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In the standard formulation of the H, control problem the 
aim is t o  design a feedback loop around a given system in 
such a way that in the closed loop system the influence of the 
exogenous inputs on the exogenous outputs remains within 
a certain a priori given tolerance. The system under consid- 
eration typically has control inputs, exogenous inputs, mea- 
sured outputs, and exogenous outputs. The controllers to be 
designed should take the measured outputs of the system as 
its inputs, and should, on the basis of these inputs, generate 
control inputs for the system. These controllers should be 
designed in such a way that the resulting closed loop oper- 
ator (mapping exogenous inputs to exogenous outputs) has 
norm less than or equal to some a priori given upper bound. 

Recently, it  has been argued that in many cases it is more 
natural to view the problem of controller design as the pro- 
blem of designing for a given system an additional set of 
'laws' that the the signals appearing in the system should 
obey. More specifically, if a system is given in terms of a 
certain set of 'behavioral equations', then the problem of 
controller design is to invent an additional set of equations, 
involving the signals appearing in the system, in such a way 
that the 'controlled system' (i.e., the system consisting of 
those signals that are compatible with both set of equa- 
tions) satisfies the a priori given control specifications, see 
e.g. 121, [41. 

Of course, if we compare these to set-ups, the main differ- 
ence is that in the behavioral set-up the controllers to be de- 
signed are no longer required to have the particular causality 
structure imposed by the requirement that the control in- 
puts should be generated on the basis of measured outputs. 
This clearly has advantages if we want to control systems in- 
volving signals in which an a priori subdivision into control 
signals and measured output signals is unnatural. 

In this note, we want to reformulate and study the H, con- 
trol problem in the behavioral framework, i.e., in the frame- 
work one gets by taking the alternative point of view to 
controller design as explained above. 

2 Feedback in a behavioral setting 

In this paper we consider linear time-invariant differential 
dynamical systems, i.e., the set of systems C = {R,Rq, B}, 
with time set R, signal space Rq, and whose behavior is equal 
to the solution set of a system of differential equations of the 

form 

d 
dt  R( - )w  = 0, 

where R E R'"q[t] is a real polynomial matrix in the inde- 
terminate [ with q columns. More precisely, the behavior of 
C is defmed by 

d 
dt  B := { W  E C"(R, R') I R( - ) w  = 0). 

Here, C"3(R,Rq) denotes the set of all infinitely often dif- 
ferentiable functions from R to Rq. The implied smoothness 
is impose for convenience only. The dynamical system C is 
called controllable if its behavior has the property that for 
any pair of trajectories w1, w2 E 8, there exists a trajectory 
w E B and T 2 0 such that w ( t )  = w l ( t )  for t < 0 and 
w ( t  + T) = w2(t) for t > 0. In this paper, we will restrict 
ourselves to controllable systems. It can be shown (see [3]) 
that a system is controllable if and only if there exists a poly- 
nomial matrix M E RqX*[[], with q rows and 1 columns, such 
that B is given by 

B = { W E C ~ ( W , R ' ) I  w = M ( & ) L  forsome 

L E  C,(R,RI)}. (2.1) 

Such a representation of a linear dynamical system C is called 
an image regresenation of E. It can be shown that if C has 
an image representation, or equivalently: if C is controllable, 
then the polynomial matrix M can be chosen such that M (  A) 
has full column rank for all X E C. This property of M can be 
proven to be equivalent to observability of the representation 
2.1, see [3]. 

We will now addres the issue of controlling the system E 
given by the image represenation 2.1. In this paper, a con- 
troller for C will be any system of equations 

d 
dt 

C( - )e = 0,  

where G E R'x'[(] is a polynomial matrix with I columns. If 
we combine the original system equations w = M (  $ ) e  with 
the equations 2.2 of the controller, we obtain the behavior 
BC of the controlled system: 

B c  = { w  E C"(R, Rq) I w = M (  $ ) e  for some 

(2.3) 
d 

E kerC(-& 
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with C( 9 viewed as acting on C"(R,R'). In general, a con- 
troller design problem can now be formulated as: for the 
system Cl design a set of equations 2.2 (equivalently: invent 
a polynomial matrix C) such that the behavior 2.3 of the 
controlled system satisfies certain a priori given design spec- 
ifications. In this note, these design specifications will be 
' H ,  -like' specifications. 

3 H ,  control in a behavioral setting 

Consider the system C with behavior in image representation 
given by 2.1. Without loss of generality, assume that the 
representation is observable. We assume that the manifest 
variable w consists of two components, 

w =  ($ 
where t has the interpretation of a signal that we want to 
keep small in an appropriate sense, and where d is interpreted 
as an unknown disturbance signal that acts on the system. 
The signal d is assumed to take its values in W', while the 
signal z takes its values in Itq-'. Accordingly, we partition 

M =  (E) 

into polynomial matrices N E R(q-r)x'[4 and D E Itrx'[(]. 
Thus, we will be dealing with the system C given by 

The interpretation of d being an unknown disturbance signal 
can be formalized by assuming that all (smooth) functions d 
can occur as the second component of the manifest variable 
w .  The signal d is then called free. This is equivalent with 
the condition that the polynomial matrix D has full row rank 
as a matrix with entries in the field of real rational functions 
NO 
Now, let C E Et"'[<] be a polynomial matrix with 1 columns, 
and consider the controller C( $)! = 0. In the sequel, we will 
simply call this 'the controller C'. Since d is interpreted as 
an unknown disturbance signal, we should assume that our 
controllers are not allowed to put restrictions on the signal d: 
in the controlled system, d should remain a free variable. It 
is easily seen that this requirement on C is equivalent to the 

condition that the polynomial matrix (5) E R'"'[€] has 

full row rank as a matrix with entries in R([). A controller 
C which has this property will be called admissible. In par- 
ticular, an admissible controller has at most 1 - r rows. For a 
given admissible controller C, the behavior of the controlled 
system is given by 

In the sequel, let Li(1W) be the set of all Rq valued functions 
that are square integrable over R. For a given vector valued 
function f, we denote its C2 norm by Ilfllz. The idea of H ,  
control is to reduce the influence of the disturbance signals 
on the signals to be controlled. A controller C will be called a 
contracting controller if it is admissible and if the associated 
controlled behavior satisfies the following property: 

The H, control problem for the system C is the problem of 
finding a contracting controller. In addition, we will consider 
the H, control problem with internal stability. A controller 
C will be called internally stabilizing if for the associated 
controlled behavior we have: 

i.e., if from d = 0 we may concude that z ( t )  tends to 0 
as t runs off to infinity. For a given system C, the H ,  
control problem with internal stability is to find an internally 
stabilizing, contracting controller. 

4 H ,  control without internal stability 

In this section we will study the problem of finding con- 
tracting controllers for a given system. We will first show 
that a necessary condition for a controller C to be con- 
tracting is, that the polynomial matrix is nonsingular 

as a matrix with entries in R(<). In particular, this im- 
plies that a contracting controller C must have esactly 1 - r 

(E) 

rows. In order to show this, we need to show that (E) has 
full column rank. If this matrix fails to have full column 
rank, then there exists a nonzero e E C"(R,R') such that 
C( $)e  = 0 and d = D( $ ) e  = 0. By observability, we must 
have z = N($)! # 0, which violates the contractiveness 
condition 3.2. 

In the following, let Vq denote the subset of Cw (R, Rq) con- 
sisting of those functions that have compact support. By a 
density argument, we can show that 3.2 holds if and only if 
i t  holds for all E Bc n V q .  Taking Fourier transforms, 

i t  follows that 3.2 is equivalent to the following condition: 
(3 

An important role in this paper is played by symmetric two- 
variable polynomial matrices (see [I], [5]). In particular, 
the following symmetric two-variable polynomial will play 
an central role: 

d t E kerC(z)  n C"(W,R')). 
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Then 4.1 is equivalent to  I t  is well known that the polynomial matrix a@(() has a 
J-spectral factorization 

u'a@(iw)u 5 0 for all U E kerC(iw), for all w E R, (4.2) 

where we define a@(() := a(--[,€): Thus we obtain the 
following result: 

Lemma 4.1 :Let C E R*"'[(]. C is a contracting controller 
if and only if is non-singular as a matrix with entries 

in R ( 0 ,  and u*a@(iw)u 5 0 for all U E kerC(iw), for all 
w E w. 

(3 

Since a contracting controller C has exactly 6 - r rows, we 
know that for all w E W the dimension of kerC(aw) as a 
subspace of C' satisfies dimkerC(iw) 2 r. For any given 
hermitian matrix M, let v ( M ) ,  ( ( M ) ,  and n ( M )  denote the 
number (counting multiplicity) of negative, zero, and posi- 
tive eigenvalues, respectively. The triple ( v ( M ) ,  ( ( M ) ,  n ( M )  
is called the signature of M. It follows from 4.2 that if there 
exists a contracting controller, then we have 

with F E R'"'[(]. 

R'-'"'[(] and D E R'"'[(]. 
C T ( - i w ) C ( i w ) - Z T ( - i w ) Z ( i w ) .  I t  can be verified that 

is non-singular. Also, for all w and for all U f kerC(iw) we 
have u'a@(iw)u = -IIZ(iw)u112 5 0, so C is contracting. H 

Now partition F = , with C E 

Then obviously d @ ( i w )  = 
(3 

(9 

I t  follows from the above proof that any J spectral factor- 
ization of a@(() yields a contracting controller. I t  is impor- 
tant to note however that, in fact, any polynomial matrix 
C E R'"'[[] such that is non-singular and such that 

d@( iw)  - C'(-iw)C(iw) 5 0, for all w E R, (4.3) 

yields a contracting controller. 
v (a@( iw) )  + C(a@( iw) )  2 r. 

On the other hand, for all U E ker D(iw)  we have 

Since D(iw)  has r rows, we have dim kerD(iw) 2 1 - r,  so 

n(a@(iw)) + C(a@(iw))  2 1 - r. 

Now, as a standing assumption on the systems C under con- 
sideration, we are going to assume that d@(iw) is nonsingular 
for all w E R, equivalently that a@(() has no zeros on the 
imaginary axis. Under this assumption we can conclude from 
the above that a necessary condition for the existence of a 
contracting controller is, that v (a@( iw)  = r for all w E R, 
i.e., the number of negative eigenvalues of a@(iw) is constant 
and equal to  the number of components of the disturbance 
signal. The following result states that this condition is also 
sufficient for the existence of a contracting controller: 

Theorem 4.2 :There exists a contracting controller if  and 
only i f  v (a@( iw) )  = r for all w E R. 

Proof: If v (a@( iw) )  = r for all w E RI then a@(iw)  has 
constant signature (r,O,E - r). Let J denote the signature 
matrix 

J := ( 
-;r ) . 

5 Dissipative systems 

In this section we temporarily leave the H,-context, and 
consider general systems in image representation, given by 

d 
dt 

w = M(-)C,  

with M E Rqx'[(]. Denote by B the behavior of this system 
(see 2.1). In addition, we have a quadratic functional QL : 
Cm(R,Rq) + C"(W,R); w I+ Q L ( w ) ,  associated with a 
given two-variable polynomial L E RIxq[ ( ,  q].  For the precise 
definition of Q L ,  see [5]. The functional Q L  will be called the 
supply rate. The system 5.1, together with the given supply 
rate, is called cyclo-dissipative if for all w E B with compact 
support we have 

For a given signal w E €3, the quantity Q L ( w ) ( t )  is the rate 
at which supply (e.g. energy) flows into the system. The 
inequality 5.2 expresses the fact that, if the system happens 
to produce the compact support signal tu, then supply flows 
net into the system over_ the interval (-col w). Define a 
two-variable polynomial L E R',"'[C, q] by 

I t  can be verified that if w and .! are related by 5.1, then 
QL(w)  = Qi(C).  Therefore, the system is cyclo-dissipative 
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if and only if for all E D' 6 H ,  control with internal stability 

This condition is equivalent to 

Thus, if our system is cyclo-dissipative, equivalently, if 5.3 
holds, then we can factorize 

with R E R'"'[(]. Introduce now a two-variable polynomial 
A by 

Since aA = 0, the two-variable polynomial A must contain a 
factor C + q, and therefore we can define a new two-variable 
polynomial by 

Consider now the quadratic functionals Qp and QA associ- 
ated with P and A, respectively. We have 

Furthermore, 5.4 is equivalent to: 

Thus we obtain 

(5.5) 

for all E C"(W,W'), for all t E W. If we interpret Qp(.f)(t) 
as the amount of supply (e.g., energy) stored inside the sys- 
tem at time t, then 5.5 expresses the fact that the rate at 
which the internal storage increases does not exceed the rate 
at which supply flows into the system. The inequality 5.5 
is called the dissipation inequality. Any quadratic functional 
Qp : C"(W,R') -+ C"(W,R), associated with some tww 
variable polynomial P, that satisfies this inequality is called 
a stomge function. A system is cyclo-dissipative if and only 
if i t  has a storage function Q P .  In general, storage functions 
are not unique. A storage function Q p  is called positive 
semi-definite if for all C E Cm(R, W') we have Qp(C)  2 0, see 
also section 3. 

We now return to the H ,  control problem. In this section we 
will study the question under what conditions a contracting 
controller is internally stabilizing. Our main result will give 
necessary and sufficient conditions under which there exists 
a contracting, internally stabilizing controller for the system 
3.1. We start with the following lemma: 

Lemma 6.1 :Let C be a contracting controller. Then C i s  

internally stabilizmg if and only if is Hurwitz, i.e., has 

all its zeros in C -  := {A E C I S e  X < 01. 
(3 

Proof : Let X be a zero of . Then there exists U # 0 

such that D(X)u = 0 and C(X)u = 0. Defme f ( t )  := eXtu.  
Then clearly d = 0 and C(&)C = 0. Firthermore z(t) = 
eX'N(X)u. By observability, N ( X ) u  # 0. Thus z(t) -+ 0 if 
and only if !Re X < 0. 

(3 

Suppose now that C E R'"'[(] is such that (:) is non- 

singular and such that 4.3 holds. Of course, 4.3 can be 
rewritten as 

C'(-iw)C(iw) + DT(- iw)D( iw)  - N T ( - i w ) N ( i w )  2 0, 

for all w E R. (6.1) 

This inequality can be given an interpretation in the context 
of dissipative systems by considering the auxiliary system 

with supply rate given by the (constant, i.e., of degree 0) 
two-variable polynomial 

In fact, 6.1 says that the above system with supply rate 
QL(u,d,z) := 1 1 ~ 1 1 '  + lldll' - 1 1 ~ 1 1 ~  is cyclo-dissipative. As 
explained in the previous section, there exists at least one 
storage function Qp for this cyclo-dissipative system. We 
have the following theorem: 

Theorem 6.2 :Let C E We"'[[] be such that (z) is non- 

singular and such that 6.1 holds. C is internally stabilizing if 
and only if there exists a positive semi-definite stomge func- 
tion Q p .  Under this condition, every storage function is 
positive semi-definite. 
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Proof: Suppose that Qp (associated with the two-variable 
polynomial P) is a positive semi-definite storage function. 
We want to show that is Hurwitz. We will first explain 

the idea of the proof. The dissipation inequality states that 
(3 

for all e, Now let L be  a solution of 

get 

This means that 5 0 along solutions of the (au- 

tonomous) system (zrgl)e = 0. Since Q ~ ( L )  2 0, we 

expect Q p  to act as a Lyapunov function and to be able to 
conclude that [(t) -+ 0 as t -+ 00. 

We will now make this idea precise. let X be a zero of . 
Then there is a non-zero vector U such that D(X)u = 0 and 
C(X)u = 0. Define L(t) := eatu. We calculate that 

(E) 

Then according to the dissipation inequality, we have 

for all t. In particular, for t = 0 this yields 

Since u*P(x,X)u 2 0 by positive semi-dehiteness of Qp, 
we find that Re X 5 0. From We X = 0 it  would follow 
that N ( X ) u  = 0, which would contradict observability. This 
proves that Re X < 0. The rest of the proof is omitted here. 

If the polynomial matrix C E R(i-r)xr[[] is obtained from 
a J-spectral factorization of a@, i.e., if we take C to be a 
polynomial matrix obtained by factorizing 

with F E RfX1[.$], and by partitioning 

F =  (;), 

then C satisfies 

for dl w E R. The auxiliary system 6.2 corresponding to 
this choice of C is cyclo-dissipative, and we can obtain a 
particular storage function Qr by defining 

According to the previous theorem, the contracting con- 
troller C is internally stabilizing if and only if QU is positive 
semi-definite. 

Now, we would like to obtain conditions, in terms of the 
two-variable polynomial ip only (so in terms of the system 
matrices N and D only), under which &U is indeed positive 
semi-definite. The surprising fact is, that such conditions 
can indeed be given, if instead of working with an arbitrary 
J-spectral factorization we work with a Hurmitz J-spectral 
factorization, i.e., a J-spectral factorization 

cg(-'$)CH(<) - Z g ( - F ) Z H ( t )  (6.4) 

with FH = (;E) Hurwitz. The corresponding quotient 

twc-variable polynomial will be denoted by @ H ,  the corre- 
sponding storage function by Qq,, . 

Definition 6.3 :The J-spectral factorization 6.3 is called a 
regular factorization (see also [6]) if (E) F-I is proper. In 

that case, F is called a regular factor. The two-variable poly- 
nomial @(c, q)  will be called regular if there exists a regular 
factorization of a@. 

In the following, let XI , .. . Xk be the distinct zeros of a@ in 
@-. For simplicity, assume that every zero has multiplicity 
one. Furthermore, let vi be a singular vector associated with 
the zero Xi,  i.e., assume that vi # 0 and a@(Xi)ui = 0. 

Define the constant Hermitian matrix k x k matrix 7 by 

The next lemma states that if there exists a regular Hur- 
witz J spectral factorization, then the storage function &e 
associated with that factorization is positive semi-definite if  
and only if the Hermitian matrix 7 is positive semi-definite: 

Lemma 6.4 :Assume that FH i s  a regular Hurwitz J -  
spectml factor. Then we have: QeH 2 0 if and only if 7 2 0. 

Now let us return to the H ,  control problem with internal 
stability. Recall that the polynomial matrix CH obtained 

3699 



from the Hurwitz J-spectral factorization 6.4 is contracting, 
and that i t  is internally stabilizing if and only if its asso- 

ciated storage function &eH is positive semi-definite. By 
applying the previous lemma we can therefore conclude that 
if CH is obtained from a regular Hurwitz factorization, then 
it is internally stabilizing if and only if 7 2 0. At this point, 
note that we have obtained a sufficient condition for the exis- 
tence of a contracting, internally stabilizing controller for our 
system: under the assumption that the two-variable polyne 
mial a(<, v )  is regular, if the negative signature v ( a @ ( i w )  is 
equal to r (the dimension of the disturbance) for all w ,  and if 
7 2 0, then there exists a contracting, internally stabilizing 
controller (take CH). We state this formally: 

Theorem 6.5 :Assume that @ is regular. There ercists a 
contmcting, indemlly stabilizing controller if the following 
two conditions are satisfied: 

( i)  v (d@( iw)  = r for all w E Iw, 
(ii) M 2 0. 

If these two conditions hold, then a contmcting, internally 
stabilizing controller is given by C H ,  where CH is obtained 
from a regular Hurwitz J-spectmf factorization 6.4 of a@. 
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