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Abstract 

Given a dynamical system whose describing variables 
either can be measured or are unaccessible, the prob- 
lem of estimating the trajectories of these latter from 
the knowledge of the former is investigated. Condi- 
tions for the existence of asymptotic observers, in par- 
ticular (strictly) proper ones, as well as a complete 
parametrization of all possible observers, are provided. 
These results are then specialized to the case of state- 
space models. 

Finally, the above issues are also analysed in the con- 
text of dynamical systems with latent variables. 
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1 Introduction 

In the last decade the behavioral point of view [4] 
has received an increasingly broader acceptance as an 
approach for modelling dynamical systems, and now 
is generally viewed as a foundational framework for 
analysing the trajectories a system produces according 
to its evolution laws. One of the reasons of its success 
has to be looked for in the fact that it does not assume 
the input/output point of view for describing how a 
system interacts with its environment, but focuses its 
interest on the set of system trajectories, the behawzor, 
and hence on the mathematical model describing the 
relations among the system variables. By assuming 
this point of view, important aspects of the classical 
system theory have been translated and solved, thus 
leading to interesting results, which are powerful gener- 
alizations of well-known theorems obtained within the 
input/output or state-space contexts. 

Although several issues have already been andysed 
in some detail, the important question of estimating 
some system variables, not available from measure- 

ments, from others, which are measured, is still un- 
solved and the aim of this contribution is to provide an 
analysis of the problem. 

2 Observability and detectability 

Consider a dynamical system C = (R. Rwlfwz. %). 
whose behavior trajectories (w1, w2) satisfy a system 
of differential equations 

with R, E R[[]rxwz and w, := dimw,. i = 1.2.  
Throughout the paper we make the assumption that 
[ Rz -RI] has full row rank r. Also, we assume that 
the trajectories (w1,wZ) belong to d""(R.R ). 
the space of locally integrable functions from R to 

, equipped with the topology which ensures that 

w 1  +wz 

R V l + W Z  

(Wln,WZn) ---+ 0 iff h: /I(Wln,w2n)II d t  
for all t o ,  tl E Iw. 

0 
n-+m 

If w1 is measured and w2 is unknown, the goal is that of 
determining necessary and sufficient conditions for the 
existence of an estimator of w2 from the knowledge of 
w1, such that the estimation error goes to zero asymp- 
totically. As a first step we introduce observability and 
detectability notions. 

Definition In the dynamical system C = 
(R, RwltV2, %), with behavior 23 described by 
(I), w2 is said to be 

observable from w1, if (wl, wz), (w1, w a )  E Is implies 
w2 = w2; 

detectable from wl,  if ( ~ 1 ~ ~ 2 ) .  (w1,Wa) E 23 implies 
w2(t) - *2(t) t-)W- 0. 

Proposition 2.1 Given a dynamical system C = 

(R, Rwl+wz, Is), with behavior Is described as in (1). 
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i) w2 is observable from w1 if and only if R2 is a right 
prime polynomial matrix, or, equivalently, if and only 
if Rz(X) has full column rank for all X E e; 
ii) w2 is detectable from w1 if and only if Rz is full 
column rank and the g.c.d. of its maximal order minors 
is Hurwitz, or, equivalently, if and only if R2(X) has full 
column rank for all X E 

PROOF (i) Suppose that R2 is right prime and let 
U be a unimodular matrix such that U(<)R2(<) = 

:= (6 E : %e(<) 2 0). 

.-, ~ 

[I:] . Once we set := U(<)R1(<), then 
R 

23 = {(w1,w2) E (Rwl+wz) : Dl(&)wl  = 0 and 

w2 = N I (  &)wl}. Consequently, w2 is observable from 
w1. On the other hand, if R2 were not right prime, its 
kernel would include some nonzero trajectory v. So, 
(w1,w2) E B would imply (w1,wz + v) E 93, thus 
ruling out observability. 

(ii) Follows the same lines of the previous one, upon 
realizing that w2 is detectable from w1 iff ker (R2(&)) 
is a stable autonomous behavior. N 

The previous definitions are consistent with the well- 
known definitions of observability and detectability for 
state space models. In fact, given an (n-dimensional) 
state space model, with m inputs and p outputs 

dx 
- = Fx+Gu,  
dt 
y = Hx+Ju.  (3) 

the set of its trajectories is equivalently described, in 
behavioral terms, as the set B of all (x, U, y) satisfying 

By the previous proposition, x is observable (de- 

tectable) from (u,y) if and only if rank 

n,V 6 E e(V 6 E e+). The previous conditions are the 
well-know observability and detectability PBH tests for 
state space models. 

[eIniFl = 

3 Asymptotic observers design 

Definition Consider the dynamical system C = (R, 
,B), with behavior !?3 described as in (l), and 

let Y and Q be two polynomial matrices of suitable 
dimensions. We call 

RWl +w 

(5) 

an asymptotic observer of w2 from w1 if for every 
( ~ 1 ~ ~ 2 )  E B and every w z  s.t. (wl,w2) satisfies ( 5 ) ,  

we have A ( & ) ( w ~  - w2) = 0 for some Hurwitz ma- 
trix A E R[E]wZXwZ (i.e. a nonsingular matrix whose 
determinant is a Hurwitz polynomial). 

The difference variable e := w~ - w2 represents the 
estimation error of the asymptotic observer. Let Be 
denote its behavior. It is clear that if (5) is an asymp- 
totic observer, then the set of admissible estimation 
errors is a subset of ker (A(&)).  In the sequel we will 
choose A so that Be = kerA($) and refer to the de- 
terminant of A as to the error-dynamics characteristic 
polynomial (see [ 5 ] ) .  

Proposition 3.1 Given a dynamical system C = 

(R, RwlfW2, B), whose behavior !I3 is described as in 
(l), a necessary and sufficient condition for the exis- 
tence of an asymptotic observer of w2 from w1 is that 
w2 is detectable from w1. 

PROOF Assume, first, that there exists an asymptotic 
observer of w2 from w1. If w2 were not detectable 
from w1, there would be (w1,wa) and (w1,wz) in 13 
such that w2(t) - w2(t) does not estinguish as t goes 
to +CO. If w2 is an estimate provided by the asymp- 
totic observer corresponding to w1, then it should be 
wz(t) - w2(t) 4 0 as well as wz(t) - wz(t) -+ 0, 
for t 4 +CO, and, hence, [Wz(t) - Wz(t)] = [ ~ 2 ( t )  - 

wz(t)] - [W2(t) - wa(t)] should asymptotically estin- 
guish, a contradiction. 

To show the converse, assume that R2 has the required 
properties. Then, there exists a unimodular matrix U 

such that U(()R2(6) = , with 0 2  Hurwitz. 

:= U(J)RI([), we obtain for the Once we set 

behavior the equivalent description 

d 
dt 

0 = Di(-)Wl 

Clearly, Dz($)w2 = Nl($)wl is an asymptotic ob- 
N server of w2 from w1, with A = Dz. 

From now on we will assume that w2 is detectable from 
w1 and that the plant C is represented as in ( 6 ) t ( 7 ) ,  
with Dz Hurwitz and D1 having full row rank dl. The 
following technical lemma, whose simple proof is omit- 
ted for sake of brevity, allows to take a first step toward 
a complete parametrization of all asymptotic observers. 

Lemma 3.2 Given any asymptotic observer (5) there 
exists an equivalent one with Q full row rank. 

Proposition 3.3 Consider a plant E= whose behavior 
B is described as in (6)+(7), with D2 Hurwitz and D1 
full row rank, and let P and Q be polynomial matrices 
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of suitable dimensions, with Q full row rank. Then 
Q(%)Wz = P($)wl, is an asymptotic observer of w2 
from w1 if and only if there exists a Hurwitz matrix 
Y E ~ [ E ] ” z X w z  and a polynomial matrix X E ~ [ [ I U z X d 1  
such that 

Moreover, the set Be of all possible error trajectories 
coincides with ker ( Q ( $ ) ) ,  or, equivalently, A = Q. 

PROOF Suppose, first, that Q( $)w2 = P( $)w1, with 
Q full row rank, is an asymptotic observer of wg from 
w1. If (w1, w2) is a behavior trajectory and (wl,W2) 
a trajectory correspondingly provided by the observer, 
e := w2 - w z  E Be, and for every v E ker ( Q ( & ) ) ,  
the trajectory (w1,wz + v) is also admissible for the 
observer. Therefore e - v, and hence v, must be error 
trajectories, thus showing that ker (Q($ ) )  C Be. As 
the zero error trajectory e = 0 possibly occurs, for 
every (w1,w2) E 23 it must be Q($)w~ = P($)wl, 
and therefore there exist polynomial matrices X and 
Y such that (8) holds true. Moreover, as ker (&($)) 
must be autonomous and stable, Y must be nonsingular 
Hurwitz. 

Assume, now, that P and Q satisfy (8) for suit- 
able X and Y ,  with Y Hurwitz. Then, for every 
( W I , W ~ )  E 23 and every estimate w2, correspond- 
ingly determined from the observer equations, one gets 
Q($ ) (w~  - w2) = -(XNl)($)wl = 0. This imme- 
diately proves that !Be,  as a subset of ker ( Q ( $ ) ) ,  is 
a stable autonomous behavior, and hence the observer 
is an asymptotic one. Moreover, as we have already 
proved that ker ( Q ( - $ ) )  C Be, then !Be coincides with 
ker ( Q  ( $1) . 

REMARK Notice that if !23 is described as in (l), 
with w2 detectable from w1, the asymptotic observers 
of wg are those and only those that can be ex- 
pressed as in ( 5 )  for some polynomial pair (&((‘), P(( ) ) ,  
with & ( E )  Hurwitz, satisfying [ Q ( [ )  -P((‘)] = 

T((‘) [I&([) 

Corollary 3.4 Consider a dynamical system whose 
behavior 93 is described as in (6)+(7), with 0 2  Hurwitz 
and D1 full row rank. If dz(E) := det D2([), then 

i) for every Hurwitz polynomial 5 E R[[] with 
d2 I 5, there exists an asymptotic observer with error- 
dynamics characteristic polynomial det A = 6; 

RI([)] for some polynomial T([ ) .  

ii) for every asymptotic observer of w2 from wl,  
the error-dynamics characteristic polynomial det A is 
a Hurwitz polynomial satisfj.ing d2 1 det A. 

PROOF Easily follows from Proposition 3.3.  

As in the previous section, it is interesting to see how 

the above results apply to the case of state-space mod- 
els. Indeed, if we consider the behavior description 
given in (4), and assume that ( F , H )  is a detectable 
pair, we can apply the previous reasonings and obtain 
an asymptotic state estimator described by 

where matrices (Q, Pu, Py) satisfy the fol- 
lowing constraints: i) & ( E )  is nonsingu- 
lar Hurwitz; ii) [ Q ( [ )  -Pu([) -P,([)] = 

It is easily seen that among all asymptotic observers. 
there are, in particular, Luenberger (full-order feed- 
back) observers. In order to obtain them it is suffi- 
cient to assume in (ii) Y ( [ )  = In and x(<) = -L, thus 
getting 

This satisfies condition (i) if F + LH is asymptotically 
stable, and its estimation error dynamics matrix. A. 
coincides with [In - F - L H .  Such an observer has a 
strictly proper rational transfer matrix W ( [ )  := ([In - 
F - LH)-’ [ G - L ] .  

4 Proper asymptotic observers 

Proposition 3.3 provides a useful parametrization of 
the asymptotic observers for a system described as 
in (6)+(7). This parametrization can be fruitfully 
exploited to investigate further relevant issues as. in 
particular, the existence of (strictly) proper asymp- 
totic observers, namely asymptotic observers with 
(strictly) proper transfer matrix, providing at each 
time t an estimate w2(t) which can be obtained by 
means of a non-anticipating algorithm. Clearly. this 
is possible if and only if there exists a matrix pair 
(X([),Y([)), with Y Hurwitz, such that W ( [ )  .= 

proper rational. 

As shown in the following proposition, autonomous be- 
haviors described as in (6)+(7) always admit proper 
asymptotic observers. 

Proposition 4.1 Let C be a dynamical system, whose 
behavior 93 is described as in (6)+(7), with D2 Hur- 
witz and D1 of full row rank dl. If B is autonomous 
or, equivalently, D1 is a square matrix, there exists a 
(strictly) proper estimator of w2 from w1. 

PROOF Withoutloss of generality, assume that D1 is 
row reduced, with row degrees p l ,  p2,. . . , pdl. Let Y 

[y(r)D2(r)l-1[Y(J)N ( E )  + X(JID1 ([)I is (strictly) 
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be any Hurwitz matrix such that YD2 is row reduced 
with row degrees all greater or equal to maxipi - 1 
(maxi pi). By applying the matrix division algorithm, 
onecanexpress YN1 as Y ( [ ) N l ( J )  = A(J)Dl(C)+R(J), 
with A and R polynomial matrices and R satisfying 
deg i th  column of R < maxi pi, and hence deg i t h  row 
of R 5 degi th  row of YD:!, (degi t h  row of R < degi 
t h  row of YDa), V i. Consequently, ( Y D Z ) - ~ [ Y N I  - 
AD11 = (YDz)-lR is a proper (strictly proper) esti- 
mator of w2 from w1. H 

When '13 is an arbitrary (not necessarily autonomous) 
behavior, the problem is more involved. In order 
to  solve it, we introduce the (unrestrictive) assump- 
tion that the behavior '13 is described as in (l), with 
[R2 - R I ]  E ~ [ ~ ] r x ( w z + w l ) ,  r = wl+dl ,  arow reduced 
matrix with row degrees hl ,  . . . , h,. The first step to- 
ward the solution is given by the following lemma where 
conditions for the existence of proper/strictly proper 
observers (not necessarily asymptotic) are given. 

Lemma 4.2 Consider a dynamical system C whose 
behavior '13 is described as in (11, with w2 detectable 
from w1, and let [ R2hr -Rlhr] denote the leading 
row coefficient matrix of [ RZ 

i) A necessary and sufficient condition for the existence 
of an observer of w2 from w1 with proper transfer ma- 
trix W(c)  is that R2hr has full column rank w ~ .  

ii) A necessary and sufficient condition for the ex- 
istence of an observer of w2 from w1 with strictly 
proper transfer matrix W ( ( )  is that there exists S E 

-RI 1 .  

~ ~ 2 X ( w z + d i )  
s.t. S [ RZhr -Rlhr ] = [ L z  01. 

PROOF (i) Assume, first, that there exists an ob- 
server with proper transfer matrix W(J) and let T(5) = 
[&(<)I  be a polynomial matrix s.t. [ & ( E )  I - P(J)]  := 

T(J)[Rz(E) 1 - Ri(J)] satisfies W(J) = Q-'(J)P(J). It 
entails no loss of generality assuming that [ & ( E )  I - 
E'(()] is row-reduced with row degrees k l ,  k2, . . . , k,, 
and leading row coefficient matrix [ Qhr -Phr 1 .  By 
the properness assumption on W ,  Qhr is nonsingular, 
moreover, the row-properness of [ R2 -RI ] implies 

ki = {degtih + deg(hth row of [ R2 - I l l ] ) } .  
h:tih(E)#o 

Let S be the real matrix whose ( i , j ) th  entry coincides 
with the leading coefficient of t i j ( < )  when degtij + 
deg(jth row of [ R2 - R I ] )  = Ici and is zero other- 
wise. Clearly, Qhr = SR2hr thus proving that R2hr 
has full column rank. 

Conversely, suppose that R2hr has full column rank 
and let S = [sij] be any of its left inverses. Set h := 
maxi hi and introduce the polynomial matrix T ( J )  := 

a3 1. Then [ & ( E )  I - WJ)l := T(E)[R2(E) I - 
Rl(J)] is a row-reduced matrix (with all row degrees 
[S. .Zh--hj 

equal to h)  and the first w2 x w2 submatrix of its lead- 
ing row coefficient matrix coincides with Iwz .  Thus, 
W(<)  = Q-l(E)P([) is a proper rational matrix. 

(ii) The proof follows the same lines of the previous 
one. H 

Proposition 4.3 Consider a dynamical system C 
whose behavior !I3 is described as in (l) ,  with wz de- 
tectable from w ~ .  If there exists a proper observer of 
w2 from w1 then there exists a proper asymptotic ob- 
server of w2 from w1. 

PROOF Assume, as in the previous lemma, that 
[ R2 - R I ]  E R[<]rx(wz+wl) is row reduced with row 
degrees hl ,  . . . , h, and leading row coefficient matrix 
[ RZhr -Rlhr]. Since there exists a proper observer 
of w2 from w1, R z ~ , ~  has rank W Z .  Set, now, 

[-hi 

[A,  -RI] := [ ... :-.,I [Rz -R11. 

Clearly, [ R 2  -RI ]  is a polynomial matrix in the neg- 
ative powers of J, and the coefficient matrix of the 
constant term coincides with [ Rzhr -Rlhr 1.  Let 
U E R[J-'Irxr be a unimodular matrix (in R(,.$-l]) 
that reduces R z  to  its Hermite form (still in R[,.$-']): 
URz = [ 21 . Clearly, the coefficient matrix of the 

constant terms in &, &, must be nonsingular. Also, 
by the detectability assumption, det 62 E R[E-l] can 
be expressed as det 62 = d 2 ( r ) / t K ,  with dz(J) E El[(] 
a Hurwitz polynomial of degree K .  

Corresponding to T := [ Iw2 01 U ,  the matrix pair 
[Q I -F]  := f[& I -AI] provides a left matrix fraction 
description (over R[J-l]) of the proper transfer matrix 
W = Q-lp, and therefore there exists some nonsingu- 
lar diagonal matrix D ,  with all monomial entries. such 
that the w2 x ( w 2  + w 1 )  polynomial matrix 

(-hi 

[ Q  -P]=DT [ ... J - h r ] [ R 2  -R11 

represents a proper asymptotic observer. H 

REMARK As a consequence of the above proposition 
and lemma, once we assume that [Rz - R I ]  is row 
reduced, the existence of a proper asymptotic observer 
can be easily checked by simply verifying that RZrh has 
full column rank. 

Consider a state space model, described as in (4), with 
( F , H )  a detectable pair. Also in this case we can 
look for (strictly) proper asymptotic state estimators, 
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namely observers described by 

proper rational. 

As previously remarked, the Luenberger observer ex- 
hibits a strictly proper rational transfer matrix. So, 
the existence of a proper state observer is not an issue. 
We are interested, instead, in determining what ma- 
trices Q ,  and hence A, possibly appear in the descrip 
tion of the estimation error dynamics. The first step 
toward the solution is given by the following lemma, 
which proves that condition (iii) is satisfied if and only 
if Q-l Py is proper rational. 

Lemma 4.4 An asymptotic state observer described 
as in ( l l) ,  with matrices Q ,  P, and Py satisfying con- 
ditions (i) and (ii), is (strictly) proper i f  and only if  
Q-'PU is (strictly) proper. 

rank, the pair (X ,?)  is uniquely deterAined by the 
observer matrices Q ,  P, and Py as X ( < )  = Py(<) and 
Y(<)  = ( & ( E )  - Py(c)H)(<In - F)- l .  Consequently, 

Py(<) (H(EIn - F)- lG  + J )  , and hence Q-lP, = 
( ( In  - F)- l  G - Q-l ( t ) P y  (t) [H(& - F )  - ' G  + 4. SO, it 
is easily seen that Q-'PU is (strictly) proper whenever 
Q-lP, is. 

Pu(6) = Y ( J ) G  - X ( < ) J  = Q(c)( t In  - F)-lG - 

The converse is obvious. 

As an immediate consequence of the above lemma, the 
search for (strictly) proper asyntotic state observers is 
equivalent to  the problem of determining proper asyn- 
totic state observers for the autonomous system de- 
scribed as 

[%'$-FIX= [:ply 
This allows us to reduce ourselves to the special case of 
autonomous behaviors, previously analysed, thus get- 
ting the following result. 

Proposition 4.5 Let DelNE be a left coprime ma- 
trix fraction description over R[<] o f  H(cIn - F ) - l ,  
with De row-reduced with row indices hl ,  . . . , h,. For 
every polynomial pair (x([), Y ( ( ) )  such that Q ( ( )  := 
Y(J)(JI, - F )  + X ( t ) H  is row reduced with row de- 
grees lower bounded by max, h, - l (max, h,), there 
exists a new pair ( X ( < ) , Y ( < ) )  such that Y(<)(<I,  - 

(strictly proper) state observer for (12). 
F )  + X ( < ) H  = & ( E )  and Q(&)X = X(,)y d is a proper 

PROOF It is sufficient to observe that the set of possible 
solutions of the matrix equation Q(6)  = Y ( J ) ( J I n - F ) +  

+T(<)[-Ne(J) I De(<)], as T varies in R[clnxp, and to 
apply the same division algorithm of Proposition 4.1 to x(<) and De, thus getting x(<) = -T(<)De(c)+X(<).  
with all row degrees of X smaller than max, h,. 

X ( e W  is expressed as [Y(O I X ( 0 1  = [W) I X(E)l 

Notice that as the row indices h l ,  h2, . . . , h, are the 
well-known observabilaty indices [l, 2 ,  31 , the previous 
proposition states that it is always possible to obtain 
a state observer (11) with Q row reduced with row 
degrees lower bounded by the maximum of the observ- 
ability indices. So, these indices somehow provide a 
lower bound on the complexity of the asymptotic state 
observers. This situation reminds of an analogous one 
for the classical output feedback compensator, where 
the reachability indices are involved [2, 31. 

5 Latent variables models 

Up to now we have devoted our attention to ordinary 
dynamical systems, where all quantities involved in the 
system description can be thought of as manzfest varz- 
ables, by this meaning that they generally correspond 
to  variables of interest in the system. In several sit- 
uations, however, when writing down the laws which 
govern the system evolution one has to include also 
auxiliary variables, that play an "additional" role in 
the system decription, as the essence of the system be- 
havior is already captured by the manifest variables. 
As a consequence, we assume that latent variables are 
not measurable. 

Consider a dynamical system with latent variables [4] 
Ce whose behavior %f is described by the differential 
equation 

d d 
d t  

with dim! = 1, and assume that the vector w of exter- 

nal variables splits into two subvectors: w = 

dimw, = wz, (and R is conformably partitioned as 
R(t)  = [R2(<)I -RI(<)]), with w1 measurable, and w2 

not accessible. Also in this framework we can introduce 
the notions of observability and detectability. 

Definition For a dynamical system with latent vari- 
ables Ce, with behavior %f described by (13), w2 is 

0 observable from w1, if ( w ~ , w ~ , ! ) , ( w I , W ~ , ~ )  E % ~ f  
implies w2 = w 2 ;  

(13) R ( z ) w  = - q - ) C ,  

[::I1 

0 detectabze from w1, if (w1,~2,L),(wl,W2,f?) E % ~ f  
implies w2(t)  - w2(t )  - 0. 

As observability/detectability in the presence of L re- 

t+cc 
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quires, in particular, observability/detectability corre- 
sponding to e = 0, %f can always be described as fol- 
lows 

D2($)w2 = Nl(#)wl f LA(&)!, di 0 = D l ( & V l + L B ( &  

with D2 Hurwitz and [DlILB] full row rank. 

Proposition 5.1 Let Ce = (R,R 
dynamical system with latent variables, whose behavior 
933s is described as in (5). Then i) w2 is observable 
from w1 if and only if D2 is unimodular and 

, 523s) be a 
W l + W 2 + 1  

ii) w2 is detectable from w1 if and only if D2 is Hurwitz 
and (14) holds true. 

PROOF (i) Assume, first, that w2 is observable from 
w1. Clearly, 0 2  is unimodular, otherwise for every 
nonzero v E ker(D2($)) we would have ( w I , w ~ , ~ )  E 
!Bf + (w1,w2 + v, l )  E !Bf, thus contradicting 
the observability assumption. On the other hand, 
if ker(LB($)) would not be included in ker(LA($)), 
there would be some sequence 5 such that LB($)V = 
0 but L*(&)V # 0, and hence we would have 
(wI,w~,!) E !Bf and (wl,wz,e + 5) E %f ,  with 
w 2  # w2. The proof of the converse follows the same 
reasoning. 

(ii) Suppose, now, that w2 is detectable from w1. If 
0 2  would not be Hurwitz, ker (&($)) would include 
some sequence v which does not asymptotically es- 
tinguish, and we would have (wl,w2,t) E !Bf 3 

(w1, wz+v,e) E Bf, thus contradicting the detectabil- 
ity assumption. As in (i), if (14) would not be veri- 
fied, there would be sequences (wl, w2, t )  E !Bf and 
( w l , w ~ , t  + V) E Bf, with w2 - w2 that does not 
go to  zero asymptotically, thus contradicting the de- 
tectability assumption. The converse part is proved by 
reversing the above arguments. 

In the sequel, condition (14) will be replaced by the 
equivalent statement [4] that LA = MLB for some 
suitable polynomial matrix M .  Of course, as for or- 
dinary dynamical systems, one may look for conditions 
guaranteeing the existence of asymptotic observers of 
w2 from w1. As before, we assume that the observer 

P( $)wl,with P and Q polynomial matrices of suitable 
dimensions, and assume that the set !Be of admissible 
estimation errors is a stable autonomous behavior, i.e. 
!Be = kerA($), for some Hurwitz matrix A. 

In order to analyse this problem, we introduce 
some (unrestrictive) assumptions on the structure 

is described by some differential equation Q( $) w2 = 

of [ D l  LB] ,  namely we assume [DI LB]  - - 

[ iii :] , with L1 and D21 full row rank matrices. 

Consequently, 9335 will be described by the following set 
of differential equations: 

D2($)w2 = NI($)WI +LA(&)!, 
0 = Dll(Q)Wl + LI($)!, 
0 = & l ( & V l ,  2 

with 0 2  Hurwitz, L1 and D21 full row rank. 

Proposition 5.2 Given a dynamical system with la- 
tent variables Ce, whose behavior 93f is described as 
in (5), a necessary and sufficient condition for the exis- 
tence of an asymptotic observer of w2 from w1 is that 
w2 is detectable from w1. 

PROOF If w~ is detectable from w1, then D2 is non- 

singular Hurwitz and LA = M L B  = [ M I  M2] [ ";] 
= MI L1 for some suitable polynomial matrix M I .  We 
aim to show that D2($)w2 = ( N I  - MlDll)(-$)wl is 
an asymptotic observer of w2 from w1. By applying ( 5 )  
weget ~2(&)(w2-w2) = N ~ ( - $ ) w ~ + L A ( $ ) - ~ - ( N ~ -  

~ lDl l ) ( -$ )Wl  = (MlLl)($)t + (MlDll)($)Wl = 0, 
thus proving that the estimation error belongs to  some 
stable autonomous behavior. The proof of the converse 
follows the same lines of that in Proposition 3.1. 

As in section 4, it can be easily proved that matrix Q 
can always be assumed nonsingular square. Under this 
assumption, by applying the same kind of reasonings 
adopted to prove Proposition 3.3, we get the following 
parametrization of asymptotic observers. 

Proposition 5.3 Consider a dynamical system with 
latent variables Ce, with behavior %f described as in 
(5), 0 2  Hurwitz and LA = MIL1 for some polyno- 
mial matrix MI. If P and Q are polynomial matrices, 
with Q full row rank, then Q($)wz  = P($)wl, is an 
asymptotic observer of w2 from w1 if and only if there 
exists Y E R[<]wzxwz Hurwitz and X E R[<IWZXdl s.t. 

& ( E )  = y(W2(I) 
P(5) = Y(t)[Nl(E) - J41(C)Dll(I)l + X(W21(J) 
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