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Abstract 

We set out to develop a framework for the analysis and 
synthesis of discrete-time periodically time-varying sys- 
tems. Adopting a behavioral approach, we define the 
concept of periodicity in terms of the trajectories of 
the system. We subsequently use this framework to 
investigate several basic notions, such as controllabil- 
ity, on the level of trajectories and also present several 
techniques for associating time-invariant systems in a 
behavioral way. 

1 Introduction and basic definitions 

Recall that in the behavioral framework a dynamical 
system C is defined as a triple C = (T, W, a), where T 
is the t ime set ,  W is the space of e z t emal  variables, and 
8 is a subset of WT called the behavior of the system. 
In this paper we focus on T = 2 and W = R*. We 
define a system E = (2, R'J, B )  to be P-periodic if its 
behavior B satisfies 

uPa = a. 

Here U : (Rq)' H (R'J)' is the backward shift: 

(uw)( t )  = w(t + 1). 
Of course, this also defines uk for IC E Z. In particular, 
we call 6-l the forward shifl. As usual, we refer to a 
1-periodic system as time-invariant. 

Note that our definition of periodic systems does not 
involve a system representation. Our set-up is to first 
define concepts on a very general level in terms of the 
trajectories of the system and then derive specific re- 
sults in terms of representations. The type of systems 
that we will focus on in section 3, is described by peri- 
odically time-varying difference equations 
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Here R I ,  . . . , I$ are polynomial matrices. More specif- 
ically, each of the Rt's belong to R I x *  [(,(-'I, the set 
of polynomial matrices with q columns. It is easy to 
see that a system C = (Z,Rq,B) for which a is rep- 
resented by (1) defines a P-periodic system. We will 
call (1) a kernel representation of B and use the short 
notation (RI , .  . . , Rp) for (1). Note that we do not re- 
quire the Rt's to have the same number of rows. In 
particular, (1) is a more general type of representation 
than the type of difference equations studied in [4]. 

In [6] the concept of controllability was defined as an 
intrinsic property of a dynamical system. The defini- 
tion of [6] carries through to P-periodic systems: 

Definition 1 The P-periodic system C = (Z,  R*, a) is 
said to be controllable if for all to E Z and w1, wz E 13, 
there exists tl  E Z , t l  2 0 and U) E B, such that 

w(t) = q ( t )  for t < t o  
1 -  = wz(t - t l )  for t 2 t o  + t l .  

0 

As explained in [6], the counterpart of a controllable 
system is an autonomous system. In an autonomous 
system the past of a trajectory completely determines 
its future. The following definitions from 161 carry over 
to P-periodic systems: 

Definition 2 The P-periodic system C = (Z, Rq, B) 
is said to be autonomous if for all t o  E Z 

(201, w z  E L? and w ( t )  = .wz( t )  for t < t o )  

==+ (U11 = 2 0 2 ) .  

0 

Definition 3 The P-periodic system C = (Z,Rq,B) 
is said to be stable if U) E G implies that 

w ( t )  - 0 for t - 00. 
0 (Rt(cr,a-')w)(kP + t )  = 0 t = 1,. . . , P. (1) 
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2 Lifting and twist ing Proof:  Properties (i)-(iii) follow immediately from 
the previous lemma. Properties (iv)-(v) can be easily 

U With a P-periodic system C = (z, Rq,B) we can as- verified from the definitions. 

Let us now present the alternative technique of [2,3] for 
associating a time-invariant system with a periodically 
time-varying system. Define the mapping 

sociate the time-invariant system C L  = ( Z ,  RPq, LB)  
through the mapping 

L : (R‘)’ H (I tpq)’ ,  

defined by 

w(Pt + 1 )  

w(Pt  + P )  

The idea is that trajectories of a up-invariant subspace 
13 are “folded” into trajectories of the a-invariant sub- 
space LB. The mapping L captures the idea of the 
so-called lifting technique, as presented in e.g. [l]. We 
denote the Zifled sysfem by CL := (2, Rpq, LB).  

Below the concepts of continuity and closedness are 
taken as usual, that is, w.r.t. the topology of pointwise 
convergence. Recall (see e.g.[5]) that a homeomorphism 
is a bijective function h for which both h and h-’ are 
continuous. Recall also that a function h is called closed 
if the image under h of a closed subspace is again closed. 
Any homeomorphism is closed. 

The following lemma is obvious. 

H : ((Rq)’)‘ H (R‘q)’, 

by 

Wl(Pk + t )  
w2(Pk + t + 1)  I H(w1, .. . ,wp)(Pk+t)  := Qt 

1 w ( P k + t + P - l )  1 
where t = 1 , .  . . , P and 

1; ‘0‘ . . .  . . .  ! 1  

The idea is that trajectories of B are “twisted” into 
trajectories of H ( B P ) .  We denote the twisted system 
by C H  := (2, Rpq, H ( B p ) ) .  

It  has been shown in [a, 31 that P-periodicity of C im- 
plies that the twisted system EH is time-invariant. 

Lemma 4 The mapping L : (Rq)’ H (RPq)’ defined 
above has the following properties: 

We now present the following theorem: 

._ . 
(i) L is linear 

P 
Theorem 6 Let H : ((Rq)’) H (RPq)’ be defined 
as above. Let C = (Z,Rq,B) be a dynamical system. 
Then B is controllable if and only if H ( B P )  is contfol- 
lable. 

(ii) Lu = I i * . .  I J L ;  consequently 
Proof:  The “if” part is proved by twisting trajecto- 

al 0 ... ries in B with, for example, zero trajectories. To prove 
the “only if’ part, we note that two trajectories zu1 
and Wl in B can always be concatenated with two de- 
sired trajectories w2 and w 2 ,  in such a way that the 
corresponding time lapses tl and (see Definition 1)  
are equal. Indeed, this is achieved by steering to the 
zero trajectory as an intermediate step. The “only if’ 

L ~ P  = a~ 

(iii) L is a homeomorphism; consequently L is 
closed 

Theorem 5 Let L : (Rq)’ I-+ (RPq)’ be defined as 
above. 
Then 

Let C = (Z,Rg,O) be a dynamical system. part now follows in a straightforward way. U 

(i) C is P-periodic e C L  is time-invariant 

(ii) B is linear e LB is linear 

(iii) B is closed e LB is closed 

3 Representa t ions  

In this section we first concentrate on the question 

(iv) B is autonomous e LB is autonomous 

(v) B is stable e LB is stable 

What requirements should a P-periodic 
system C = (Z,  Rq, 8) satisfy in order to 
have a representatmion of the type (l)? 
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Before stating the result, we investigate how the lifting 
L transforms the representation (1). 

With every sequence of Poly- 
nomial matrices ( R I , .  . . , Rp),  where the Rt's belong 
to R*'q [e, e-'], we can associate a polynomial matrix 
R': E R e X P g  [<, <-I] ,  as follows. First decompose each 
of the Rt's (t  = 1 , .  . . P )  in terms of their powers tk 
with k taken modulo P ,  i.e. write 

& ( € , C l )  = g(€p,e-p) + < - ' R Z ( E P , < - P )  + ... 
+p- 1 ) q P - l  ( ( P ,  y ) .  (3) 

Now define RL as 

RL(<,<-') := 

R:(t,(-') [-' RP-'(<, e-') . . . 
R!(<,<-') e - -  

D p - l ( < , < - l )  RC-2(<,<-1) . . . 

The following lemma is easily verified. 
(4) 

Lemma 7 A behavior B c (R'J)' is given by the ker- 
nel representation (l), abbreviated as (RI , .  . . , Rp) ,  if 
and only if LB is given by the kernel representation 

RL(u,u-')w = 0. 

0 

We are now ready for the main result of this section: 

Theorem 8 The following are equivalent: 

(i) B is a uP-invariant linear closed subspace of 
(RQIZ 

(ii) there exist polynomial matrices RI,. . . Rp,  
such that (1) is a kernel representation for l3 

Piroof: To prove that (i) implies (ii), we note that 
it follows from Theorem 5 that (i) implies that LB is 
a u-invariant linear closed subspace of (RpQ) . By 
Theorem 111-1 of [6] this implies that there exists a 
represent ation 

R(u,a-')w = 0 

foir Lf$, where R is a polynomial matrix with Pq 
columns. Now partition R as in (4) to obtain a ker- 
nel representation ( R I , .  . . , Rp)  for f? (use Lemma 7). 
Vice versa, we have, by Lemma 7, that LB has a kernel 
representation if (ii) holds. By Th. 111-1 of [6], LW then 
has to be o-invariant, linear and closed, which irnplies 

Z 

(i) because of Theorem 5. H 

Note that a partitioning of a polynomial matrix with 
Pq columns into ( R I ,  . . . , R P )  is not necessarily unique, 
as the Rt's need not ha.ve t8he same number of rows. 

Next, we investigate how the twisting operator H 
transforms a representation (1). IJsing the notation 
of (3), we define 

RH(< ,<- ' )  := (5) 
E-(P-')%p-'(EP, E-P) .  . 

% ( € p t E - p )  

R:(€pT€-p) 
€ - 1 R ; ( E P ,  € - P I  I -  - ( P - l ) g - l  (<PI t - P )  <- (P-2 )R; -* (EPI  p). . . pp((P,(-P) 

and have the following lemma from [2, 33. 

Lemma 9 A behavior 8 c (Rq)' is given by the ker- 
nel representation (l), abbreviated as ( R I , .  . . , Rp) ,  if 
and only if H ( B P )  is given by the kernel representation 

R (u,u.-')w = 0 H 

0 

4 Characterist ic polynomial 

Our next aim is to formulate a concept of "characteris- 
tic polynomial" for an autonomous P-periodic system. 
For this, we first need the following lemma. 

Lemma 10 Let C = (Z,Rq,B) be a P-periodic sys- 
tem. Then C is autonomous if and only if B is fi- 
nite dimensional. Furthermore, if (l), abbreviated as 
(RI,. . . , Rp),  is a kernel representation for B then C i.s 
autonomous if and only if the matrix RL defined in (4) 
satisfies 

rank RL = Pq. 

Proof: Use Theorem 5 (iv) and Prop. V-7 from [SI. 
H 

As a result of the above lemma, for a linear autonomous 
P-periodic system C = (Z, Rq, a), the map up : B -+ l3 
is a linear map on a finite-dimensional space. We now 
have the following definition: 

Definition 11 For a linear autonomous P-periodic 
system C we define the characteristic polynomial of C, 
denoted as xE, as the characteristic polynomial of the 
map up 

I S '  

Theorem 12 Let C = (Z,Rq,B) be an autonomous 
P-periodic system with B linear and closed. Then 
there exists a kernel representation (l), abbreviated as 
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( R I , .  . . , Rp),  for which the matrix RL defined in (1) 
is nonsingular. For any such representation we have 

xo = det RL. (6) 

Proof: The existence of a kernel representation (1) 
follows from Lemma 10 and Prop. V-7 from [SI. It is 
not difficult to see that the characteristic polynomial 
of the map u i  equals the characteristic polynomial of 
the map q,, and thus (6) holds. M 

Recall that a polynomial p f R[<,<-’] is called a Schur 
polynomial if for X E C \ (0) the identity p(X, X-I )  = 0 
implies that 1x1 < 1. 

The following theorem is an immediate corollary of 
Theorem 5 (v) and Theorem 12. 

Theorem 13 Let C = (Z,R*,B) be an autonomous 
P-periodic system, represented by the kernel represen- 
tation (l), abbreviated as ( R I ,  .. ., Rp). Let RL be 
defined as in (4). Then C is stable if and only if det 
RL is a Schur polynomial. 

5 Controllability 

In section 3 we investigated how the twisting operator 
H ,  defined in section 2, transforms a kernel represen- 
tation. In this section we use these results to obtain 
a way to determine the controllability of a P-periodic 
system from its representation. The next theorem fol- 
lows’immediately from Theorem 6 and Theorem V-2 
of [6]. 

Theorem 14 Let C = (2, Rq, a) be a P-periodic s y s  
tem, represented by the kernel representation (l), ab- 
breviated as (RI , .  . . , Rp). Let RH be defined as in (5). 
Then C is controllable if and only if RH(X,X-l) has 
constant rank for all X E C \ (0). 

In the following theorem we generalize the pole- 
placement result of [7] to P-periodic systems. 

Theorem 15 Let C = (2, Rg, a) be a P-periodic sys- 
tem that is not autonomous (but, for example, con- 
trollable). Let a d e s  be an autonomous aP-invariant 
desired behavior. Then there exists a controller E, = 
(2, R*, B,) such that 

Proof: Since LB and L a d e s  are a-invariant spaces, 
we can apply the theory on time-invariant systems of [6] 

to conclude that there exists a u-invariant B, such that 

LB n B, = mdes. 
Now L-’& defines a aP-invariant controller. 

6 Conclusions 

In this paper we have introduced and investigated 
several system theoretic notions for periodically time- 
varying systems on the level of the system’s trajecto- 
ries. We have also addressed the question: how do these 
notions express themselves in terms of a representation 
of the system? Here the type of representation used 
is more general than usually considered in the period- 
ically time-varying literature. The type studied is the 
natural one that comes up in a behavioral framework. 
It is a topic of future research to inyestigate this type 
of representation in more detail as well as exploit the 
presented “lifting” and “twisting” techniques further. 
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