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Abstract

We set out to develop a framework for the analysis and
synthesis of discrete-time periodically time-varying sys-
tems. Adopting a behavioral approach, we define the
concept of periodicity in terms of the trajectories of
the system. We subsequently use this framework to
investigate several basic notions, such as controllabil-
ity, on the level of trajectories and also present several
techniques for associating time-invariant systems in a
behavioral way.

1 Introduction and basic definitions

Recall that in the behavioral framework a dynamical
system X is defined as a triple & = (T, W, B), where T
is the time set, W is the space of external variables, and
B is a subset of W7 called the behavior of the system.
In this paper we focus on T = Z and W = RY. We
define a system X = (Z,RY, B) to be P-periodic if its
behavior B satisfies

o’B=8.
Here o : (R?)% — (R9)? is the backward shift:
(ow)(t) = w(t +1).

Of course, this also defines o* for k € Z. In particular,
we call =1 the forward shift. As usual, we refer to a
1-periodic system as time-invariant.

Note that our definition of periodic systems does not
involve a system representation. Our set-up is to first
define concepts on a very general level in terms of the
trajectories of the system and then derive specific re-
sults in terms of representations. The type of systems
that we will focus on in section 3, is described by peri-
odically time-varying difference equations

(Re(o, 0" Hw)(kP+t) =0 t=1,...,P. (1)
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Here Ry, ..., R, are polynomial matrices. More specif-
ically, each of the R,’s belong to R**? [¢,£~1], the set
of polynomial matrices with ¢ columns. Tt is easy to
see that a system ¥ = (Z,R?, B) for which B is rep-
resented by (1) defines a P-periodic system. We will
call (1) a kernel representation of B and use the short
notation (Ry, ..., Rp) for (1). Note that we do not re-
quire the R;’s to have the same number of rows. In
particular, (1) is a more general type of representation
than the type of difference equations studied in [4].

In [6] the concept of controllability was defined as an
intrinsic property of a dynamical system. The defini-
tion of [6] carries through to P-periodic systems:

Definition 1 The P-periodic system £ = (Z,R?, B) is
said to be controllable if for all tog € Z and wy, wq € B,

there exists t; € Z,t1 > 0 and w € B, such that
w(t) wy(t) for t <ty

’wz(t - tl) for t > to + 3.
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As explained in [6], the counterpart of a controllable
system is an autonomous system. In an autonomous
system the past of a trajectory completely determines
its future. The following definitions from [6] carry over
to P-periodic systems:

Definition 2 The P-periodic system £ = (Z,R9,B)
is said to be autonomousif for all ¢ty € Z
{wy, w3 € Band wi(t) = wy(t) fort <t}
=t {wl = wg}.
o
Definition 3 The P-periodic system & = (Z, R4, B)
is said to be sfable if w € B implies that

w(t) — 0 for t — oo.
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2 Lifting and twisting

With a P-periodic system ¥ = (Z, Rq,B) we can as-
sociate the time-invariant system L = (Z,RP?, LB)
through the mapping

L:(R)% — (RP9)”,
defined by

w(Pt+1)

(Lw)(t) =
w(Pt+ P)

The idea is that trajectories of a o -invariant subspace
B are “folded” into trajectories of the o-invariant sub-
space LB. The mapping L captures the idea of the
so-called lifting technique, as presented in e.g. {1]. We
denote the lifted system by T := (Z,RP4, LB).

Below the concepts of continuity and closedness are
taken as usual, that is, w.r.t. the topology of pointwise
convergence. Recall (see e.g.[5]) that a homeomorphism
is a bijective function h for which both A and A~1! are
continuous. Recall also that a function A is called closed
if the image under h of a closed subspace is again closed.
Any homeomorphism is closed.

The following lemma is obvious.

Lemma 4 The mapping L : (R9)% — (RP9)? defined
above has the following properties:

- (1) L is linear

I 0

(it) Lo L; consequently

ol 0

LefP = oL

(iti) L is a homeomorphism; consequently L is
closed

Theorem 5 Let L : (R?)% — (RPQ)Z be defined as
above. Let X = (Z,R%,B) be a dynamical system.
Then

(i) T is P-periodic <> L is time-invariant
(i) B is linear <» LB is linear

(iii) B is closed <> LB is closed

(iv) B is autonomous <> LB is autonomous

(v) Bis stable < LB is stable

Proof:  Properties (i)-(iii) follow immediately from
the previous lemma. Properties (iv)-(v) can be easily
verified from the definitions. u

Let us now present the alternative technique of [2, 3] for
associating a time-invariant system with a periodically
time-varying system. Define the mapping

H: (R — (RFY),
by
wl(Pk+t)
H(wy,...,wp)(Pk+t) := Q° :
wp(Pk+t+P—-1)
wheret =1,..., P and

0 - 0 I
I 0

Q= } @
0 I 0

The idea is that trajectories of B are “twisted” into
trajectories of H(B¥). We denote the twisted system
by =¥ := (Z,RP1, H(BF)).

It has been shown in [2, 3] that P-periodicity of ¥ im-
plies that the twisted system £ is time-invariant.

We now present the following theorem:

Theorem 6 Let H : (R?)%)’ w— (RP*)Z be defined
as above. Let & = (Z,R7?, B) be a dynamical system.
Then B is controllable if and only if H(B?) is contfol-
lable.

Proof: The “if” part is proved by twisting trajecto-
ries in B with, for example, zero trajectories. To prove
the “only if” part, we note that two trajectories w;
and 1; in B can always be concatenated with two de-
sired trajectories wy and 13, in such a way that the
corresponding time lapses ¢; and #; (see Definition 1)
are equal. Indeed, this is achieved by steering to the

. zero trajectory as an intermediate step. The “only if”
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part now follows in a straightforward way. =

3 Representations

In this section we first concentrate on the question

What requirements should a P-periodic
system £ = (Z,R?, B) satisfy in order to
have a representation of the type (1)?



Before stating the result, we investigate how the lifting
L transforms the representation (1).

With every sequence of poly-
nomial matrices (Ry,..., Rp), where the R;’s belong
to R**¢ [E ,6"1], we can associate a polynomial matrix
RE g R**P1e [E, f"l] , as follows. First decompose each

of the Ry’s (t = 1,...P) in terms of their powers ¢* -

with k taken modulo P, i.e. write
R, ) =RUEP,€F)+ETRIER,€P) + -
+6~PVREER, ¢F). )

Now define RL as

RE(E, €7 =
R €Y €IRPY(E, €Y ETIRI(E, €7
Ry(&,€7Y) RY(€,€7Y) ETLR3(E,€7Y)
RE-1(g,671)  RET(E,67) RY(c, 5-1()4)

The following lemma is easily verified.

Lemma 7 A behavior B C (Rq)z is given by the ker-
nel representation (1), abbreviated as (R;,..., Rp), if
and only if LB is given by the kernel representation

Ri(o, 07w = 0.

o

We are now ready for the main result of this section:
Theorem 8 The following are equivalent:

(i) B is a oP-invariant linear closed subspace of

(R9)*

(ii) there exist polynomial matrices R;,...Rp,
such that (1) is a kernel representation for B

Proof:  To prove that (i) implies (ii), we note that
it follows from Theorem 5 that (i) implies that LB is
a o-invariant linear closed subspace of (RF 9)Z. By
Theorem III-1 of [6] this implies that there exists a

representation
R(o,07HYw =0

for LB, where R is a polynomial matrix with Pgq
columns. Now partition R as in (4) to obtain a ker-
nel representation (R, ..., Rp) for B (use Lemma 7).
Vice versa, we have, by Lemma 7, that LB has a kernel
representation if (ii) holds. By Th. III-1 of [6}, LB then
has to be o-invariant, linear and closed, which irnplies
(i) because of Theorem 5. =

Note that a partitioning of a polynomial matrix with
Pq columns into (Ry, . . ., Rp) is not necessarily unique,
as the R;’s need not have the same number of rows.

Next, we investigate how the twisting operator H
transforms a representation (1). Using the notation
of (3), we define :

RE(g, 1) = (5)

R(eP,67F)
ETIRY(ER €7F) RY(EF,¢7F)

~(P-DRE=V(¢P ¢=P) ¢~(P-2RE-2(¢P ¢-P)... RY(¢F,¢-F)
and have the following lemma from [2, 3].

Lemma 9 A behavior B C (R?)Z is given by the ker-
nel representation (1), abbreviated as (Ry,..., Rp), if
and only if H(B?) is given by the kernel representation

R (0,67 Hw = 0.

<

4 Characteristic polynomial

Our next aim is to formulate a concept of “characteris-
tic polynomial” for an autonomous P-periodic system.
For this, we first need the following lemma.

Lemma 10 Let £ = (Z, R, B) be a P-periodic sys-
tem. Then ¥ is autonomous if and only if B is fi-
nite dimensional. Furthermore, if (1), abbreviated as
(Ry,...,Rp), is a kernel representation for B then ¥ js
autonomous if and only if the matrix R defined in (4)

satisfies
rank R = Pq.

Proof: Use Theorem 5 (iv) and Prop. V-7 from [6].

As aresult of the above lemma, for a linear autonomous
P-periodic system ¥ = (Z, R?, B), themap ¢¥ : B— B

_is a linear map on a finite-dimensional space. We now

have the following definition:

Definition 11 For a linear autonomous P-periodic
system X we define the characteristic polynomial of L,

- denoted as x, as the characteristic polynomial of the

map of, .

Theorem 12 Let ¥ = (Z,RY, B) be an autonomous
P-periodic system with B linear and closed. Then
there exists a kernel representation (1), abbreviated as

2015

5.(p...1)RlP~—1 (eP, €—P), . ‘E_lni(fpyf_P)
€2 RE(EF,¢7F)



(Ry,..., Rp), for which the matrix RE defined in (1)
is nonsingular. For any such representation we have

x5 = det RE. (6)

Proof: The existence of a kernel representation (1)
follows from Lemma 10 and Prop. V-7 from [6]. It is
not difficult to see that the characteristic polynomial
of the map a'l‘: equals the characteristic polynomial of
the map oy, ,, and thus (6) holds. n

Recall that a polynomial p € R[¢,£71] is called a Schur
polynomialif for A € C\ {0} the identity p(A\,A"1) =0
implies that [A]| < 1.

The following theorem is an immediate corollary of
Theorem 5 (v) and Theorem 12.

Theorem 13 Let ¥ = (Z,R?,B) be an autonomous
P-periodic system, represented by the kernel represen-
tation (1), abbreviated as (R;,...,Rp). Let RL be
defined as in (4). Then ¥ is stable if and only if det
RY is a Schur polynomial.

5 Controllability

In section 3 we investigated how the twisting operator
H, defined in section 2, transforms a kernel represen-
tation. In this section we use these results to obtain
a way to determine the controllability of a P-periodic
system from its representation. The next theorem fol-
lows immediately from Theorem 6 and Theorem V-2
of [6).

Theorem 14 Let £ = (Z,RY, B) be a P-periodic sys-
tem, represented by the kernel representation (1), ab-
breviated as (Ry, ..., Rp). Let R be defined as in (5).
Then ¥ is controllable if and only if R#(A, A1) has
constant rank for all A € C\ {0}.

In the following theorem we generalize the pole-
placement result of [7] to P-periodic systems.

Theorem 15 Let £ = (Z,R9, B) be a P-periodic sys-
tem that is not autonomous (but, for example, con-
trollable). Let By, be an autonomous o®-invariant

desired behavior. Then there exists a controller £, =
(Z,R?, B,) such that

Baes = BNB..

Proof:  Since LB and LBy, are o-invariant spaces,
we can apply the theory on time-invariant systems of [6]

to conclude that there exists a o-invariant Bc_ such that
LBNOB. = LBy.,.

Now L~18, defines a oP-invariant controller. H

6 Conclusions

In this paper we have introduced and investigated
several system theoretic notions for ‘periodically time-
varying systems on the level of the system’s trajecto-
ries. We have also addressed the question: how do these
notions express themselves in terms of a representation
of the system? Here the type of representation used
is more general than usually considered in the period-
ically time-varying literature. The type studied is the
natural one that comes up in a behavioral framework.
It is a topic of future research to inyestigate this type
of representation in more detail as well as exploit the
presented “lifting” and “twisting” techniques further.
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