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1 Introduction 

Present day control theory is very much centered around 
the problem of designing a feedback loop around a given 
system in such a way that in the closed loop system cer- 
tain design specifications are satisfied. The plant under 
consideration typically has control inputs, exogenous in- 
puts, measured outputs, and exogenous outputs. The 
controller to be designed should take the measured out- 
puts of the system as its inputs, and should, on the ba- 
sis of these inputs, generate control inputs for the plant. 
These controllers should be designed in such a way that 
the resulting closed loop system meets the specifications. 
The above general scheme of approaching control design 
problems has been called the  intelligent control paradigm 

One of the main features of the  behavioral approach as a 
foundational framework for the theory of dynamical sys- 
tems is that it does not take the input/output structure 
as the starting point for describing systems in interaction 
with their environment. Instead, a mathematical model 
is simply viewed as any relation among variables. In the 
dynamic case this relation constrains the time-evolution 
which a set of variables can take. The collection of time 
trajectories which the model declares possible is called 
the behavior of the dynamical system. 
This behavior, hence a set of time functions, can be spec- 
ified in many different ways. Often, in problem fields as 
mechanical engineering or electrical engineering, the be- 
havior will be given as the solution set of a system of dif- 
ferential equations, often called the  behavioral equations. 
It is our conviction that, in such cases, it is more natural 
to view controller design as the problem of designing for 
a given plant an additional set of ‘laws’ that the variables 
appearing in the system should obey. More specifically, if 
a plant is modelled as a set of ‘behavioral equations’, then 
the controller design question is to invent an additional 
set of equations involving the signals appearing in the 
system, in such a way that the ‘controlled system’ (i.e., 
the system consisting of those signals that are compatible 
with both sets of equat.ions) satisfies the given control 
specifications, see e.g. [4], [l], 161, [7]. 
In this note we will explain our new view of control, and 

(see ~41). 

address some issues that come up in developing a theory 
of control in a behavioral setting. We will also give a few 
examples of control problems in behavioral setting. 

2 Control in a behavioral setting 

We will first briefly recall our view of control in the con- 
text of the behavioral approach to dynamical systems. 
A dynamical system is a triple, C = (T,  W, 23) with 
T c R the t ime  axis, W a set called the signal space, 
and 23 c W T  the behavior. The behavior consists of func- 
tions w : T -i W .  The variable w is called the manifest  
variable of the system. 
If C1 = (T ,  W, 23:) and C2 = (T,  W, % 2 )  are two dynam- 
ical systems with the same time axis ahd the same signal 
space, then the interconnection of C1 and C2,  denoted as 
C1 A C2, is defined as C1 A C2 := (T,  W, !I31 f l 2 3 2 ) .  Thus 
the behavior of C1 A C2 consists simply of those trajecto- 
ries 20 : T -+ W which are compatible with both the laws 
of C1 (i.e., w belongs to %I) and of C2 (i.e.. w belongs 

Of course, in most applications, systems are intercon- 
nected only through certain terminals and not along oth- 
ers. This situation can easily be incorporated in the 
definition of interconnection as follows. Assume E1 = 
(T ,  W1 x C,231) and C2 = (T,C x W2,%2) with their in- 
terconnection leading to C1 A & = (T ,  W1 x C x W2, %) 
with 23 = ((w1,clw2) : T -+ W1 x G x W2 I (w1,c) E 231 
and (c,w2) E B2). 

By redefining C1 to 91 = (T,Wl x C x Wz,’%l) with 
= Bl x WT, and 22 to g 2  = (T ,  W1 x C x W2,%2) 

with & = WT x 2 3 2 ,  it is easily seen that this intercon- 
nection now becomes a special case of our general def- 
inition. Note that the definition of the behavior of 51 
leaves the variables w2 free, while that of 2 2  leaves the 
varia,bles w1 free. The variable c through which the in- 
terconnection is established is called the interconnection 
variable. The space C in which c takes its values in called 
the interconnection space. 
In many interconnections, it is natural to suppress the 
interconnection variable c after interconnection, yielding 
C1 A Ca = (T,  Wl x W 2 , B )  with B = ( ( 1 u 1 , w z )  : -+ 

to  2 3 2 ) .  
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W1 x Wg I 3c : T -+ C such that (w1,c) E % I  and 
(c ,  w2) E 9 3 2 ) .  This situation can be formalized using 
manifest and latent variables, one of the central features 
of the behavioral approach [2]. 
In this context, a control problem is now formulated 
as follows. Assume that the plant, a dynamical system 
E, = (T ,Wl  x C,%,) is given. The signal space of the 
plant is given as a Cartesian product, where the second 
factor, C ,  denotes the space in which e, the interconnec- 
tion variable, takes its values. Consider now a family C 
of dynamical systems, all with common time axis T .  We 
also assume that the elements of C all have the signal 
space C in common. An element C ,  = (T,C,B,) of C is 
called an admissible controller. The interconnected sys- 
tem E, A C, is called the controlled system. The control 
problem for the plant C, is now, to specify the set C of 
admissible controllers, to describe what desirable prop- 
erties the controlled system should have, and finally, to  
find an admissible controller C, such that C, A C, has 
the desired properties. 

3 Linear t,ime-invariant differen- 
t ial systems 

In this paper we restrict ourselves to  systems described 
by linear differential equations with constant coefficients. 
Let ( denote an indeterminate, and let R*"Q[[] be the set 
of all real polynomial matrices with q columns and any 
(finite) number of rows. An element R E R'"'J[Q can be 
written explicitly as R ( [ )  = Ro+R16+R2E2+. . . + R N ( ~ ,  
for given real matrices Ro , R I ,  . . . , R N .  Consider now the 
system of diferential equations 

dw dNw 
dt dtN ROW +RI-- + ... + RN- = 0, 

or, in compact notation, 

(3.1) 
d 
dt 

R( -)w = 0. 

We will deal with systems C = (R, RQ , 23) with time axis 
R, signal space Rq , and behavior 93 equal to the solution 
set of 3.1. Of course, we should make precise what we 
mean by a function w : R --+ Rq to be a solution of 3.1. 
We call w : R -+ IRq a Cw-solution of 3.1 if w is infinitely 
often differentiable and if 

idw d N w  
d t  dtN 

Row(t) + Rl.-(t) + . . . + R N - ( t )  = 0 

holds for all t E R. For our purposes, the notion of 
CW-solution is too restrictive, because, for example, it 
excludes the possibility for a signal w to be discontin- 
uous. Therefore we also consider the notion of weak 
solution: a function w : R -+ RQ will be called a 
weak solution of 3.1 if w E LloC(IW,RQ) and if it satis- 
fies the differential equation 3.1 in distributional sense, 
i.e., J ( R T ( - & ) f ( t ) , w ( t ) ) d t  = o for all f E C ' ( ~ , ~ ~ )  of 
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compact support. Here, (., .) denotes the standard inner 
product on Rq . 
We define the behavior of 3.1 in terms of its weak 
solutions: 3.1 defines the dynamical system C ( R )  = 
(R, Rq , '23(R)) with %(R) the set of weak solutions of 3.1. 
It can be shown that %(R) n Cm(R, Rq) is dense (in the 
topology of L'Oc(R, R'J)) in %(R) .  Thus, every weak so- 
lution of 3.1 can actually be approximated by a C"" one. 
This means that intuitively we can usually think of % ( R )  
as simply consisting of the set of C" solutions of 3.1. 
The set of all systems obtained in this way is denoted by 
Cq. A representation of the system C E Cq in terms of a 
differential equation 3.1 is called a kernel representation 
of C .  
We will now recall the notion of controllability. The 
dynamical system C is called controllable if its behav- 
ior '23 has the property that for any pair of trajectories 
w1,w2 E t?, there exists a trajectory w E B and A _> 0 
such that w(t)  = wl( t )  for t < 0 and m(t + A) = m2(t) 
for t > 0. The system with kernel representation 3.1 is 
controllable if and only if rank (R(X)) = rank ( R )  for all 
X E C, i.e., the complex matrix R(X) has constant rank 
for all A. 
A system C = (R, Rq, '23) E CQ i s  said to be autonomous if 
((w1,wg E '23) A (wl ( t )  == w2(t) for t < 0)) + (w1 = wg), 
in other words, if the patst of a trajectory in '23 uniquely 
defines its future. 
For a given C = (R, Rq , '23) E Lq, p ( C )  will denote the 
number of output components of E. This number is equal 
to rank ( R ) ,  with R any polynomial matrix such that 
'23 = %(R).  It can be shown that C = (R,R'J,%) E Cq 
is autonomous if and oiily if p ( C )  = q,  i.e., there exists 
R E RQxq[[ ]  with det(R) # 0 such that % ( R )  = 23. 
Assume now that C E Cq is autonomous and that '23 = 
B(R) with R E RQxQ[[]. Obviously, for any non-singular 
diagonal matrix Q E WXQ,  %(RI = '23(aR). Therefore 
we can always choose R such that det(R) is a monk poly- 
nomial. We will denote this polynomial by xc and call 
it the characteristic polynomial of C .  It can be seen that 
xc depends only on C C: CQ (and not on the matrix poly- 
nomial R which we have used to define it). 
A polynomial p E R[(] is called a Hurwitz polynomial if 
p # 0 and if it has all its roots in the open left half of 
the complex plane. Similarly we will call R E lWXQ[ ( ]  
Hurwztz if det(R) is. 
Assume that C = (R, W,B) E Cq is autonomous. We 
will call C stable if w C: '23 implies lim w(t)  = 0. (Often 
this would be called asymptotzc stabalzty but, in keeping 
with usage which has become customary, we will simply 
refer to this property as stabzlzty). 
We need a couple of minor refinements, related to con- 
trollability, before embarking on control questions. Let 
C E Cq Then, as we have just seen, C is controllable if 
and only if runk(R(X)) is cons'tant for X E C. The set 

t+co 

A@) = { A  E C I rank (R(X)) < rank ( R ) )  

is called the set of uncontrollable exponents of C .  They 



play the role of the uncontrollable modes in state space 
systems. More generally, assume that R is minimal. i.e., 
the number of rows of R is equal to p ( C ) .  Then it can 
be factored as R = FR’ with %(R’)  E CQ controllable, 
and F E RP(c)xP(“)[(] having det(F) # 0. Obviously, 
we can assume that det(F) is monic. It can be shown 
that det(F)  depends on C only. We will call it the char- 
acteristic polynomial of the uncontrollable part of C and 
denote it as Xp. .  This nomenclature can be justified 
as follows. Let C = (R, R Q ,  B) E CQ. Then there exists 
C1 = (R,RQ,C!31) E CQ and C2 = (R,RQ,%z) E CCQ such 
that (i) C1 is controllable, (ii) is autonomous, and 
(iii) 23 = 231 c%, 2 3 2 .  It can be shown that Cl (called the 
controllable part of C )  is uniquely defined by E. However, 
whereas C2, the uncontrollable part, is not uniquely de- 
fined by C, X c ,  is. In terms of C, we have X C ,  = X p c .  
A refinement of the notion of controllability is that of 
stabilizability. We will call C = (R, R9, B) E Lq stabi- 
lazable if for each w E B there exists w’ E B such that 
w’(t) = w(t)  for t < 0 and such that lim w’(t) = 0. 

t+oo 
It is easy to prove that C ( R )  is stabilizable if and only 
if rank (R(X)) = rank (R)  for all X E C such that 
Re(X) 2 0, in other words, the uncontrollable exponents 
of C(R) must have negative real parts, equivalently, XC.. 
the characteristic polynomial of the uncontrollable part, 
must be Hurwitz. 

4 Pole placement and stabiliza- 
tion in a behavioral framework. 

In this section we will study our first control problem, 
with control viewed as interconnection as explained in 
section 2. The plant is a given dynamical system C E 
CQ. We will assume that the controller (and hence the 
controlled system) is also a linear differential system. Let 
C I ,  = (R,RQ,BI,)  E CQ, k = 1 ,2 .  We will call C2 a 
subsystem of C1 (denoted C2 < Cl)  if 232 5 231. It is 
proven in [I that if X I ,  = %(RI,) ,  then C2 < C1 if and 
only if there exists F2 E R*”’[[] such that RI = F2R2. 
Obviously, for any C, C‘ E CQ, C A  E’ will be a subsystem 
of E. Our first result is the analogue of the classical pole 
placement result. 

Theorem 4.1 : Let C E Cq, and assume that C is not 
autonomous. Then for any monic r E E%[[] there exists 
C’ E CQ such that X C A C J  = r.  If C E CQ is autonomous 
then there exists C’ E CQ such that xXAp = r if and only  
if T is a factor of xc. 

This result guarantees pole placement (and hence sta- 
bilizability) for any C E Cq which is not autonomous, 
i.e., as long as in the system of differential equation 
(1) describing C there are less equations than variables 
p ( C )  < 4 ) .  This means that at least one of the vari- 
ables w1, wz, . . . , wg is an input variable. Note that not 
even controllability or stabilizability of C is required! In 
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particular stabilizability thus holds by simple intercon- 
nection, regardless of the location of the uncontrollable 
exponents of C. This result is due to the fact that the 
class of admissible controllers was chosen to be all of C9. 
In particular by taking C‘ = (R,RQ,O) stability is triv- 
ially obtained. We will return to the question how such 
a control law could be implemented. 

5 Regular interconnection. 
We will now introduce an important type of interconnec- 
tion (which, as was shown in [2], corresponds to  singular 
feedback). Let C, C’ E Lq. We will call C A C’ a regular 
interconnection if 

There are a number of alternative equivalent ways of ex- 
pressing this. First, if C = kerR(2)  and C‘ = C(R‘ ) ,  
with R and R’ of full row rank, then C A C’ is a regular 

interconnection if and only if 1 1 is also a full row 
L A  

rank polynomial matrix. 
It is trivial to see that any subsystem C” of C can be real- 
ized through interconnection. Indeed if we take C’ = C” 
then obviously C A E’ = C”. However, this interconnec- 
tion is regular only in the trivial case p ( C )  = 0. The 
question thus arises when C” can be achieved by regu- 
lar interconnection. Actually, we shall now see that any 
subsystem of C can still be realized through regular in- 
terconnection provided that C is controllable! 

Theorem 5.1 : Assume that C E CQ is controllable. Let 
C“ E CQ be a subsystem of C .  Then there exists a C‘ E LQ 
such that C A C’ = C” and such that this interconnection 
is regular. 

The important conclusion which may be drawn from 
the above theorem will be that singular feedback control 
problems for controllable systems amounts to looking for 
a suitable subsystem. 
One important variation of the above theorem worth stat- 
ing is the following. 

Theorem 5.2 : Assume that C E CQ and let r E R[5] be 
monic. Then there exists C‘ E CQ such that C A C‘ is (i) 
a regular interconnection and (ii) xcAcl = r if and only 
if x? is a factor of r .  

In particular, Theorem 5.2 implies that there exists a C’ 
such that C A C’ is ( i )  a regular interconnection and (ii) 
stable if and only if C is stabilizable. 

6 Linear differential systems with 
disturbances 

In problems of pole-placement and stabilization, we will 
typically look for controllers that make the controlled sys- 
tem autonomous. Thus, a controller C, will be admissible 



only if the controlled :system C, A C, is autonomous, i.e., 

In many control problems, in te plant C, to be controlled, 
some components of the manifest variable will play the 
role of unknown disturbances and other components will 
play the role of vamables to be kept  small. 
In such cases, our starting point is that the manifest 
variable w of the plant C, consist of three components, 
w = (z,d,c). Here, z is the signal that we want to keep 
small and d is the disturbance. Finally, c is the intercon- 
nection variable as referred to in section 2. Accordingly, 
the signal space of Cl, is equal to the Cartesian product 
Z x D x C, with Z, D, and C sets in which z, d, and c 
take their values, respectively. 
The component d is interpreted as an unknown distur- 
bance. On a set-theoretic level, this can be formalized 
by assuming that an?) function d : T -+ D can occur as 
the second component of the signal vector w of E,. In 
order to formalize this, if, in general, we have a dynam- 
ical system C = (T,  PV1 x W2, o), with manifest variable 
(w1,w2) and if T : 1Wl x W2 + W2 is the projection 
T ( w ~ , w ~ )  = w2, then the variable w2 is called free if 
~ ( 2 3 )  = WT. In E,, d is thus assumed to be free. 
Now, given any controller, in the controlled system, d 
is still interpreted as an unknown disturbance. Hence, 
again, any d should be possible as the second component 
of the signal vector ( 2 ,  d) of the controlled system. If this 
requirement holds, tlhen we call the controller admissi- 
ble: C, is admissible if in the controlled system C, A C c  
the variable d is free. More precisely, consider any dy- 
namical system Cc = (T,  C, B,), with the same time axis 
as the plant E,, and whose signal space is equal to  the 
interconnection space C of E,. According to the above 
definition, the interconnection is C,AC, = (T, Z x D, B), 
with 23 = {(z,d) : T -+ Z x D I there exists c E 
23, such that (z ,d ,c )  E I?,}. The controller C, is called 
admissible if .(%) = DT. 
Typically, in the controlled system we want the signal 
z to be small, regardless of the disturbance d that oc- 
curs. This specification can of course be formalized in 
many ways. One possibility is to assume that T ,  the 
time axis, is equal to R and that the signal spaces 2, 
D and C are finite dimensional Euclidean spaces. The 
size of the signals z and d can, for example, be mea- 
sured by their quadratic integrals 11z11: = s Ilz(t)l12dt and 
lldlli = s Ild(t)l12dt, where the integrals range over R. 
For a given finite dimensional Euclidean space X ,  let 
L2(R ,X)  be the space of all functions f from R to X 
for which Ilf(t)112dt is finite. 
The H ,  performance of the controlled system C, A C, is 
defined as 

P(C, A Cc) = 4. 

The H ,  optimal control problem is to minimize J (C , )  
over all admissible controllers E,. Of course, sometimes 
it makes more sense to measure the size of the signals 
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appearing in the system using L1- norms. This leads to 
the L1-optimal control pro'blem in a behavioral setting. 
The issue of stability can be incorporated in this context 
by defining an admissible omtroller C, to be a stabilizing 
controller if in the controtlled system the signal z con- 
verges to zero whenever d = 0, i.e., if ( z , 0 )  E % implies 
that limt-,, z(t) = 0. 
In this section we deal with differential systems whose 
manifest variable w consists of three components, w = 
col(z,d,c). Let C, E ,!? (the plant) be such a system. 
We assume that z ,  d, and c take their values in Rz, Rd, 
and Rc respectively, so the signal space of C, equals Rq = 
Rz x Rd x Rc. A standin,g assumption will be that the 
system E, is controllable. It was shown in [2] that such 
system admits an image representation 

d 
dt  

w = W(- ) l  

for some real polynomial matrix W, say with m columns. 
Without loss of generality, we assume moreover that this 
image representation is observable, i.e., that W(X) has 
full column rank m for all X E C. According to the 
partition of w into col(z, d, e ) ,  we partition 

w = (  3). 
with 2, D, and C real polynomial matrices of appropriate 
dimensions. The behavior %, of C, therefore consists of 
signals w = col(z,d,c) E Lloc(R,Rz x Rd x Rv x Rc) 
for which there exists a fuction e E L"'(IW, R I )  such that 
z = Z( &)e, d = D( &)e ,  and c = C( &)e. Recall that the 
signal d is interpreted as an unknown disturbance. We 
have formalized this by assuming that d is free. In the 
present context of linear differential systems we formalize 
this as follows. In general, if we have a dynamical system 
C E Cq, C = (EX, RQ1 x ESP2, B), with manifest variable 
(w1,w2) and if T : x RQ2 -+ Rq2 is the projection 
~ ( w 1 ,  w2) = w2, then the variable w2 is called C"-free if 
T(B n Cm(R, Rql x RQZ)) = C"(R, W2).  Equivalently: 
if every C" function can occur as the second component 
of a C"" trajectory (w1, w2) of E. 
Let us now consider how this notion translates as a prop- 
erty of an image representation. If C is given in image 
representation, 

then w2 is Cw-free if and only if the differential operator 
W2($) : C m ( R , R m )  -+ P(R, Rq2) is surjective. This is 
the case if and only if the polynomial matrix W2 has full 
row rank. This equivalence is easily proven, for example, 
via the Smith form of W2. 

Thus, we assume that, in our plant E,, the variable d is 
Cw- free. Hence, in 6.1 we will assume that the polyno- 
rriial matrix D has full row rank d , equivalenlly, that the 
differential operator D (  2) is surjective. 



We will now specify the set of admissible controllers in 
the context of linear differential systems. In principle, 
any linear differential system C, = (Iw, Etc, %,) with man- 
ifest variable c and signal space equal to the interconnec- 
tion space Iwc of the plant C, is a candidate admissible 
controller. However, for obvious reasons, we will require 
that in the interconnected system C, A E,, the variable 
d should still be free. In the context of linear differ- 
ential systems we will interpret this in the sense that 
d should remain C"-free: the linear differential system 
C, = (R, Rc , BC) is called an admissible controller for our 
plant C, if in C, A C, the variable d is C"-free. 
Let us study how this requirement translates into a 
property of a kernel representation of the controller E,. 
Suppose that K is a real polynomial matrix such that 
K (  &)e  = 0 is a kernel representation of E,. 
It is easily seen that the condition that in the inter- 
connected system d is Coo-free is equivalent to the re- 
quirement that for all d E C"(R,Rd) there exists l E 
Cm(Iw,IW1) such that d = D ( & ) l  and K ( & ) C ( & ) l  = 
0, or, equivalently, D($)kerK(&)C(&) = C"(R,Rd). 
The following lemma shows how to translate this con- 
dition in terms of a rank condition on the polynomial 
matrices defining the system and the controller: 

Proposition 6.1 : 
resentation K ( s ) c  = 0 is admissible if and only if 

The controller C, with kernel rep- 

rank ( Ec ) = d  + rank KC. 

7 Full information control prob- 
lems 

In this section we will explain what we mean by a control 
problem to be a full information problem. 
In general, if C = (T,  W1 x Wz, B) is a dynamical system 
whith manifest variable w = col(w1 wz ) ,  then we call w1 
observable from w2 if w1 is completely determined by wz,  
in the sense that if col(w:, w i )  and col(w:, wg) are in % 
and if wi  = w i ,  then wi = w:. If w1 is observable from 
w2 then we call wz a full information variable for C :  in 
this case the whole manifest variable w can be determined 
from the component w2 alone. 
Consider now, as before, a plant E, = (T, 2 x D x C, BP) 
with manifest variable w = col(z,d,c), time axis T = R 
and where 2, D ,  and C are Euclidean spaces. If the 
interconnection variable c is a full information variable 
for E,, then we call the corresponding control problem a 
full information problem. 
We will now investigate how the property that c is a full 
information variable translates to the situation that our 
plant is a linear differential system in image representa- 
tion. 
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Suppose first, in general, that we have a linear differential 
system C given by an observable image representation 

( w1 wz ) = ( ) e .  
We claim that w2 is a full information variable for C 
if and only if the system w2 = Wz(&)l is observable, 
equivalently, Wz(X) has full column rank for all X E @. 
Indeed, let Wz($)ll = Wz(&)lz. Then, by observability 
of w1 from w2, we must have Wl(&)l l  = W1(%)& . 
Since the representation itself is observable, we conclude 
that e 1  = e,. The converse is immediate. 
Consider now our plant C, = (R, Iwz x Rd x Rc , 23,) with 
image representation 

Then we arrive at the following: 

Proposition 7.1 : Assume that the representation 
7.1 is observable. Then the interconnection variable 
c is a full information variable for C, if and only if 
c = C( $)e  is an observable image representation, equiv- 
alently, rank C(X) = m for all X E C. 

Let Cc = (R, RC , %,) be a controller with kernel represen- 
tation K(&)c  = 0. Let E and e be related by c = C(&)e. 
Clearly, if we define K' := KC then K ( & ) c  = 0 iff 
K ' ( $ ) l =  0. Thus, if we define a new controller by 

23; := { c  E C1oc(Iwl Rc) I there exists l E CZoc(R, a') 
such that K'( &)e = 0 and c = C( $)e} (7.2) 

then clearly the controlled systems C, A C, and C, A 
C: are equal. In other words, given a controller with 
representation K (  $ )e  = 0, there exists a controller with 
representation c = C(-$)!, K ' ($) l  = 0 that yields the 
same controlled system. 
If c = C( &)l is observable, then also the converse holds, 
i.e., for every controller of the form c = C(  &)l, K ' (  $)e = 
0 there exists a controller of the form K (  $ ) e  = 0 yielding 
the same controlled system. Indeed, in that case there 
exists a polynomial left-inverse L of C ,  so if we have 
a controller given by 7.2, and if we define K := K'L, 
then for all = C ( $ ) i ,  we have 
K ( $ ) c  = 0 iff IT'($)? = 0. This means that the con- 
troller Ck = (R, Rc, %:) and the controller C c  with kernel 
representation K (  $ ) c  = 0 yield the same controlled sys- 
tem. 
Summarizing, if in the plant E, the representation c = 
C( $)l is observable, i.e., in the full information case, the 
set of controllers of the form 

and t related by 

d d 
c = C(--)l ,  dt K'(--)e dt = 0 (7.3) 

and the set of controllers of the form 

(7.4) 
d 
d t  

K(--)e = 0 



yields one and the same set of controlled systems. There- 
fore, we may without loss of generality restrict ourselves 
to the set of all controllers given by 7.3 (with behavior 
given by (7.2)), where K’ ranges over the set of all poyno- 
mial matrices with 1 columns. 
Without loss of generality we can also restrict ourselves 
to  polynomial matrices K’ with full row rank. In the 
following lemma we deal with the question under what 
conditions a controlber (7.2) is admissible: 

Lemma 7.2 : Consider the plant C, with observable im- 
age representation (7.1). Assume that c is a full infor- 
mation variable. Then the controller (7.2) with K’ of full 
row rank is admissible if and only if ( $ ) has full row 
rank. 

In the sequel we will simply write K instead of K‘ and 
23, instead of BL. 
To summarize, for tlhe plant E, given by the observable 
image representation (7.1), and with c a full information 
variable, we can consider controllers C, given by 

[7] H.L. Trentelman and J.C. Willems, ‘ H ,  control in a 
behavioral context, Part 1: The full information case’, 
Manuscript, August 1996, Submitted for publication. 

If K has full row rank then such a controller is admissible 
iff 

( ) has full. row rank 

Note that if C, is a,dmissible and K has full row rank, 
then K has at most 1 - d rows. These observations are 
pursued further in [’7], where a detailed study is made of 
the full information H,-problem. 
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