
FP8 = 5 ~ 5 0  
Procoodlngr of tho 32nd Conbronco 

on Oociolon and Control 
San Antonio, Taro - D " k r  1993 

LQ-CONTROL: A BEHAVIORAL APPROACH 

Jan C. Willems 
Matliematics Itist,itute 

lJniversit,y of Gronirigen 
P.0. Box 800 

9700 AV Groningen 
The Netherlands 

Fax: $31 50 633976 
3 .C. Willenis@ma,th.rug.nl 

Abstract 

The behavioral approach to modelling dynmii- 
cal system is cha,racterized, among other things, 
by the fact that, it does not require that the in- 
piIt/o~itput st,ructiire of the system is tlisplayed, 
nor does it require tha,t a system is in state space 
form. In  this presentation a formulatiori of the 
classical LQ-problem will be given which com- 
pletely fits into the behavioral setting. The solri- 
tion of the LQ-problem then involves qmdratic 
polynomia.1 matrix equa.tions. 

1. Introduction. 

In the cla.ssical view of optimal control, the aim 
is choose the control input. signal soch that the 
cost is minimized when the system starts i n  a. 
given initial state. In particular, in the case of 
LQ-control, this leads to the question of choos- 
ing the input TL : W -+ so as  to minimize 

LU' ( U T (  1)Ru( t )  + xT ( f  ) Lx ( t ) ) d t  (I) 

subject, to the constmints 

This formiila.t,ion h a s  a number of obvious 
drawbacks, the most apparent one being that 
in most applications a feedhack h w  is sought, 
while the formulation h a s  an open-loop flavor. 
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A s  we shall soon see, the 1,Q-problem allows a 
much more natural  formulation i n  the beha,v- 
ioral context. 

2. The behavioral approach. 

1,et Cq denote the set, of linear time-invariant 
differential dynamical systems in q variables. 
Thus each element of Cg consists of a dynamical 
system C = (R, W, B) (time set W, signal space 
R*) whose bPha,uE'or consists of the solution set 
of a system of differential eqiiations 

R - w = o  (3 (4) 

with R E R'"q[K] a, polynomial matrix with q 
columns, and the indeterminate. More ex- 
plicitely, tlie behavior associated with (4) is for- 
mally defined by 

in tlie sense of distributions} 

The decision to take til in C{*' is a somewtiat 
arbitrary one. In fact, for the purposes of this 
paper, the render is advised to assume ti1 to be 
C". 

A dynamical system C E 19 is said to be ron- 
trvllnble if its behanior B has the following prop 
crty: (wlrur2 E B) + (sur E B and 7' 2 0 such 
that ~ ( t )  = tril(l) for f < 0 and ur(t+7') = q ( t )  
for t > T } .  It is well-known from our  ea,rlicr 



work [l] that (4) describes a controllahle sys- 
tem if and only if the complex matrix R ( A )  has  
constant, ra8nk for A E C. 

A n  eqiii va lent condition for con trolla hili ty 
which will be iisefiil i n  the seqiiel is the follow- 
ing. As argued i n  [l], models obtained from 
first princiyl~s will ~isnally contain knf~7al ~mri-  
nblcs (0) in  adtlilion to the 7nnnijrst vrr;rirrblr.s 
(w) whirh the moclel a ims  at, clescrihing, Iead- 
ing to a system of tliffercwtial equations 

n (;) I17 = h-l ($) c ( 5 )  

w i t , t i  R E RoXq[<]  and A 4  E W o x d [ < ]  polynomia.1 
mat,rices with the same iiiimher of rows. We de- 
fine t,he tnnnifcst  bchnvior of (5) to he the clo- 
s i i r ~  in  i , h t  topology o f  Cy of 

(111 E , c : y w ,  Rq) I 3 e E ,cc:""(R, Rd) 

siich thnt(io, P )  sa,t,isfies (5) 
i n  the sense of distributions} 

A special class o f  systems (5) arc those with 
R ( ( )  = I, yielding 

'10 = A4 (1) e 

It ,  is easy to prow that the manifest behavior of 
such a system i s  always controllable. In fact, it 
can be shown that a system C E ,Cq is control- 
lable if and only if it$ is the manifest, behavior 
of a system of the type (6). 

Slimmaring, systems C E LY are those t1ia.t 
admit a kern,rl wptrsenfalion (4),  while the con- 
trollable systems C € J!? are those that admit 
also a n  image reprrsentnlion (6). 

3. Quadratic differential func- 
tionals. 

Let, RqXq[(, 111 denote the set of 2-variable q x q 
polynomial matrices in t,he indeterminates C ant1 
11. Thus each I, E R q x q [ ( ,  171 is a finite sum 

(7) 

with L h k  E R q x q .  The dtralof L is defined as 
T k h  Jj*(C,r?)  := L h k c  9 = I d T ( V , C )  

h,k 

where denotes transposition. L is said tm be 
sytnmrtric if I, E I,*, i.e., if L h k  = I,:,, for a.II 
I C ,  h.. The set of symmetric elements of R q x q [ ( ,  171 
will be denoted a s  R I x q [ ( ,  771. 

Associated with each I, E R:Xq[(, 711 there is 
defined the qtiradmtic differential ftsnctionml, Ql,, 
defined for a, (siifficiently smooth) map  tu : R + 
Rq by 

Obviously Q J ,  : Cm(R,Rq) + C"(R,R) hut we 
can also let QL act on less smooth functions. In 
this outline we will, however, gloss over these 
smoot, h ness issues . 

4. LQ-control. 

Our appraoch to optimal (feedback) control 
qiiestions is as follows. We will first set up a n  
optimality principle and determine the set, of o p  
t i m i d  tra.jectories. The very important isaiie of 
implementatkm, of synthesis (be it by memory- 
less or dynamic stake feedback, or by regular or 
singnla.r outpiit, feetiback) will come later. 

The LQ-control prohlem which we will con- 
sider is defined by a dynamical systetii C E C', 
I,he plant, and a quadratic differential functional 
Q r , ,  induced by L E RZxp[C,q], and called the 
cost-function,al. We will consider uniqiiely the 
LQ-problem with imposed stability, became it 
is the most releva.nt one in  applications. Let 
C = (R, Rq, 93). Define B,,, the stable part of '15, 
as 

BS := {w E B I lim w ( t )  = 0) 
t+m 

and Sc, the com.pact p r t  of B, as 

!BC := (w E (13 1 711 has compact sopport,} 

Fiirther, define for each (suficiently smooth, sa,y 
C?') 717 E '15 and A E Q, the cost-de.qmdnlion 
(by adding A to t u ) ,  Jw(A) ,  as 

(QI,(u?+ A)(l) - Q ~ ( t u ) ( t ) ) d t  

(10) h,k  
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Now define 8*, tlic optimal bphavior, as 

8* := { t u  E 8, 1 J,,,(A) 2 0 
for all (siiflicient,ly sinoot,h) A E %,.} 

‘L’fie pro1)leni is to cliaracterize the optinial 
tlynarnical system E* = (R, RQ, 8.) in terms of 
t lw dyiianiics of C and the cost-fnncfional f,. 
If C is given hy a. kcrne l  rc.prcsent,at,ion (4) by 
h’ E R*’Q[<, 711, then the  prol)lern reduces t o  find- 
ing %* from R and I,;  if it, given hy an image 
represent ation (G) then the problem rcdiices to 
finding %“ from A4 ailcl I,. 

Note tlic ineaning o f  optirnality as  expressed 
by (1 0): ail optimal ttrajectory is one which can- 
no1 he “ i~~iproved”  by adding a corn p a r t  support  
t ra,iectory. lhis formula.tion will, i n  fact, lead 
to the  existence of many “optinia.1” trqjectmies. 

5.  The case R = 0. 

In order t.o solvc. the 1,Q-prohlem a s  foriniilat,ed 
above, we will first consider the case when the 
pla.nt, is free, i.p., when I? = 0 in (4) (or, eqiiiv- 
alrntly, A I  = I i n  (6)) .  Int,iiii,ively speaking, 
then, the problem is t o  find the  tmjectories 
w* : R + RQ siirh t h a t  lirn w*(1) = 0 and siich 

that, A = 0 is t he  minimum of .],,,(A) over all 
A : R -+ RQ of compact, support .  In ordw t,o 
solvc this  problem we will first avoid the  st,abil- 
ity clnestion. This  yicblds 

t-im 

Proposition 1 1,et L E R‘fxQ[C, 771. Let, 8‘ de- 
note tlic set, of (sufficiently smooth)  tiit : R -+ W‘1 

is such tlia,t, Jtl,.(A) 2 0 for all (sufficiently 
snioot,h) A : R -+ FaQ of compact support. Then 
%* is non-empty if and only if 

for a.11 w E W. N o t e  t,hat, I,(-iw, i w )  E CQxQ is 
an Flcrmii,ian matrix for all w E R. If (11) is 
sa.tisficd for all w E R, then tu* E %* if and only 
if 

I n  other words, 6’ = (R,R* ,B*)  E Cq and 
i t s  kernel represcntat,ion is pa.ranietrixec1 by tlw 
polynomial matrix E R Q x q [ 4  with jJ(Q := 

w e , € ) .  

Proof (outline): Nok that dJL(117 + A) - 
CJJ,(w) = 2/3,,(1(1,A)+Q~(A) whcre Z ~ J , ( I I ~ I ,  w,) 
denotes the hilinear differential fii nction a 1 

(*) Lhk (9). From this i t ,  is easy to 

see tha t  *],,,.(A) 2 0 f o r  all A i f  and only if 

T 

h ,k 

+m +m 

J ( 1 ? ~ ( ( u i * ,  A)(b))dt  = 0 and J (Qf,(A)(l))rh! 2 
-m -m 

0 for all A. The first, condition is equivalent t,o 
(12), while t,hc serontl is equivalent, to (11). In- 
deed, 

-” 
T h i s  last expression is zero for all A of corn- 

pact, support  if and only if (12) holds. 

0 

Note that, if, in addition to (Ll), we rc’- 
qiiire tha t  dct I,(-iw, iw )  # 0 for some w ,  
then (12) defines a n  autonomoris system i n  
L9. Autonomous means t h a t  the  behavior is a 
finite-dimensional subspace of C“ (R, RQ) (vari- 
oils equivalent staternents a rc  given i n  [l]). It 
implies, in pa r t iu l a r ,  t h t ,  all elernents of 93’ 
are C” (in fact, analytic). 

This proposit.ion readily leads to our mail1 rc- 
sult. 

Theorem 2 Let I, E W l i x q [ C ,  q] sa.tisfy 

L(-iw,iw) > 0 

for a11 w E R. ‘rhen there exists a, polynoniial 
ma,t,rix 11 E RQ’Q[tJ with 1) Hurwitz (meaning 
tha t  (let D has all i ts  roots i n  the open Ir.f1, half‘ 
plane) such that, 

I 4 - m  = ~ ~ ‘ ( - ~ ) ~ X )  ( 1 9) 

Moreover, a (siiflicientJy snioot,h) ?U* : R -+ W9 
is such that lim w*(t) = 0 and ./,“.(A) 2 0 for 
a11 (siifficient,ly smooth)  A : R -+ RQ of coinpart, 
support, if a n d  only if 

/+m 
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Proof (outline): Apply proposition 1, and 
observe that (14) extracts the elements of 
( I  2) which satisfy the sta,bilit,y requireriient 
l im ~ ' ( f )  = 0. 
t-bm 

0 

6. The case R # 0. 

I n  this presenta.tion we will consider only con- 
trollable systems C E Cq. We ca.n therefore 
assiirne that C is specified by am image repre- 
sentation (6),  through the polynomial matrix 
M E R q x d [ e ] .  J n  addittion we will assume that 
this ima.ge represent,ation is obsertmble. This 
means that may tw deduced from u t .  Ob- 
serva,bility for differential systems (5) or (6)is 
equivalent to asking that the complex matrix 
M ( X )  E Cqxd is of rank d for all X E C. A 
controlla.ble differential system always admits 
an observable image representation. Then by 
defining 

we can reduce the minimization of w to that 
of F .  This leads to the following resolt, which 
solves the LQ-problem for controllable systems. 

Assume that,  

L'(-iw,iw) > 0 (16) 

for a.ll w E R. Then there exist.s U' E R"'[[], 
Hurwitz, such that 

7. Feedback implementation, 

It, can be argued that the basic principle of a p  
plying control is interconnection. When this in-  
terconnection is compatible with a given signal 
flow structure, then we can speak of feedback. 
It is for good reasons that control theory has 
concentrated on feedback control. IIowever, the 
omnipresence of feedback control ( in  contrast, to 
interconnection, not, to open-loop control) is not, 
as compelling a s  the history of our subject, leads 
11s to believe. 

Let C = (R,Rq,%) E P .  A systerti X' = 
(R, Rq,  B') E Lq is said to bp a, stibsystem of C' 
(denot,ed as C' < C) if B' B. Let Ck = 
( R , R q , B ~ )  E CQ, k = 1,2. 'I'he interconnection 
of C1 and Car  denoted as C1 A C,, is defined by 
Cl A E2 := (R, Rq, 931 nB2). 

A special type of interconnection is jull feed- 
Imck interconnection which can be defined as fol- 
lows. As is well-known [l], any system C1 E Cq 

ad mi ts a n  inpnt/output representat ion, 
representation of the form 

w = n [  ; I  
with 11 E R I x q  a permutation matrix, 
Rpxp[[S], Q1 E Fapxna[(], d ~ t P 1  # 0, and 
fer function P;'Q, E Rpxm (€) proper. 

Now assume that C2 E Lq admits a similar 
representation 

(1.8b) 

as a specification of the optimal behav- 
ior %*. Thus (18b) determines a finite- 
dim ension a 1 se t of I a tent variable txqjectories 
P' E C@'(R,Rd). Through (18a) this yields 
the (finite-dimensional) set, of optimal manifest 
variable tra,jectories w*. In other words, (18) is 
a latent variable representation of the optimal 
system, which is autonomous. 

with P2 E R"""[[], Q2 E Rnaxp [SI, det Pa # 0, 
and I - P;-lQIP;l&z E RPxp[t3 non-singiilar. 
Then CI A .E2 will be called a fir11 feedbnck intrr- 
connection. Jf in addition PF1Q2 is also proper, 
then we call the fiill feedback interconnection 
wgulnr. Otherwise it is called s i n g h r .  
As we have defined things here, regular and 

singular full feedback interconnections seem to 
depend on the inpu t,/out,pnt structure. I3ut 
this is not the cam. Define, for C E Lq de- 
scribed by (4), p ( C )  as rank (12). Eqiiivalcwtly, 
p ( C )  = q - m(E)  with m@) the number of free 
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va.ria,bles in  E. I n  other words, p ( C )  = the num- 
her of oiitprit.s and  nr(C) = q - p ( C )  = the niim- 
her of inpi1t.s. Define forther n ( C )  := McMillan 
degree (N); .(E) cqiials t,hc nuniher of st,a,t,es 
i n  a, minimal represeiit,a.tion of C [L]. Now for 
X I ,  CZ E Cq,  CI A CZ i s  a. full feecllmck inter- 
connection ( in  the sense t,ha,t m y  inpu t/outpii t 
representation (1 9) of C, will yield a, correspond- 
ing inpii t/ou tpii t. rc\prcscnt,a.t.ion on C2 satisfy- 
ing t,he required conditions) if a.nd only if  

the Algebraic Flicca.t,i Eqiia.tioii on the one liand, 
a,nd of spectral factoriza,t,ion on the other. It, is, 
i n  fact, possible to ohlain a ful l  generalization 
of the (ARE) provided tha.t, we stick to kernel 
reprcsent,at,ions. Deta.ils will be given elsewhere. 

8.3 Our a.pproach completely tlissocia.t,~s the 
problem of finding the optimal beha,vior froin 
finding a. feedback implement,a.t.ion of it,. I n  gcn- 
era1 this has dra,wwba,cks as  well, hiit it, a.ppca.rs 
t,o he a quite essential feature of the I Q c a s c .  

~ ( C I  A C,) = ] I ( > : , )  +]>(E,) = Q (21) 

More details on this will be given i n  a, firtiire 
extensive paper on this sii t>ject, See, however, 

Not,@ that, if Cl A C2 is a. full feedback inter- 
connection, then C1 AX, i s  an aiitonomoiis sub- 
systmi of C,. I t  can he shown that if C1 E ,P 
is controllahle, then cacry subsystem E‘ E I? 
mav be realized this way, i.e., there will exist, a 
E” E Cq such t,lia.t X A C” equals C’ and, siich 
t h a t  th is intmconnection is a is a full feedback 
i n  tercon nert ion. 

We inay conclude that the optimal system 
(18) can always he implemented by means of 
a. singular oiit,put feedl>ack controller. I n  fact, 
it can bc implemented hy means of a memory- 
less state feedhack law. In t h i s  caw, however, 
the definition of state involves the plant, as well 
a s  t h e cost- fii nc t ion a 1 . 

PI * 

8. Concluding remarks. 

8.1 Optimal control can he defined in the be- 
havioral context, and merely requires a sititable 
definition of optimal trajectories. In the 1,Q- 
context, we have taken 1,liese to be the stable 
t ra:jec tori es w h i c ti ITI i n i m ize t, h e cost- fu  n c tion al 
a,ga.inst, coni pact si1 ppor t variations. ‘I’h is no- 
tion does riot require explicit mention of a fixed 
init.ial state, not, does it, require displaying the 
control input,. 

8.4 The solution of the l,Q-prol>lcni a s  giveii 
hare can be generalized fa sitiiations where sta- 
bility is not imposed and where a. larger class 
of tra.ject,ory variations A is considerctl. This 
yields in particular the behavioral analoglie of 
what, is usiially called the fire-end point pruh- 
Eem in LQ-control. 

8.5 We are in the process of extending these rc- 
sults to the N,-prohlem. Hopefiilly, t Itis extm- 
sion will lead to an inlegration of H,-rohustiicss 
with system perturbations defined by ineans of 
the type of parametrizations introduced i n  the 
behavioral descriptions of dynamical systenis. 
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8.2 The solution of the 1,Q-probleni requires the 
soliition of a. quadra.t,ic polynomial matrix equa- 
t,ion (13) or (IT),  i n  marly ways reniiniscent of 
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