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Abstract 

In this talk we will give a simple proof of the remarkable 
result by Alex Wang [6] which states that if n < m * p ,  
then generically the controlled eigenvalues can be as- 
signed arbitrarily by real memoryless output feedback 
in a linear system with n states, m inputs, and p out- 
puts. 
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behavioral systems, linear systems, memoryless con- 
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1 Introduction 

Determining conditions for generic eigenvalue 
assignability by real memoryless output feedback has 
been one of the nagging puzzles in linear system theory 
over the last 25 years. We will not review its history 
here. Kimura [4] has given a nice account of this pro- 
blem in the historical session at the 1994 CDC. For an 
in depth discussion of the status of this problem up to 
the time of publication, is given in Byrnes [a]. 
Let TI be be number of states, m the number of in- 
puts, and p the number of outputs of a linear time- 
invariant system. That n 5 m * p is a necessary condi- 
tion for generic eigenvalue assignability is easy to see by 
counting the number of equations and unknowns. That 
n 5 m p is sufficient over C has been shown in [3].  
In r2] some very special cases, in addition to m or p = 1, 
are given for n 5 m * p to be sufficient over R: m = 2 
and p = 2' - 1, or m = 2' - 1 and p = 2, for some 
r E W. That n 5 m * p  is not sufficient in general follows 
from 181, where it is shown that m = p = 2; n = 4 does 

*Abbreviated version of a paper that will appear in Com- 
munications, Computing, Control and Signal Processing 2000, 
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Kailath, Kluwer Publications. 

not imply generic assignability over R. 
The main result about this problem undoubtedly the 
one by Alex Wang [6] where he proved, using rather un- 
accessible mathematics, that n < m * p is a sufficient 
condition over R: one mere additional degree of freedom 
compared to C suffices ! In [5] an elementary proof of 
this result has been given, exploiting a crucial idea pro- 
vided again by Alex Wang [7]. By working completely in 
an (A,B,C)-setting and side-stepping behavioral think- 
ing, the proof in [5], while elementary] turned out to be 
not particularly transparent. The purpose of the present 
note is to provide an elementary and simple proof, based 
on behavioral thinking, that n < m * p is sufficient over 
R. 
Throughout the paper we will assume that the time 
functions under consideration are infinitely differen- 
tiable. A subset S C RN will be called an algebraic 
oariety if there exists a real polynomial in N variables 
such that S coincides with the zero set of this poly- 
nomial. If an algebraic variety S is a strict subset of 
E X N ,  then it will be called proper. The complement of 
a proper algebraic variety is called generic: it is open, 
dense, and measure exhausting (meaning that its com- 
plement has Lebesgue measure zero). 

2 The system 

Consider the linear time-invariant system 

(2.1) - dx = A x + B u ,  ~ = C X  
dt 

with c E R n , u  E R m l y  E R P ,  and ( A , B , C )  E 
R"a+"mfp". Let /I := E N T (  E ) ,  the smallest integer 
2 n / p ,  p2 := p p  - n,  and pl  := p - pa. When n is 
divisible by p, then p2 = 0. In this case the vectors and 
matrices of size p z  are assumed to be absent. It is well- 
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known that the generic system (2.1) has observability 
indices 

( P l ,  P 2 1 . .  . , P p )  (2.2) 

= P P l  = P and 
with, if n is divisible by p ,  p1 = ... = pp = p,  while, 

ppl+l  = .. . = p p  = p - 1. It follows from [ll] that 
the input/output behavior of the system (2.1) with the 
generic observability indices (2.2) will have the following 
kernel representation 

if n is not divisible by p ,  p1 = 

d 
R ( ; l t ) w = O ,  w : =  [.4 

in which the polynomial matrix R E RPX(p+m)[t3 has 
the following structure 

dw dP-'w dP w 
dt dtp-l dtP 

R O W  + RI - + * * .  + R P - l -  + R - = O(2.4) 

and Rk E I W p X ( p + m ) , k  = 0 , 1 , . * .  , p ,  and with RP-l  and 
R,, of the following special form 

The *'s in (2.6) and &,..., RP-2 in (2.4) are ma- 
trices without special structure. The total number 
of free parameters in Ro, R I , .  . . , Rp-l, Rp, and hencc 
in the associated differential equation (2.3), is thus 
n(m + p ) .  By a slight abuse of notation, we will there- 
fore write ( Ro, R I ,  . . . , R,,) € R"(m+P). We will denote 
the family of linear systems described by (2.3) with 
R E RPX(P+")[J] of the special form (2.4, 2.5,2.6) by E. 
Hence C %f R"("+P). This makes it clear what genericity 
in C signifies. 

3 Feedback and interconnection 

Now consider the linear memoryless output feedback law 

U = F y  (3.1) 

Applied to (2.1), this yields the closed loop system given 
by 

dx 
dt 
- = ( A  + BFC)g 

The associated characteristic polynomial is 

det(1J - A - BFC) (3.3) 

An easy calculation shows that the characteristic poly- 
nomial (3.3) equals 

(3.4) 

The eigenvalue assignability problem by memoryless 
output feedback is formulated as follows. Let (2.1) be 
given and let d E RK], 

d ( [ )  = do d- dl [  + . . . f dn-1En-l + 6" (3.5) 

be a given monic polynomial. The question is when 
there exits an F E RPXm such that the characteristic 
polynomial associated with (3.2) equals d ,  i.e., such that 

det(IJ - A  - BFC) d ( J )  (3.6) 

Note that we have just shown that this is equivalent to 

(3.7) 

Persons familiar with polynomial representations of lin- 
ear systems could take (3.7) as the starting point of 
this paper: (2.4, 2.5, 2.6) is a canonical representation 
of a linear system with McMillan degree n and generic 
observability indices (2.2). The eigenvalue placement 
question is then simply formulated by (3.7), and we will 
prove that for generic elements in C, (3.7) is solvable for 
all d's of degree 5 n if n < m * p .  

4 Regular, singular, and dependent con- 
trollers 

We will now consider control in a behavioral setting, in 
the spirit of [9, lo]. Let (2.3) denote the plant and con- 
sider as controller the memoryless linear time-invariant 
dynamical system 

with I< E RmX(P+").  This yields the controlled system 

Call the real monic polynomial whose roots coincide 
with those of 

det [q] (4.3) 

the characteristic polynomial of (4.2). Note that its de- 
gree does not exceed n, the McMillan degree of R .  We 
will say that for a plant R E C eigenvalue assignment 
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by real memoryless feedback is possible if for all monic 
polynomials A E R[4, with degree ( A )  5 n, there exists 
a IC such that (4.2) has characteristic polynomial A. 

Examine the characteristic polynomial (4.3) and parti- 
tion Ii as 

Ii = [Iil I Kz] (4-4) 

with IC1 E RmXp and K2 E BmX". Observe that (4.3) 
has degree exactly n if and only if K2 is invertible. We 
call a controller (4.1) regular if (4.3) has degree n; sin- 
gular if it has degree < n; and dependent if it is zero. 
In [1] dependent controllers are called non-admissible. It 
may be surprising that dependent controllers will play 
a crucial role in the sequel. 
A regular control law (4.4) is obviously equivalent to  the 
feedback control law of the form (3.1) given by 

[1i;11<1 I I ]ut = 0 (4.5) 

i.e., 

Regular control laws lead to  polynomials (4.3) which are 
monk and of degree n. 

5 The main result 

The main result of this paper is the 
Theorem 1: Assume that n < m * p .  Then generically 
for R E C E RW"("+P) eigenvalue assignment by real 
memoryless feedback is possible. 
Proof: (i) In the first step of the proof we will examine 
the expansion of (4.3) as a power series in K around a 
point KO. Let R E C be given. Consider the map h 
which assigns to K the polynomial (4.3). Thus h is a 
map from Iw"("+p) to  Rn+' (associate the coefficients 
of the polynomial (4.3) - a polynomial of degree at  most 
n - with a vector in Rn+'); h is, in fact, a polynomial 
map. 
Consider the power series expansion of h at the point 
KO E Rmx(P+m). There holds 

m m+v 

k = l  l = 1  

where Ak, denotes the (k, !?)-th element of A ,  Mke equals 
( - l )P+k+e  times the minor obtained by crossing out the 

( p  + k)-th row and t-th column of [Er)], ~ and h.0.t. 
L J  

means quadratic or higher order terms in the elements 
of A. 
We will now show that R has the eigenvalue assignability 
property if KO has the following properties 

i.e., KO is a dependent controller, and 

(b) the polynomials Mke([),  k = 1, . .  .,m;!? = 
1,. . . , m + p ,  span the ( n  + 1)-dimensional vector 
space of real polynomials of degree 5 n. 

Indeed, by the implicit function theorem, (a) and (b) 
combined imply (since the linear part of h is surjective 
at  KO) that the image of h contains an open neighbor- 
hood of the origin. However, if the image of h contains 
the polynomial x, then it also contains ax (simply pre- 
multiply K by the diagonal matrix diag(a, 1 , .  . . , 1) and 
examine (4.2)). Hence (a) and (b) imply that h is sur- 
jective. 
(ii) In the second step of the proof, we will the existence 
of a dependent controller K O ,  with ICo of rank m. The 
row degrees of R E C are equal to the observability 
indices (2.2). Note that n < m * p implies p p  < m. We 
will prove that p p  < m in turn implies the existence of a 
rank m KO E RmX(p+") such that (5.2) holds. Indeed, 
we can associate with each R E C such a dependent 
controller IC0 in a canonical way, as follows. 
Let the vector polynomial 

ri + ,-jt + . . . + ,-;P-'~PP-' + y F p < P P  

denote the p t h  (i.e., the last) row of R. Take 

(5.3) 

(5.4) 

where ek equals the row vector [0, . . . , 0, 1 ,0 ,  . . . , 01 with 
the 1 in the k-th entry. 
It is obvious, by examining (5.3) and (5.4), that  (5.2) 
will indeed hold for the K O  given by (5.4). 
(iii) The third part of the proof consists in showing that 
condition (b) of part (i) is generically satisfied for the 
IC0 given by (5.4). In other words, we will prove that 
n < m * p implies that the KO given by (5.4) will yield 
polynomials Mk!([) which, generically for E, span the 
polynomials of degree 5 n. 
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- 
[PI1 o . . . o  0 0 . . . o o . . . o  -I 
0 [ P a  1 . . .  0 0 0 ... 0 0  ... 0 

(5.5) 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .  . .  . . . . . . . . . . . . . . . . . . . . . 

0 0 0 ... p p - 1  0 0 ... 0 0 ... 1 
0 0 0 . . .  0 [PP p p - 1  ... 1 0  ... 0 
i - 

p + + " ' + P p - l  , [PIS . -+Pp- l+ l  . . . [Pl+-+Pp-l+Pp 
, I  

These obviously span the polynomials of degree 5 n. 
This completes the proof of Theorem 1. 1 
Note the surprisingly crucial role played in the proof 
by the dependent controller (5.4), whose existence was 
guaranteed by the fact that pp is less than m! 

6 Memoryless output feedback ip. state 
models 

The generic set of R's from C for which h is surjective 
will also have the property that for each real monic poly- 
nomial A of degree n, there exists a control law of the 
type 

[-FII]ul=O 

i.e., 

U = Fy (6-2) 

achieving T as characteristic polynomial. By (3.4) this 
?r will also be equal to (3.3). Together with the ob- 
servation that the map that associates with ( A ,  B, C) E 
Rna+nm+pn the system (Ro, R I , .  3 .  , RP) E C E Rn(m+p) 
is rational, we thus obtain Wang's result [6] as a direct 
consequence of Theorem 1. 

Theorem 2: Assume that n < m *p.  Then generically 
for ( A , B , C )  E lWna+nm+pn there exists, for each real 
monic polynomial A of degree n, and 4.  E Rmxp such 
that 

A ( [ )  = det(I[ - A - BFC) (6.3) 
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