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1. Introduction 

The aim of this paper is to analyse the notion 
of controllability for delay-differential systems 
within the behavioral framework introduced in 

[51. 
In this framework, a system is characterized by 
its behavior f?, which is a set consisting of all 
the admissible signals w.r.t. the system laws. 
The system variables correspond to the rele- 
vant attributes of the phenomenon which is de- 
scribed by the system. They are said to  be 
external (or manifest) variables, as opposed to  
internal (or latent) variables. These latter are 
auxiliary variables that are often introduced in 
order to obtain a more suitable system descrip- 
tion, but do not necessarily correspond to  the 
relevant attributes of the phenomenon under 
consideration. As an example, for a classical 
i /s/o system the state variables will be inter- 
nal, whereas both the inputs U and the outputs 
y are external variables. The system behavior 
will consist of all the joint input-output signals 
which are allowed to  occur. 

Since the behavior is the most intrinsic feature 
of a system, it is logical to define the system 
properties in terms of the set B, i.e., at  an ex- 
ternal level. This applies in particular for the 
notion of controllability. Roughly speaking, we 
will say that a system (and/or its behavior) 
is controllable whenever it is possible to make 
compatible the 'past' and the 'future' of two 
arbitrary signals; so, the long term evolution 
is independent of the system histor In order 
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to distinguish this property from the classical 
state controllability we will refer to it as behav- 
ioral controllability. 
Behavioral controllability has been widely 
studied both for continuous- and for discrete- 
time systems, respectively described by differ- 
ential and difference equations, see [5, 31. In 
this paper we consider continuous-time sys- 
tems described by differential equations with 
delays: i.e., delay-differential systems. More 
concretely, we will be concerned with systems 
whose behavior f? can be described as the ker- 
nel of a delay-differential operator R( D, A) 
(where R(z1,z~) is a 2D polynomial matrix in 
z1 and z2, D is the differential operator and A 
is the delay). 

2. Controllability 

Let C be a system in q real-valued variables 
evolving over R, with behavior f? C {w : R .+ 

Rq). Given two signals w1 and w2 in B we 
will say that w1 is f?-compatible with wu)~ if for 
all tl E R there exists t 2  2 tl and w E B 
such that w* := w1 At, w At, w2 E f?. Here 
w* := w1 At, w At, wz stands for the successive 
concatenation of w1 with w at  time tl and with 
w~ at time t 2 ,  and is defined as follows: w * ( t )  = 
wl(t) for t 5 tl, w*(t) = w(t) for tl < t 5 t;! 
and w*(t) = wz(t) for t > t z .  

Definition 1 The system C and the behavior 
B are said to be behaviorally controllable i f  for 
all signals zu1 and zu2 in B w1 is B-compatible 
with ~ 2 .  
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As mentioned before, behavioral controllability 
means then that any arbitrary past evolution 
w1 in ( - m , t l ]  can be associated in the long 
run (i.e., after a certain time t2) to  a desired 
future development w2 in (t2, +m). 
It turns out that the classical notion of state 
controllability is equivalent to behavioral con- 
trollability if the state is regarded as an exter- 
nal variable. However, if this is not the case, 
the behavioral controllability does not neces- 
sarily imply state controllability. 

3. Delay-differential systems 

In the sequel we will consider systems in q 
real-valued variables and with smooth signals, 
whose behavior B C C"(R, Rq)  can be given 
as follows. Let A be the delay operator de- 
fined by A : C"(R,Rq) --t C"(R,Rq), such 
that ( A w ) ( t )  = w(t - 1) for all t E R and all 
w E C"(R, Rq). Let further D be the differen- 
tial operator. Then there exists a 2D polyno- 
mial matrix R(z1,zz) with q columns such that 
B = { w  E C"(R,RQ) : R ( D , A ) w  = 0).  I.e., L3 
is the kernel of a polynomial delay-differential 
(d-d) operator R .  
Note that this kernel representation is more 
general than the polynomial input-output de- 
scriptions considered in [4] as well as than 
the pseudo-state descriptions of [l]. In- 
deed, any polynomial input-output d-d equa- 
tion P ( D , A ) y  = &(D,A)u  can be regarded 
as a kernel representation with R ( D , A )  = 
[ P ( D , A )  I -Q(D,A) ]  and with w = col(y,u). 
On its turn, also the pseudo-state description 
{i = A(A)z  + Bu y = Cz) can be viewed as a 
kernel representation with w = col(%, y, U )  and 
R(D, A )  = col([D - A ( A )  I 0 I -B] ,  [-C I I I 
01). 

4. Controllability of D-D Systems 

Let B be the behavior with kernel represen- 
tation B = kerR(D,A),  where R ( z 1 , ~ )  is a 
full row rank r x q polynomial matrix. It can 
be shown that: 

Lemma 1 With the previous notation, if 
rankR(X,e-') = r for all X E C then there 
exists a 2D polynomial matrix M(zl ,z2)  such 
that B := LerR(D,A) = i m M ( D , A ) ,  with the 
opemtor M ( D , A )  acting on C"(R,R') for a 
certain integer I .  

This means that, in case R(X,e-') has no 
rank drops, kerR(D, A )  can be alternatively 
described as the image of a polynomial delay- 
differential operator. 
Based on this result it is not difficult to con- 
clude that B is then controllable. Indeed, sup- 
pose that B has an image representation B = 
i m M ( D , A ) ,  and let w1 and w2 be two arbi- 
trary signals in B. Then, there exist a1 and a2 
in C"(R,R') such that w; = Ma;,( i  = 1,2). 
Now, it is possible to construct a smooth sig- 
nal a* which coincides with a1 in the past and 
with a2 in the (sufficiently far) future. Such 
signal yields an element w* = Ma* in B which 
coincides with wl in the past and with w2 in 
the future. Therefore w1 is B-compatible with 
w2 showing that B is controllable. 
The converse implication also holds true. If 
rankR(X,e-X) < r for some X, E C we can 
show that there exists a signal associated with 
the frequency A,-, which is not B-compatible 
with the identically zero signal and hence B is 
not controllable. 
The foregoing considerations lead to  the fol- 
lowing characterization of behavioral controlla- 
bility for delay-differential systems with kernel 
representations. 

Theorem 1 With the previous notation, B = 
kerR(D, A )  is (behaviorally) controllable if and 
only ifrankR(X,e-') = r for all X E C .  

Note that in case the system is a pure differ- 
ential one, i.e., R ( D , A )  = S(D) ,  this charac- 
terization of behavioral controllability reduces 
to the condition rankS(X) = r for all X E C ,  
which has been derived in [5].  

In order to give a further insight, it is useful to  
compare this result with results on state con- 
trollability for d-d systems of [l]. 
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We will focus on the class of d-d systems C 
considered in [l] which have a pseudo-state de- 
scription of the form 

A ( A ) x  + Bu {: 1 Cx 
where x is the (n  dimensional) pseudo-state, 
U is the input, y is the output and A ( z )  = 
A N Z ~  t . . . + A l z  t A0 is a polynomial ma- 
trix in z. 

For the system C, the state at time t is defined 
in [l] as being z ( t )  = col(z(t) ,zt) ,  where zt E 
L2[ ( -N ,0 ] ,Rn]  is given by q ( ~ )  = x ( t  + T )  for 
all 7 E (-N,O]. This yields the infinite dimen- 
sional state space 2 = RnxLz[(-N,O),Rn]. 
Define, in this state space, the set Kt of all 
attainable states in time t ,  and let K ,  := 
Ut>oKt. Then C is said to be approximately 
controllable if K ,  is dense in 2. The next the- 
orem, providing a characterization of approxi- 
mate controllability, has been derived in [l]. 

Theorem 2 C is approximately controllable i f  
an only if: 

(1)  rank[(Xl- A(.-’) I B] = n VA E C and 
(2) ranb[Anr I B] = n. 

The first condition of the theorem is known as 
spectral controllability. 

Note that the pseudo-state description that we 
have considered here can be regarded as a ker- 
nel representation with R ( D , A )  = col([D - 
A(A) I 0 I -Ill,[-C I I I 01) if C is viewed 
as a system with external variable vector w = 
coZ(x, y, a) and with smooth signals. It turns 
out from Theorem 1 that C is behaviorally con- 
trollable iff rank[(XI - A(.-’) I B] = n for all 
A E C. So behavioral controllability seems to 
correspond to spectral rather than to approxi- 
mate controllability. 
The situation can be illustrated by the follow- 
ing example. 

B = col(O,-l). Then the corresponding sys- 
tem C is not approximately controllable since 
rank[Al I B]  = 1 < 2. However,it is easy to 
check that [XI - A ( e d X )  1 B] has rank two fur 
all A E C and hence E is behaviorally control- 
lable. 
What happens in this case is that the pseuso- 
state components X I  and xz are related by 
X I  = x2. This holds in particular in the in- 
terval [-1, 0) ; therefore, not all the elements 
in the state-space R2xLz([-1, 0) ,  R2)  are fea- 
sible, which prevents approximate controllabil- 
ity. This obstacle does not arise for behavioral 
controllability since this property exclusively re- 
gards admissible system signals (and hence one 
does not take into account the signals which do 
not satisfy X I  = XZ). 

5. Concluding Remarks 

We have presented a necessary and sufficient 
condition for the behavioral controllability of 
delay-differential systems with kernel represen- 
tations. Moreover, we have compared the no- 
tion of behavioral controllability with the no- 
tions of approximate and spectral controlla- 
bility considered in [I]. Besides these latter, 
other controllability properties (namely, weak 
and strong comtrollability) have been intro- 
duced within an algebraic approach to delay- 
differential systems ,see [2]. However, it turns 
out that these properties do not clearly relate 
to the behavior of the system signals. 
Finally, we wouId like to remark that our re- 
sults hold for all types of delay-differential sys- 
tems, and not only for retarded ones as is the 
case of the results of [l] and [2]. 
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