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Abstract 

The purpose of this paper is to introduce some basic notation 
for quadratic differential forms and to provide a new result 
regarding the existence of a nonnegative storage function. 

1 Introduction 

In the behavioral approach to linear systems [l] it is custom- 
ary to view a system as described by a high-order differential 
equation (for example as a kernel or as an image represen- 
tation). This leads to an interesting interplay between poly- 
nomial matrices and linear dynamical systems. In control 
problems quadratic functionals are often also involved (wit- 
ness LQ- and If,-control). Extending the behavioral point 
of view in this direction leads to the study of quadratic dif- 
ferential forms. These have been introduced earlier in the 
context of Lyapunov functions in [2] and for LQ-problems 
in [3]. The purpose of the present paper is to initiate a sys- 
tematic study of quadratic differential forms. As a sequel to 
this note we will study If,-problems in [4]. 

2 Quadratic differential forms. 

Let 4 E W"! ""'[C,q] i.e., 4 is a nl x n z  real polynomial 
matrix in the indeterminates C and q. Explicitely, 

The sum in (2.1) is a finite one and ranges over the nonnega- 
tive integers, and qik t  E l?"' ""'. Such a 4 induces a bilinear 
diflerential form, 

L+ : c-(a,w"') x c-(R,lR"') + C"(R,R). 

defined by 

0-7803-1 968-0/94$4.0CX@1994 IEEE 

If nl = nz (=: n) then 4 induces the quadratic differential 
form 

Q+ : Cm(R,W") + C m ( W , W )  

defined by 

W W )  := L O ( W l  w). 

Define the operator 

[Cl 111 . ~ " i X n a [ ~ , ~ ]  + ~ " a X " i  

bY 

4% tl) := 4T(11, C) (2.4) 

where Tdenotes transposition. If 4 E W"""[C, 111 and I$ = 4*, 
then 4 will be called symmetric. The symmetric elements of 
R"""[C, q] will be denoted by W:""[C, 171. Obviously 

L+(v ,  W) = L+*(w,u)  and Q+ = Q+* = Qf(+++*) (2.5)  

When considering quadratic differential forms we hence can 
in principle restrict attention to 4 's  in R:""[C, q]. 

Let a : W"' ""'[c, q] + W"' ""'[(I be defined by 

a(4)(€) := 4(-& €1. (2.6) 

Denote (also) by 
Ut"' ""1 [Q defined by 

the operator mapping Rnlxna[t] into 

r*(() := rT(-() (2.7) 

Call the element r E IR"""[(] symmetricif r = r'. It follows 
trivially that 

a(+*) = (a(+))' (2.8) 

Hence a maps symmetric elements of W:""[C,9] into sym- 
metric elements of R:[(]. 
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Let C$ E W : x " [ C , q ]  and consider the associated quadratic 
differential form Q+. Let us call Q+ nonnegative (denoted 
Q+ 2 0 or simply as d 2 0) if 

The purpose of this paper is to study the question when 
quadratic differential forms have certain positivity proper- 
ties. We look for answers in terms of the defining two- 
variable polynomial matrices. In particular, we are inter- 
ested in the following questions. 

( i )  When is &+ 2 O? 

( i i )  Given 4 E W ~ x q [ C , q ] ,  when does there exist a Q E 
RjXq[C, q] such that 

%Q* = Q+, or 5Qq I Q+ 
( i i i )  When is Qq in (ii) itself 2 O? 

As we shall see, these questions are very much related to an- 
other kind of positivity of quadratic differential forms called 
cyclo-positivity because it can be expressed in terms of pe- 
riodic functions. Here we state it for elements of Vq,  the 
C" (W, W q )  functions of compact support. 

Let d E W:""[C, q]. We will call Q+ cyclo-nonnegative (de- 
noted f Q. 2 0) if 

Q+(w)dt 2 0 for all w E Dq (2.10) 
--m T 

and cyclic (denoted f Q +  = 0) if (2.10) is zero. 

Finally, we are also interested in the half line version of 
(2.10). Thus we will call Q+ half-line nonnegative (denoted 

R+ 
Q+ Z 0) if 

Q+(w)dt 2 0 for all w E Vq (2.11) 

3 Motivation. 

The study of quadratic functions in the context of linear 
systems is a basic tool in the state space framework, as, 
for instance, in Lyapunov theory, LQ-control, H,-control. 
However, the positivity questions introduced in section 2 oc- 
cured earlier in the context of electrical circuits, in particular 
in the theory of positive real functions. It turns out that the 
results of section 5 are new even in this case. 

Let us explain how the positivity question occurs in elec- 
trical network analysis and synthesis. Consider the linear 
time-invariant input/output system with transfer function 
G E W q x q ( [ ) .  Let (N, D) be a right coprime polynomial fac- 

torization of G, i.e., N, D E RqxQ[[] ,  [ ] is right prime 

and G = ND-'. In the language of behaviors [l] this means 
that 

d d 
dt 

U = D( -)C, y = N (  z)C 

is an observable image representation of the (unique) con- 
trollable I/O-system with transfer function G. In (3.1), U 

denotes the input, y the output, and the (free) latent (driv- 
ing) variable. 

Now consider (3.1) with the supply rate 

In electrical networks with U the port voltages and y the 
port currents, s will be the power (into the network when 
U and y are chosen with the appropriate sign convention). 
This supply rate (3.2) can be associated with the quadratic 
differential form 

The associated two-variable polynomial matrix is thus 
NT(C)D(q)  or, if preferred, after symmetrization 

A quadratic differential form QV is called a storage function 
w.r.t. the supply rate s if 

d  QV I (3.4) 

Since s is the power, V in (3.4) can be identified with the 
stored energy. In electrical circuit applications the stored 
energy is nonnegative. It is a well-known classical result that 
for the situation under consideration the following conditions 
are equivalent: 

( i )  There exists a V 2 0 such that (3.4) is satisfied. 

( i i )  
0 

s dt 2 0 for all C E Vq. In other words, for all 
-CO 

C E V q  in (3.1), there holds 

1 uT(t)y(t)dt  2 0 

-CO 
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( i i i )  (Rex 2 0 and A not a singularity of G) + (G(X) + 
GT(X) is nonnegative definite: i.e., G is positive real) 

These conditions are moreover necessary and sufficient for 
the existence of a concrete realization of the transfer func- 
tion G ( s )  as the driving point impedance of a linear electrical 
circuit containing positive R, L, C's, transformers and gyra- 
tors. Many other equivalent conditions for positive realness 
are known. We will not enter into them. In section 5 we 
will obtain a (to the best of our knowledge) new equivalent 
condition for positive realness. 

4 Results. 

Let 4 E R i x q [ [ ,  q]. Associate with 4 the infinite matrix 

Obviously 4 2 0 if and only if 4 2 0 (with positivity of this 
infinite matrix defined in the obvious way - note that only 
a finite number of elements of are nonzero). 

t w  

Observe that Q+ is cyclic (defined as Q+(w)dt = 0 for all 

w E Dq) if and only if +(- iw, :w)  = 0, i.e. a(4) = 0. Now 
a(4) = 0, i.e., 4(-(,() = 0, means that d(C,q) contains 
a factor (C + q), implying that there exists Q E Rixq[C,q] 
such that 4(C, q)  = (C + q)ik(C, q) .  In terms of quadratic 
differential forms this is equivalent to -$Qq = Q+. It follows 
that the following conditions are equivalent: 

-m 

Next observe that f Q+ 2 0 if and only if t$(-iw, iw)  1 0 for 
all w E W. This can be expressed in terms of the existence 
of a factorization of a(+) as 

Defining 

shows that (4.1) implies that 

It follows that the following conditions are equivalent 

(1 )  f Q +  2 0 

( i i )  a ( + ) ( i w )  = 4 ( - i w , i w )  2 0 for all w E Ha 

( i i i )  3ik such that $Qq 5 Q+ 

(4.3) 

This result can be refined in an important direction. When 

a ( 4 ) ( i w )  2 0 for all w E W, then Q+(w)dt 2 0 for all 

w E Vq which shows that w = 0 is a minimum (over V q )  of 
this integral expression. We are also interested (with Hw- 
applications in mind) in the case that w = 0 is a saddle. 

t m  

-W 

In [l] (and elsewhere) we have studied differential systems 
as subspaces of L:""(IW,Rq). In order to avoid smoothness 
questions, we will study in this paper linear shift-invariant 
subspaces 8 of Vq.  Call B C V q  a diflerential system if there 
exists a R E R*"Q[(] such that 

d 
d t  R( - )w  = 0 (4.4) 

is a kernel representation of B, i.e., B = kerR($). Note that 
here we only consider solutions in Vq.  Let Cq denote the set 
of all such differential systems. Now, call w = 0 a saddle 

with respect to the quadratic form Q+(w)dt induced by 

4 if there exists 81, B2 E Lq with 81 @ Bz = V q  such that 

+m 

- W  

and 

and with (4.5) ((4.6)) zero only if wl = 0 (W = 0). 
Here w = (w l ,  w ~ )  denotes the partition of w E Dq into 
(wi,O) E 81 and ( 0 , w i )  E Bz. If &,B2  exist we will say 
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t m  
that Q+ has a saddle structure. 

--m 

D in (5.1) is not necessarily square. 

The question which we will now study is what conditions 
on 4 ensure the existence of a \k 2 0. We think of \k as a 
stomge function. The question is thus when there exists a 
nonnegative storage function. 

Now assume that det$(-iw,iw) # 0 for w E R. Then 
a(d)( iw) has constant signature and 4 may be then factored 
as 

A polynomial matrix P E EPXq[[] is said to be Hurwitz if 
detP # 0 and if all roots of de tP  have negative real part. 
If P' is Hurwitz, then P is called anti-Hurwitz. It may be 
shown that if detd(-iw,iw) # 0 for all w E R, then (5.1) 
admits a Hurwitz solution D+ and a anti-Hurwitz solution 
D- .  Let @+ defined by (5.2) through D+ and q- by D-. 

+(-e* €) = D T ( - € ) C D ( € )  (4.7) 

with D E Wqxq[61 detD # 0, and 

say C = [ 
appropriate dimensions . Defining 

a signature matrix, 

-:z ] with ZI and ZZ identity matrices of 

(4.8) It can be shown that every @ satisfies 

&e+ 5Qr <&e-  (5.3) 
and partitioning D as D = [ E: ] shows that 

d d d 
- Q * ( w )  dt = Q - 4 ~ 1 -  l l D i ( ~ ) w l l z  + I I D ~ ( ~ ) W I I ~  (4-9) 

This shows how D and @ can be defined also when we have 
a saddle rather than a minimum. Note that (4.9) shows the 

saddle structure of Q+: let B1 be defined by the kernel 

We give the idea of the proof. Let D and @ be any other 
solutions of (5.1,5.2). Let A = @ - @+. Then A satisfies 

(5.4) ~ T C C P t  (4 - DT(C)D(v) 
c + v  A(<, 4 = 

t w  Whence 

d d d 
--m 

representation D ~ ( % ) w  = 0 and €32 by D ~ ( 5 ) w  = 0. Thus -QA(~) = IIDt(;iE)4z - llD(&)41z 
t m  dt 

Q+ has a saddle structure if det$(-iw,iw) # 0 for all 
-W 

w E w. Let w E Coo(R,Wq) be such that lim % ( t )  = 0 for all 
k E Z+. Then obviously 

t-too 

5 Positivity of the storage function. 00 

QA(w)(O) = llD(-$llzdt - ~ I P t ( ; i i ) w l l ' d t  d (5.5) 
In this section, we will consider the existence of a posi- 
tive storage function in the cyclo-dissipative case, i.e., when 

0 0 

those of D+ ( $ ) w  = 0, that Qp(w)(O) 2 0. 

Consider the equations 

Assume now that detd(-iw, iw )  # 0 for all w E W. Then 
a(q5)(iw) has constant signature, as a function of w ,  say, 
(n+,n- )  with n+ the number of positive and n- the num- 
ber of negative eigenvalues of cj(-aw, iw).  Now consider the 
following generalization of (5.1) 

(5.1) 

with C given by, 

= [ I"+ 

Since (5.1) and (5.2) are equivalent to $&*(tu) = &+(tu) - 
11D($)(w)11' we think of Q+ as the supply rate, ~ ~ D ( $ ) w ~ ~ '  
the dissipation rate, and Qe the stomge function. Note that ] 0 -In- 

3693 
(5.7) 



(5.6) should now be regarded as an equation in D with 4 Theorem 5.1 :Let 6 E R1xq[C,v] and assume that 
given. Each solution leads to a @ E R:Xn[(., q] defined by +( - iw,  iw) > 0 for all w E R. Assume, for notational sim- 

plicity, that a(+) is semi-simple, and that D-  defines a reg- 
ular factor of 5.6. Then the following conditions are equiva- 

(5.8) lent: dJ(<* ‘I) - DT(C)CD(f7) 
c + v  @(C, ‘I) = 

It can again be shown that (5.6) admits a Hurwitz solution 
D+ and a anti-Hurwitz solution D - .  Denote the correspond- 
ing @’s again by @+ and @-, respectively. Thus in this case 
the condition 9- 2 0 is still a sufficient condition for the ex- 
istence of a nonnegative storage function (while in the cyclo- 
dissipative case it was a necessary and sufficient condition). 

Let M E CqXq[[] and assume detM # 0. Call X E (I: a singu- 
larityof M if detM(X) = 0. The order of X as a root of detM 
is called the order of X as a singularity of M. M E CYxq[[] is 
said to be semi-simple if all its singularities are semi-simple. 
A singularity X E (I: is semi-simple if dim kerM(X) equals 
the order of X as a singularity of M. 

( i )  3 D satisfying (5.1) such that the corresponding 2 0 

(ii) @- 2 0 

(iii) T >_ 0 

This theorem can to some extent be generalized to the case 
that detd(-iw, iw) # 0 for all w E R. Note in fact, that 7 is 
well-defined also in this case. 

Theorem 5.2 :Let 4 E R:xq[<,q]  and assume that 
de@(- iw , iw)  # 0 for all w E R. Assume also that D- 
defines a regular factorization of (5.6). Then @- 2 O if and 
only af 7 2 0. 

Let 4 E R1xq[(,q] and assume that det#(-iw,iw) # 0 for 
all w E W. Consider a(4) and assume that it is semi-simple. 
Let XI, XZ,  . . . , AN be the distinct singularities of a(4) is the 
right half complex plane. Define n / k  := kera(4) (Xk) .  Let, 
{a:, a!, . . . , a t ,  1 be a basis for NI. Now consider the matrix 

References 

[I] J.C. Willems, Paradigms and puzzles in the theory of 
dynamical systems, IEEE Transactions on Automatic 
Control, Vol. 36, No. 3, pp. 259-294, 1991. 

[2] J.C. Willems, Lyapunov functions for systems described 
by high order differential equations, Proceedings of 
the 1991 IEEE Conference on Decision and Control, 
Brighton, U.K., pp. 90@904, 1991. 

(5.9) 

with Tkf the nk x nt matrix formed by the elements [3] J.C. Willems, LQ-control: a behavioral approach, Pro- 
ceedings of the 1993 IEEE Conference on Decision and 
Control, San Antonio, TX, pp. 3664-3668, 1993. (af)*#(L, Xr)al: 

x k  + [4] H.L. Trentelman and J.C. Willems, H,-control in a 
behavioral setting, Proceedings of the 1994 IEEE Con- 
ference on Decision and Control, Orlando, FL.. Note that (by diagonalizing the symmetric matrix 4) it is 

always possible to write 4 as 

4(c, rl) = MT(C)CMM(V)  

[5] H. Kwakernaak and M. Sebek, Polynomial J-spectral 
factorization, IEEE Transactions on Automatic Con- 
trol, Vol. 39, No. 2, pp. 315-328, 1994. (5.10) 

with M E RLXq[t] of full column rank and CM a signature 

matrix C M  = [ ‘b 1. We will say that (5.6) defines 

a regular factorization [5] if the McMillan degree of M equals 

that of [ 1. The regularity of a factorization is imme- 

diately related to the condition that the McMillan degree of 
a(4) should equal 2 times that of M. 

-IG 

The main purpose of this paper is to announce the foliowing 
results. 
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