
in the way described above. 

2. If R is in column proper form than the number 
of its columns is equal to the rank of the original 
matrix R. In case such a rank is equal to the row 
dimension of R than it means that R is of full 
row rank and that the test performed by LPR 
was necessary and sufficient for controllability. 

In case the rank is smaller than the rowdimension 
of R than we apply condition 4 of theorem 3 to 
check controllability. Having in hand the column 
proper form of R, equivalently a minimal gener- 
ating set for the module spanned by the columns 
of R, we just need to check whether such a matrix 
is right prime and conclude controllability. 

The above remarks lead to the following algorithm for 
checking controllability: 

CR, ctrl =CTRB (R) ; 

CR,ctrl=LPR(R) ; 
i f  (not ctr)  then 

R=COLPRP ( R )  ; 
if (rowdim(R)>coldim(R)) then 

CR, ctrl =RPR(R) ; 

endif 

endif 

Example 7 : Assume R = ( T I  rg) for T I ,  rg polyno- 
mials. Again as in the observability case our algorithm 
will end up building r =GCD(r1, rg) and conclude con- 
trollability if the two polynomials are coprime. 
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Example 6 : -B ), cor- 
responding to the situation in which we want to test 
controllability of a state space system. In much the 
same way as done for observability one sees that 
our algorithm is equivalent to an efficient check of 
the usual rank condition on the controllability matrix 
(B, AB, .  . . An-IB). 

Assume R = ( [ I  - A 
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