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Control questions often occur in the context of 
interconnected systems. In choosing a framework 
for a mathematical theory of control design, it is 
natural to take the model class which will be the 
end point of the modelling process as the starting 
point of the design process. Let us reflect on how 
such models are likely to look like. The main 
point that we are trying to make in this talk is 
the emergence of two types of variables: manifest 
and latent variables. 

Fig. 1: An interconnected system 

Consider an interconnected system, see figure 1. 
Assume that the purpose is to model the relation 
among certain variables, visualized as variables 
on the external terminals 1,2,3 of figure l(a). As- 
sume, for simplicity, that associated with each of 
these terminals there is one real number. Thus we 
are looking for the dynamic relation among the 
components of the vector w = col(w1, w2, wg). 
In order to come up with the required relation, 
look inside the black box. Typically this will lead 
to the situation of figure l(b), obtained by tear- 
ing the black box of figure l(a) into, say, four 

interconnected black boxes. Model the 4 new 
black boxes. Zoom in on, say, the one in the 
lower left corner, enlarged in figure l(c). View 
this black box in the same way as the original 
one in figure 1(a), call the variables on its ter- 
minals (203, e,, e2 , , e,), and proceed by tearing 
l(c) into new black boxes as shown in figure l(d), 
zoom in on the subsystem thus obtained, etc. 
The modelling process will be complete when we 
reach subsystems which we call modules, when 
by tearing in this hierarchical way, we reach a 
point where the modules of all the sub-...-sub- 
black-boxes are known: as standard components, 
or already available as modules in a database, or 
identified through experiments. 

This is the usual way modelling proceeds. How 
will the final model look like? It will consist of 
relations involving the external variables 201, w2, 

w3 and many internal variables 81, 8 2 ,  . . .. in- 
troduced aa auxiliary variables in the modelling 
process. Two types of relations will occur: on 
the one hand, the laws of the modules relating 
external and internal variables, and on the other 
the interconnection laws, relating the variables of 
one module to those of another. Some of the re- 
sulting relations will be dynamical; some will be 
first order differential relations, some will be sec- 
ond order, some may be partial differential equa- 
tions. However, there will also be (in fact, usually 
many) static equations (interconnection laws, re- 
sistors, springs). We will thus typically arrive at 
the following type of model 

with w = C O ~ ( W ~ , W ~ , . .  .) E W the vector of to- 
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the-modelled variables (we will call them mana- 
fest  variables), l = col (e, , l ,  , . . .) E IL the vector 
of the other variables introduced in the modelling 
process, for example in the tearing and zooming 
stage (we will call them Eatent variables), and fi , 
fi maps into an appropriate space. For exapmle, 
when modelling an electrical circuit, (1) will con- 
sist of the constitutive equations of the resistors, 
inductors, capacitors, transformers, etc. , Kirch- 
hoff’s voltage laws (one for each loop), and Kirch- 
hoff’s current laws (one for each node). 

The differential equations (1) can be considered 
as a complete model of the dynamical system. 
They specify the desired relation among the man- 
ifest variables, i.e., they specify the family of time 
functions which, according to the model (for ex- 
ample the black box of figure l(a)), are in princi- 
ple possible: 

23 = {w : R -+ W 1 3l : R -+ L 
such that (1) holds} (2) 

We will call ‘23 the (manifest) behavior of the sys- 
tem and denote the system itself by 

c = (T,W,B) (3) 

with T the time set (in our case, T = a), W the 
space of manifest variables, and %4 given by (??). 

Of course, an even more basic model is the one in- 
volving the latent variables explicitly, rather than 
implicitly. Thus we will call the system 

= (T, w1 IL1 Bf) (4) 

with the full behavzor defined by 

B j  = {(w, l )  : T -+ W x L I (??) is satisfied} 

the latent variable systemdefined by (l), and (??) 
the manifest system induced by (??). 

The model (1) is the appropriate starting point 
for a theory of differential systems and of con- 
trol design. Note that usually there will be a far 
distance from (1) to 

(5) 

dx 
dt 
_ -  - f(’1 U) 

the common starting points of the theory of con- 
trol! 
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