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Abstract

The behavioral approach to modelling dynami-
cal system is characterized, among other things,
by the fact that it does not require that the in-
put/output structure of the system is displayed,
nor does it require that a system is in state space
form. In this presentation a formulation of the
classical LQ-problem will be given which com-
pletely fits into the behavioral setting. The solu-
tion of the LQ-problem then involves quadratic
polynomial matrix equations.

1. Introduction.

In the classical view of optimal control, the aim
is choose the control input signal such that the
cost, is minimized when the system starts in a
given initial state. In particular, in the case of
LQ-control, this leads to the question of choos-
ing the input » : R = R™ so0 as to minimize

| “w(uT(t)Ru(t) +aT(WLeW)dt (1)

subject to the constraints

dx
i Az + Bu (2)

z(0) = =z (3)

This formulation has a number of obvious
drawbacks, the most apparent one being that
in most applications a feedback law is sought,
while the formulation has an open-loop flavor.
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As we shall soon see, the L.Q-problem allows a
much more natural formulation in the behav-
ioral context.

2. The behavioral approach.

Let £7 denote the set of linear time-invariant
differential dynamical systems in ¢ variables.
Thus each element of L? consists of a dynamical
system X = (R,R?,B) (time set R, signal space
R?) whose behavior consists of the solution set
of a system of differential equations

d

with R € R**[¢] a polynomial matrix with ¢
columns, and £ the indeterminate. More ex-
plicitely, the behavior associated with (4) is for-
mally defined by

4)

d
B = {we LYR,RY) | R (E) w=0
in the sense of distributions}

The decision to take w in £ is a somewhat
arbitrary one. In fact, for the purposes of this
paper, the reader is advised to assume w to be
.

A dynamical system ¥ € £7 is said to be con-
trollable if its behavior B has the following prop-
erty: (wy,wy € B) = (3w € B and T > 0 such
that w(t) = w,(t) fort < 0 and w(t+7") = wy(t)
for t > T}. It is well-known from our earlier



work [1] that (4) describes a controllable sys-
tem if and only if the complex matrix R()) has
constant rank for A € C.

An equivalent condition for controllability
which will be useful in the sequel is the follow-
ing. As argued in [1], models obtained from
first principles will usually contain latent vari-
ables (£) in addition to the manifest variables
(1) which the model aims at describing, lead-
ing to a system of differential equations

d d
R (E) w=M (E) ¢

with R € R**9[¢] and M € R**4[¢] polynomial
madtrices with the same number of rows. We de-
fine the manifest behavior of (5) to be the clo-
sure in the topology of £i°¢ of

(5)

{we Li°(R,R7) | 34 € L(R,R)
such that{w, £) satisfies (5)
in the sense of distributions}

A special class of systems (5) are those with
R(&) = I, yielding

w=M <d—d’)€

It is easy to prove that the manifest behavior of
such a system is always controllable. In fact, it
can be shown that a system ¥ € L7 is control-
lable if and only if it is the manifest behavior
of a system of the type (6).

(6)

Summaring, systems ¥ € L7 are those that
admit a kernel representalion (4), while the con-
trollable systems X € £7 are those that admit
also an image representalion (6).

3. Quadratic differential func-

tionals.

Let R7*9[(, 1] denote the set of 2-variable ¢ X ¢
polynomial matrices in the indeterminates ¢ and
7. Thus each L € R?*[(, 7] is a finite sum

L) =) LG (7)

h.k
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with Ly, € R7*9. The dual of L is defined as
L*(Cym) =D LinC = L7 (n,Q)  (8)
Bk

where T denotes transposition. L is said to be
symmetric if L € L*, i.e., if Lye = LT, for all
k,h. The set of symmetric elements of R?™*9[(, 7]
will be denoted as R?*I[(, 7].

Associated with each L € R?7*9[(, 7] there is
defined the quadratic differential functional, @y,
defined for a (sufficiently smooth) map w: R —
R? by

T
d"w d*w
w) = — ] L —_ 9
@ (w) ;(du- MO\ dix ©)
Obviously Q). : C*(R,R?) » C*°(R,R) but we
can also let ), act on less smooth functions. In
this outline we will, however, gloss over these
smoothness issues.

4. LQ-control.

Our appraoch to optimal (feedback) control
questions is as follows. We will first set up an
optimality principle and determine the set of op-
timal trajectories. The very important issue of
implementation, of synthesis (be it by memory-
less or dynamic state feedback, or by regular or
singular output feedback) will come later.

The LQ-control problem which we will con-
sider is defined by a dynamical system ¥ € £,
the plant, and a quadratic differential functional
QL, induced by L € R, 7], and called the
cost-functional. We will consider uniquely the
LQ-problem with imposed stability, because it
is the most relevant one in applications. Let
¥ = (R,R?,B). Define B,, the stable part of B,
as

B, = {we€B| tl_lgg w(t) = 0}

and B, the compact part of B, as
B, := {w € B | w has compact support}

Further, define for each (sufficiently smooth, say
C®) w € B and A € B. the cost-degradation
{by adding A to w), J,(A), as
400
Lu@) = [ @uw+ 80 - Qu(w)(®)de
—00
(10)



Now define 8", the optimal behavior, as

B = {weB,|J, (L) >0
for all (sufficiently smooth) A € B.}

The problem is to characterize the optimal
dynamical system ¥* = (R,R?,B") in terms of
the dynamics of ¥ and the cost-functional .
If £ is given by a kernel representation (4) by
R € R**9[(, n], then the problem reduces to find-
ing B* from R and L; if it given by an image
representation (G) then the problem reduces to
finding B~ from M and L.

Note the meaning of optimality as expressed
by (10): an optimal trajectory is one which can-
not be “improved” by adding a compact support
trajectory. This formulation will, in fact, lead
to the existence of many “optimal” trajectories.

5. The case R =0.

In order to solve the LQ-problem as formulated
above, we will first consider the case when the
plant is free, i.e., when IZ = 0 in (4) (or, equiv-
alentlyy, M = I in (6)). Intuitively speaking,
thon, the problem is to find the trajectories

: R — R? such that hm w*(t) = 0 and such

that A = 0 is the mlmmum of J,(A) over all
A : R — R? of compact support. In order to
solve this problem we will first avoid the stabil-
ity question. This yields

Proposition 1 Let L € R™*(,n]. Let B* de-
note the set of (sufficiently smooth) w* : R — R?
is such that J,.(A) > 0 for all (sufficiently
smooth) A : R — R? of compact support. Then
B* is non-empty if and only if

L(-iw,w) >0

(1)

for all w € R. Note that L(—iw,ww) € C™7 is
an Hermitian matrix for all w € R. If (11) is
satisfied for all w € R, then w* € B* if and only

if
L ( (12)

In other words, ¥* = (R,R",%‘) € L9 and
its kernel representation is parametrized by the
polynomial matrix L € R7*I[¢] with L(¢) :
L(’—gvf)‘
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Proof (outline): Note that Qp(w + A) —
Qr(w) =281 (w,A)+QL(A) where By (un, w5)
denotes %he bilinear differential functional
% (%) Lk ( ) From this it is easy to

see that J,.(A) > 0 for all A if and only if
+o0
[ (B (w*,A)(1))dt = 0 and f @Qr(A)(#))dt >

0 fol all A. The first, (ondm()n is equivalent to
(12), while the second is equivalent to (11). In-
deed,

dtk

ym(B’J(""’ A)(1))dt =
T (-4 2y worsma

This last expression is zero for all A of com-
pact support, if and only if (12) holds.

[m)

Note that if, in addition to (11), we re-
quire that det L(—iw,iw) # 0 for some w,
then (12) defines an autonomous system in
L. Autonomous means that the behavior is a
finite-dimensional subspace of C®(R,R7) (vari-
ous equivalent statements are given in [1]).
implies, in particular, that all elements of B*
are C* (in fact, analytic).

This proposition readily leads to our main re-
sult.

Theorem 2 Let I € R?*[(, 7] satisly
L(—tw,iw) > 0

for all w € R. Then there exists a polynomial
matrix D € R7¢] with D Hurwitz (meaning
that det DD has all its roots in the open left half
plane) such that

=§,6) = D"(=€)D(¢) (13)
Moreover, a (sufficiently smooth) w* : R — R?

is such that llm w*(t) = 0 and J,,« (A) > 0 for

all (qufﬁuentlv %mooth) A :R — R? of compact
support if and only if

D <d!) w* =0

(14)



Proof (outline): Apply proposition 1, and
observe that (14) extracts the elements of
(12) which satisly the stability requirement
tl_i’no}) w*(t) = 0.

6. The case R # 0.

In this presentation we will consider only con-
trollable systems ¥ € L9. We can therefore
assume that 3 is specified by an image repre-
sentation (6), through the polynomial matrix
M € R7[¢]. In addition we will assume that
this image representation is observable. This
means that £ may be deduced from w. Ob-
servability for differential systems (5) or (6)is
equivalent to asking that the complex matrix
M()) € €7 is of rank d for all A € C. A
controllable differential system always admits
an observable image representation. Then by
defining

L'(¢,n) = MT(Q L MM ()

we can reduce the minimization of w to that
of €. This leads to the following result, which
solves the LQ-problem for controllable systems.

(15)

Assume that
LU'(-tw,iw) >0 (16)

for all w € R. Then there exists D' € R**?[¢],
Hurwitz, such that

L'(=§¢) = ('(-)"(D'(§))  (17)

leading to p
=M )¢ 18
w ( dt) (18a)
d
/ L
D ({ﬁ)e —0 (18b)
as a specification of the optimal behav-

ior B*. Thus (18b) determines a finite-
dimensional set of latent variable trajectories
¢ € C°R,RY. Through (18a) this yields
the (finite-dimensional) set of optimal manifest
variable trajectories w*. In other words, (18) is
a latent variable representation of the optimal
system, which is autonomous.
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7. Feedback implementation.

It can be argued that the basic principle of ap-
plying control is interconnection. When this in-
terconnection is compatible with a given signal
flow structure, then we can speak of feedback.
It is for good reasons that control theory has
concentrated on feedback control. However, the
omnipresence of feedback control (in contrast to
interconnection, not to open-loop control) is not
as compelling as the history of our subject leads
us to believe.

Let ¥ = (R,R",B) € L£9. A system ¥’ =
(R,R?,®B') € L7 is said to be a subsystem of &'
(denoted as ¥ < L) if B C B. Let X =
(R,R?,%8,) € L%, k = 1,2. The inierconnection
of ¥, and I,, denoted as X; A X,, is defined by
E] AN 22 = (R, Rq,%1 n %2)

A special type of interconnection is full feed-
back interconnection which can be defined as fol-
lows. As is well-known [1], any system X, € £7
admits an input/oulput representation, i.e., a
representation of the form

Pl(%)y =0 (%) u

u
y
with IT € RY*? a permutation matrix, P, €
R[], Q. € RP*™[€], det P, # 0, and trans-
fer function P;'Q; € RP*™(£) proper.

Now assume that ¥, € £ admits a similar
representation

() v (@)

with P, € R™*™[¢], Q, € R™*P[£], det P, #0,
and I — P7'Q,P;'Q, € RP*P[¢] non-singular.
Then 3; AX, will be called a full feedback inter-
connection. If in addition P;'Q, is also proper,
then we call the full feedback interconnection
reqular. Otherwise it is called singular.

As we have defined things here, regular and
singular full feedback interconnections seem to
depend on the input/output structure. But
this is not the case. Define, for ¥ € £9 de-
scribed by (4), p(X) as rank (R). Equivalently,
p(E) = ¢ — m(X) with m(X) the number of free

(19a)

w=n[ (19b)

(20)



variables in £. In other words, p(¥) = the num-
ber of outputs and m(¥X) = ¢—p(X) = the num-
ber of inputs. Define further n(X) := McMillan
degree (R); n(X) equals the number of states
in a minimal representation of ¥ [1]. Now for
X1, Y, € L9 3, AY, is a full feedback inter-
connection (in the sense that any input/output
representation (19) of 3, will yield a correspond-
ing input/output representation on ¥, satisfy-
ing the required conditions) if and only if

PEIAEY) =p(E) +p(Xy) =9¢ (21)

and a regular oune of in addition

n(X) A Ly) = n(E) + n(E,) (22)
More details on this will be given in a future
extensive paper on this subject. See, however,
[2].

Note that if ¥, A ¥, is a full feedback inter-
connection, then ¥; A Y, is an autonomous sub-
system of ¥;. It can be shown that if ¥, € £
is controllable, then every subsystem ¥/ € (¢
may be realized this way, i.e., there will exist a
3" € L9 such that X A XY equals ¥/ and, such
that this interconnection is a is a {ull feedback
interconnection.

We may conclude that the optimal system
(18) can always be implemented by means of
a singular output feedback controller. In fact,
it can be implemented by means of a memory-
less state feedback law. In this case, however,
the definition of state involves the plant as well
as the cost-functional.

8. Concluding remarks.

8.1 Optimal control can be defined in the be-
havioral context and merely requires a suitable
definition of optimal trajectories. In the LQ-
context we have taken these to be the stable
trajectories which minimize the cost-functional
against compact support variations. This no-
tion does not, require explicit mention of a fixed
initial state, not does it require displaying the
control input.

8.2 The solution of the LQ-problem requires the
solution of a quadratic polynomial matrix equa-
tion (13) or (17), in many ways reminiscent of
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the Algebraic Riccati Equation on the one hand,
and of spectral factorization on the other. It is,
in fact, possible to obtain a full generalization
of the (ARE) provided that we stick to kernel
representations. Details will be given elsewhere.

8.3 Our approach completely dissociates the
problem of finding the optimal behavior from
finding a feedback implementation of it. In gen-
eral this has drawbacks as well, but it appears
to be a quite essential feature of the 1.Q-case.

8.4 The solution of the LQ-problem as given
hare can be geuneralized to situations where sta-
bility is not imposed and where a larger class
of trajectory variations A is considered. This
yields in particular the behavioral analogue of
what is usually called the free-end point prob-
lem in LQ-control.

8.5 We are in the process of extending these re-
sults to the H -problem. Hopefully, this exten-
sion will lead to an integration of /,-robustness
with system perturbations defined by means of
the type of parametrizations introduced in the
behavioral descriptions of dynamical systems.
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