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Abstract 

This paper deals with dissipative dynamical systems. 
Dissipative dynamical systems can be used as models 
for physical phenomena in which energy exchange with 
their environment plays a role. In a dissipative dynam- 
ical system, the book-keeping of energy is done via the 
supply rate and a storage funct ion.  The supply rate is 
the rate at which energy flows into the system, a stor- 
age function is a function that measures the amount of 
enery that is stored inside the system. In this paper, 
we will argue that for linear dynamical systems with 
quadratic supply rates, any  storage function can be rep- 
resented as a quadratic func t ion  of any state variable of 
a linear dynamical system whose dynamics is obtained 
by combining the dynamics of the original system, and 
the dynamics of the supply rate. 

1 Introduction 

The concept of dissipativeness is of much interest in 
physics and engineering. Whereas dynamical systems 
are used to model physical phenomena that evolve with 
time, dissipative dynamical systems can be used as 
models for physical phenomena in which also energy 
exchange with their environment plays a role. Typi- 
cal examples of dissipative dynamical systems are are 
electrical circuits, in which part of the electric and mag- 
netic energy is dissipated in the resistors in the form of 
heat, and (visco-)elastic mechanical systems in which 
friction causes a similar loss of energy. For earlier work 
on dissipative systems, we refer to [8], [4], [?I. 
In a dissipative dynamical system, the book-keeping of 
energy is done via the supply rate and a storage func- 
tion. The supply rate is the rate at which energy flows 
into the system, a storage function is a function that 
measures the amount of enery that is stored inside the 
system. These functions are related via the dissipation 
inequality, which states that along time trajectories of 
the dynamical system the supply rate does not exceed 

0-7803-3970-8197 $10.00 0 1997 IEEE 

the increase in storage. This expresses the assumption 
that a system cannot store more energy than is sup- 
plied to it from the outside. The difference between 
the internally stored and supplied energy is the dissi- 
pated energy. 

The storage function measures the amount of energy 
that is stored inside the system at any instant of time. 
In other words, storage functions do the book-keeping 
of internally stored energy. We expect that the value 
of the storage function at a particular time-instant de- 
pends only on the past of the time-trajectories through 
the memory of the system. A standard way to express 
the memory of a time trajectory of a system is by using 
the notion of state. Thus we should expect that stor- 
age functions are functions of the state variable of the 
system. 

In this paper, we will indeed prove the general state- 
ment that for linear dynamical systems with quadratic 
supply rates, any storage function can be represented 
as a quadratic function of any  state variable of a lin- 
ear dynamical system whose dynamics is obtained by 
combining the dynamics of the original system, and the 
dynamics of the supply rate. 

A few words on notation. In this paper, C-(R, RQ) de- 
notes the set of all infinitely often differentiable func- 
tions w : R -+ RQ; 9 ( R ,  RQ) denotes the subset of those 
w E em(R, RQ) that have compact support. Given two 
column vectors ;1; and y, the column vector obtained 
by stacking z over y is denoted by col(z,y). Like- 
wise, for given matrices A and B with the same number 
of columns, col(A, B )  denotes the matrix obtained by 
stacking A over B. 

2 Linear differential systems 

We will first introduce some basic facts from the behav- 
ioral approach to linear dynamical systems. For more 
details we refere to [ll], [lo], [9]. 
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This set is called the manzfest behavior of (2.3). If, 
for a given 23 E CQ, the manifest behavior (2.4) of (2.3) 
equals 23, then (2.3) is called a latent variable represen- 
tation of 23. The latent variable representation is called 
observable if the latent variable is uniquely determined 
by the manifest variable, i.e., if ( w , ! ~ ) ,  (w ,&)  E 93f 
implies that = e,. It can be shown that (2.3) is 
observable iff rank(M(X)) = d for all X E @. 

A system 23 E Cq is said to be controllable if for each 
~ 1 , 2 0 2  E 23 there exists a w E %3 and a t' 2 0 such that 
w( t )  = w l ( t )  for t < 0 and w( t )  = wz(t - t ' )  for t 2 t'. 
It can be shown that 23 is controllable iff its kernel 
representation satisfies rank(R(X)) = rank(@ for all 
X E C. Controllable systems are exactly those that 
admit image representations. More concretely, 93 E CQ 
is controllable iff there exists an M E IwQx*[[] such that 
23 is the manifest behavior of a latent variable model 
of the form 

d 
dt w = M(- )e  (2.5) 

For obvious reasons, (2.5) is called an image representa- 
tion of 23. An image representation is called observable 
if it is observable as a latent variable representation. 
Hence, the image representation (2.5) is observable iff 
rank(M(X)) = d for all X E C. A controllable system 
always has an observable image representation. 

3 Quadratic differential forms 

An important role in this paper is played by quadratic 
differential forms and two-variable polynomial matri- 
ces. These are studied extensively in [12]. In this sec- 
tion we give a brief review. 

We denote by RQx*[C,qJ the set of square, real poly- 
nomial matrices in the (commuting) indeterminates [ 
and 77, i.e., expressions of the form 

The sum in (3.1) ranges over the non-negative integers 
and is assumed to be finite, and @ k t  E RQxq. Such 
a CP induces a quadratic differential form (QDF) Q+ : 
P'(R,  Rq) -+ P ( R ,  R) defined by 

If+ E iRQxQ[[5,77] satisfiesCP(<,v) = +*([5,q) := C P ( Q , C ) ~  
then Q, will be called symmetric. The symmetric el- 
ements of EQxQ[[5,q]  will be denoted by RZxQ[[5,q]. 



Clearly QQ = Q@* = Q L ( @ + ~ . )  This shows that when 
considering quadratic dib'erential forms we can restrict 
attention to @'s in RZxQ[<,q]. It is easily seen that 
@ E Rq"q[<,q] is symmetric iff @Ee = @.dk for all IC and 
e. 

Associated with @ E R~"q[<,q] we form the symmetric 
matrix 

@ =  (3.3) 

Note that, although 6 is an infinite matrix, all but a 
finite number of its elements are zero. We can factor 
6 as 6 = M T Z ~ M ,  with M an infinite matrix having 
a finite number of rows and all but a finite number of 
elements equal to zero, and EM a signature matrix, i.e., 
a matrix of the form 

This factorization leads, after pre-multiplication by 
( I ,  I,( IqC2 . . .) and post-multiplication by 
col(I, I q q  Iqq2 ...), to a factorization of Q as 
@(<,77) = M T ( C ) C ~ M ( q ) .  This decomposition is not 
unique but if we take M full row rank, then EM will 
be unique. We will denote this C M  as Ea. In this 
case, the resulting r+ is the number of positive eigen- 
values and T-  the number of negative eigenvalues of 
&. Any factorization @(<,q)  = MT(<)&M(q) will be 
called a canonical factorization of @. In such a factor- 
ization, the rows of the polynomial matrix M(E) are 
linearly independent over R. Of course, a canonical 
factorization is not unique. However, they can all be 
obtained from one by replacing M ( [ )  by UM([) with 
U E Rrank(6)Xrank(6) such that UTC+U = E@. Also 
note that if @(<,q)  = MT(<)C+M(q) is a canonical 
factorization, and @(C,q) = M , T ( C ) C M ~ M ~ ( ~ )  an ar- 
bitrary factorization, then there exists a real contant 
matrix H such that M ( < )  = H M I ( < ) .  

The main motivation for identifying QDF's with two- 
variable polynomial matrices is, that they allow a very 
convenient calculus. One example of this is differen- 
tiation. If Q+ is a QDF, so will be $Q+ defined 

by (&Q@)(w)  := w. It is easily checked that 

ZQO = Q; with @ (C,V) := (C + ~ ) @ ( C , V ) .  SUP- 
pose now that @ E R;"q[C,q] is given. An important 
question is: does there exist Q E Rzxq[<,q] such that 
;I= @, equivalently &Qq = Qa? Obviously such @ 

Cl 
0 

exists iff ch contains a factor C + q. Under this condi- 
tion we can simply take @(<,q)  = &@(<,q).  It was 
shown in [12] that @ contains a factor < + q iff a@ = 0, 
where a@ is the one-variable polynomial matrix defined 
by a@(<) := @(-[,[). It was also proven in [12] that 
a@ = 0 iff s-", Q@(w)dt = 0 for all w E 53(R, RQ). 

If @ E Rzxq[<,q], we will say @ >_ 0 if Q e ( w )  2 0 
for all w E Cco(R,Rq). It was shown in [la] that 
ch 2 0 iff there exists D E R*"q[t] such that @(<,q)  = 
D'(C)D(q), equivalently &@(to) = llD(&)~111~ for all 
w E C"O(R,R*). In addition, we need the concept 
of average non-negativity: we will say J Q Q  2 0 if s-", Q a ( w ) d t  2 0 for all w E 9 ( R ,  Rg). Again, it was 
shown in [la] that ~ Q Q  >_ 0 iff ( a @ ) ( i w )  2 0 for all 
w E R. In turn, this condition is equivalent with the 
existence of polynomial spectral factorizations of a@: 
( a @ ) ( i w )  2 0 iff there exists D E Rqxq[[] such that 
(a@)([) = DT(-W(5)  (see PI, [21). 

4 Dissipative systems 

Let !I3 E 2 4  be a controllable linear differential sys- 
tem. Let R ( $ ) w  = 0 and w = M ( $ ) e  be a ker- 
nel and an observable image representation, respec- 
tively, of 'L3. Here, R E RgX9[[] and M E Rqxd. 

In addition, consider the quadratic differential form 
Q+ : Ca3(R,Rq) -+ Cw(R,R) induced by the sym- 
metric two-variable polynomial matrix ch; Q+ is called 
the supply rate. Intuitively, we think of &@(to) as the 
power going into the physical system 23. In many ap- 
plications, the power will indeed be a quadratic expres- 
sion involving the system variables and its higher order 
derivatives. For example, in mechanical systems, it is xk Fk % with 8)) the external force acting on, and q k  
the position of the k-th pointmass; in electrical circuits 
it is X I ,  V k I k  with v k  the potential and I h  the current 
into the circuit at the k-th terminal. The system !I3 is 
called dissipative with respect to the supply rate Qa if 
along trajectories that start at  rest and bring the sys- 
tem back to rest, the total amount of energy flowing 
into the system is non-negative: the system dissipates 
energy. 

Definition 4.1 : 
J-", Q+(w)dt 2 0 for all w E !I3 n 9 ( R ,  Rq). 

(23,Qa) is called dissipative if 

Of course, at some times t the power Q(w) ( t )  might 
be positive: energy is flowing into the system; at other 
times, it might be negative, energy is flowing out of 
the system. This outflow is possible because energy 
is stored. However, because of dissipation, the rate of 
increase of the storage can not exceed the supply. The 
interaction between supply, storage, and dissipation is 
formalized as follows: 
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Definition 4.2 : 
R!xq[C,77] is called a 
for all w E 23 n C."(R,Rq) 

The QDF &A induce' 
dissipation function fc 
w E 23nnoo(R,RQ) a1 
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An image representation of the system is given by 
col(q, F )  = M ( & ) t ,  with M equal to  

Obviously, due to  damping, the system is dissi- 
pative. This indeed follows from the fact that 
MT(- iw)~( - iw , iw)M( iu )  = (D + D')w2 2 0. A 
storage function is given by Qq(ql  F )  = f ( 3 ) ' M g  + 
i qTKq .  This corresponds to  taking 

Indeed, for all (q l  F )  satifying (4.3) we have 
$($ (%) 'M% + iqTKq) = FTg - i ( g ) T ( D  + 
D')$ 5 FT%. It also follows that a dissipation func- 
tion is given by & A ( q , F )  = $($)'(D + D')%. This 
corresponds to taking 

Obviously, ( Q Q ,  QQ, &A) is matched on %. 

5 State representations 

A latent variable model R'(-$)w = M ( d ) x  (with the 
latent variable denoted by x this time) is said to be a 
state model if whenever ( w I , x ~ )  and (w2,zz) are ele- 
ments of the full behavior 2335, and x l ( 0 )  = zz(O), then 
the concatenation (w, x )  := ( w l ,  X I )  A (wz, x2) will also 
satisfy R'( &)w = M (  -$)x. Since this concatenation 
need not be Coo, it need only be a weak solution, that 
is a solution in the sense of distributions. 

flt 

Let 23 E Cq. A latent variable representation of 23 is 
called a state representation of 23 if it is a state model. 
Given w1, w2 E 23, to decide whether w1 A w2 E 23, we 
can look at  the value of the state variables x1 and x2 
at time t = 0. If x l ( 0 )  = x2(0), then w1 A w2 E 23. In 
other words, to decide whether a future continuation 

with K ,  D 7  E = KT O, + *' O, is possible within 23, not the whole past needs to be 
and = MT O' he position vector and force 
vector F take their v in Rk. Such second order 
equations occur frequl as models of (visco-)elastic 

remembered, but only the present value of the state 
is relevant, Thus parametrizes the memory of the 
SySLeIn. mechanical systems: 1 As -manifest variable take w = 

An important role is played by latent variable models 
of the form 

col(q,F). As supply we take Q a ( q , F )  = F ' 2 .  
This corresponds to  ti 

dx 
dt 

GW + F x +  E- = 0 



Here, E ,  F ,  and G are real constant matrices. The 
important feature of (5.1) is that it is an (implicit) 
differential equation containing derivatives of order at 
most one in x and zero in w. It was shown in [6] that 
any latent variable model of the form (5.1) is a state 
space model. Conversely, every state model R'(5)w = 
M ( g ) z  is equivalent to  a representation of the form 
(5.1) in the sense that their full behaviors %f coincide. 
This means that state representations of a given % of 
the form (5.1) are in fact all state representations of 
%: given a state representation %f of 93, it will have 
a kernel representation of the type (5.1) and hence, 
without loss of generality we can assume that it is of 
this form. In the case of state models, we call x the 
state or the vector of state variables. The number of 
state variables, i.e., the size of x ,  is called the dynamic 
order of the model. This number is denoted by n. 

6 Main results 

In this section we show that storage functions can al- 
ways be represented as quadratic functions of a state 
variable, and that dissipation functions can always be 
represented as quadratic functions of a state variable, 
jointly with the manifest variable of a given system. 

We will first treat the case that !B = Co3(R,RQ). Let 
@ E Rzx4'[[,q]. Assume that ( P ( R , R q ) , Q a )  is dis- 
sipative. It turns out that every storage function is 
a quadratic function of any state variable of a par- 
ticular system !& obtained from the dynamics of @. 
Also, every dissipation function is a quadratic func- 
tion of any state variable, jointly with the manifest 
variable of this system %a. We now explain what we 
mean by B e .  The system %a is defined as follows. 
Let a(<, q)  = M T ( [ ) & M ( q )  be a canonical factoriza- 
tion of a, with & E R"". Now, consider the system 
B e  E C' (with manifest variable w E R') with image 
representation 

d 
dt 

w = M(-)w 

Theorem 6.1 : Let Gw + F x  + E 2  = 0 be a state 
representation of Ba, with ful l  behavior %f. Let  Qq 
be a storage funct ion f o r  (@Y'(R,Rq),Qa). T h e n  there 
exists K = KT E RnXn such that col(M(&)w,x) E %f 
implies QQ(w) = x T K x .  Furthermore, if &a i s  a dissi- 
pation funct ion f o r  (Co3(R, Rq), &a), then there exists 
L = LT E R(n+q)x(n+Q) such thatcol(M($)w,x)  E %f 
implies 

46 

Next, we treat the general case. Let 23 E Cq be an 
arbitrary controllable system. Let E IW$'q[(]. As- 
sume that (%,Qa) is dissipative. Also in this case, 
every storage function turns out to  be a quadratic 
function of any state variable, and every dissipation 
function a quadratic function of any state variable, 
jointly with the manifest variable of a system %a. This 
time, however, the system %a is obtained by combin- 
ing the dynamics of !I3 and @. Again, let (a([,q) = 
M T ( ( ) & M ( q )  be a canonical factorization of @, with 
Ea E R"'. Now, consider the system %a E C' (with 
manifest variable U E R') represented by 

(6.2) 
d 
d t  w = M(-)w, w E 23 

Theorem 6.2 : Let Gv + F x  + E 2  = 0 be a state 
representation of %a, with full  behavior 2323s. Let  
QQ be a storage funct ion f o r  (93, &a).  T h e n  there 
exists K = KT E RnXn such that w E % and 
col(M(-$)w,z) E %f implies QQ(w) = xTKx. I f  QA 
is  a dissipation funct ion f o r  (!B,Qa), t hen  there ex- 
ists  L = LT E R(n+d)x(n+d) such that w E % and 
col(M($)w,x) E %f implies 

Finally, we discuss the special case that the supply rate 
QO is first order in w, i.e., Q+(w) = wTPw, with 
P = PT E R'Jx'J. Let % E CQ be controllable, and 
assume that (%,&a) is dissipative. In this case every 
storage function is simply a quadratic fuction of any 
state variable of %, and every dissipation function is a 
quadratic function of any state variable of !B, jointly 
with the manifest variable of % . 

Corollary 6.3 : Let  Gw + F x  + E 2  = 0 be a state 
representation of 93, with full  behavior Bf. Let  QQ be 
a storage funct ion f o r  (B, &a). T h e n  there exists K = 
K T  E Rnxn such that col(w,x) E 23f implies QQ(w) = 
x T K x .  If &A is  a dissipation funct ion f o r  (%,Q+) ,  
then there there exists L = LT E R(n+d)x(n+d) such 
that col(w, x) E 13f implies 

Example 6.4 : Consider the mechanical system 
(4.3) together with the supply rate Qa. A canonical 
factorization of @(C,  q)  is given by 
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