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1 Introduction.

Following the terminology explained in [1], we
define a dynamical system X to consist of a triple,
$ = (T,W, B), with T a subset of R, called the
time azis, W a set called the signal space, and B a
subset of WT(:= all maps from T to W), called
the behavior. Thus the behavior consists of a
given family of trajectories w : T — R. In this
talk we consider continuous-time dynamical sys-
tems with time axis T = R and with signal s-
pace W = K?, with K = R (the real case) or
K = C (the complex case). The dynamical sys-
tem ¥ = (R,K?, B) will be said to be linear if B
is a linear subspace of (K")R and time-invariant
if otB = Bforall t € R; ot denotes the backwards
t-shift.

We will assume that the behavior B is the solu-
tion set of a system of constant coefficient linear
differential equations

d
R(z)w=0 (1)
defined in terms of a polynomial matrix R €
K**9[s] ; K**9[s] denotes the set of polynomi-
al matrices over K with g columns in the inde-
terminate s). The solution set of (1) is formally
defined as follows
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B = {w e C*(R;K?) |
(R(‘%)w)(t) =0 for all t € R}

The assumption that w is infinitely differentiable

is used mainly for convenience. We will denote

this class of dynamical systems as £ and refer

to its elements as differential dynamical systems.

We will call the system of differential equa-

tions (1) or, equivalently, R, a behavioral equa-

tion representation of the corresponding dynam-

ical system; (1) or, equivalently, R is called (a)

minimal (behavioral equation) representation if

(Ry € KP**9[s] and Ry ~ R) implies (m 2 ).
The following characterization of minimal rep- '
resentations plays an important role. It turns

out that (1) is minimal iff R € K}:‘q[s] (that

is, R € K**9[s] is of full row rank. Moreover,

if (1) is minimal and if By € K**9[s], then

(R1 ~ R) & (R and R have the same num-

ber of columns and there exists a unimodular U

such that Ry = UR). Finally, this U is unique.

Let ¥ € £9, and let R be a minimal behavioral
equation of X. It follows from that the number
of rows of R € K**9[s] depends only on ¥ (and
not on the particular minimal representation R).



We will denote the number of rows of R by p(X).
Actually p(X) is equal to the number of output

variables in any input/output representation of
z.

2 Symmetric systems.

The purpose of this talk is to study symmetries of
dynamical systems in £?. A symmetry is induced
by a transformation group, the basic idea being
that we have a group of transformations mapping
a dynamical system ¥ = (R,K9,B) € £? into an-
other such dynamical system. If this transforma-
tion leaves the behavior invariant, then we will
call ¥ symmetric.

Let T be a transformation group acting on K7;
T induces a symmetry on £? by defining for
¥ = (R,K%,B) € L9, T,X := (R,K?T,B) with
TyB := {w:R - R? | 3w’ : R — K7 such that
w(t) = Tyw'(t) for all t € R}. Note that, by a
minor abuse of notation, we use the same symbol
T, as acting on £?, on B and on K?. ¥ is sym-
metric in this sense if w € B implies Tyw € B
for all g € G. Since T transforms the trajecto-
ries w in B by applying the memoryless map T,
that is, in a non-dynamic way, we will call such
a symmetry a static symmetry. In fact, we will
be particularly interested in the case that T} is
linear for all g € G. It is customary to denote T
by p in that case.

Assume that p : G — GE(KY) is a represen-
tation of the group G on K? and assume that
L = (R,K? B) € L9 is symmetric in the sense
of the static symmetry induced by this represen-
tation. The problem considered is the following:
Can this symmetry be put into evidence by an ap-
propriate behavioral equation representation of ¥
as (1), in which the polynomial matriz R is such
that this static symmetry becomes evident?

Assume that p : G — G{(K?) is a given repre-
sentation of the finite group G on K?. Then p de-
fines a static symmetry on £%; £ = (R,K%,B) €
L9 is thus p-symmetric iff p,B8 = B forall g € G.
Let (1) be a minimal representation for such a p-
symmetric £ € £9. It then follows that for each
g € G, there will exist a unimodular polynomi-
al matrix U,(s) such that R(s)p, = Uy(s)R(s).
Our main result tells us that R can be chosen
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such that U,(s) is a constant nonsingular ma-
trix, thus independent of s!

THEOREM 1: T € L? is p-symmetric iff there
ezists a minimal representation R(%)w =0 of T
and a representation p' : G — GLKP®)Y of the
group G on KP(E) such that R(s)p, = Py R(s) for
all g € G. In fact p' is isomorphic to a sub-
representation of p.

In [2] we show that Theorem 2 leads to an
appealing canonical form for symmetric systems.
Here we will merely illustrate this by means of
an example.

3 An Example

We will now show the implications of Theo-
rem 2 on a system ¥ = (R,R%,B) € LI with
p: Sq — G(R?) where pgeol(wy, we, -+, wg) :=
col(wy(1), Wo(2),* * *» Wy(q))- Here g denotes the
symmetric group of permutations of ¢ elements.
It follows that ¥ € £ will be p-symmetric in
the case of permutations iff there exist (not-
necessarily non-zero) polynomials 7o, € R[s],
ra € R[s] such that ¥ is described by

d
Tav(&)wau =0

TA(%)AU),; =0 1=12,---,¢g

with wg, = %(wl + wy 4 -+ + wy) and Aw; :=
w; — Wap. Ome equation governs the dynamics
of the average. The second equation governs the
dynamics of the distance from the average and is

identical for each of the components.
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