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1. Introduction 
In the last decade, considerable research efforts aimed at 

the development of systematic design methodologies for non- 
linear feedback systems. Interesting contributions to this re- 
search area were the studies of the nonlinear analog of the 
notion of zero of a transfer function, initiated by the authors 
in [I]. It is now apparent that the results of these studies have 
had a substantial impact of a large variety problems, which 
include asymptotic stabilization via smooth state-feedback 
[2][3], nonlinear adaptive control [Zl], design of (dynamic) 
state-feedback laws which render a nonlinear system locally 
diffeomorphic to a linear system [6], asymptotic tracking a 
prescribed set of reference trajectories [5][14], the feedback 
equivalence to a passive system 171. 

In particular, in the paper (31, we were able to show that a 
certain class of systems having a globally asymptotically sta- 
ble zero dynamics ,  namely those systems whose relative de- 
gree is uniformly equal to one and which possess a globally de- 
fined normal  form, can be globally stabilized by smooth state 
feedback. In the papers [14][5], we addressed the problem of 
desiging a (locally defined) feeedback law yielding asymp- 
totic tracking of prescribed trajectories and/or asymptotic 
attenuation of disturbances, along with internal exponential 
stability. We showed that the existence of these feedback 
laws corresponds the solvability of a certain partial differen- 
tial equation - which expresses the existence of a controlled 
invariant submanifold - subject to a constraint expressed by 
a transcendental equation, and we also showed that the ex- 
istence of solutions to these equations is in fact a property 
of the zero dynamics of an augmented sys tem which incor- 
porates the controlled plant and the dynamical system (the 
so-called ezosystem ) which generates the desired output tra- 
jectories as well as the disturbances. Of course, the problems 
of feedback stabilization and output regulation are intimately 
related, and indeed the ability of globally stabilizing a non- 
linear system is an obviuos prerequisite to the solvability of 
the problem of designing globally defined output regulators. 
As a matter of fact, as our inital work on (local) output reg- 
ulation clearly shows, the existence global solutions to the 
problem of output regulation reposes on the existence of a 
globally defined invariant submanifold which eventually be- 
comes a global attractor. 

In the first part, 
we wish to stress how, from our preliminary analysis of the 
local regulator problem (which is sketched in section 2), it is 
possible to isolate the main ingredients of a global solution 
to the output regulation problem (section 3). In the second 
part (sections 4-6), we summarize some very recent advances 

The content of this paper is twofold. 
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in the design of globally stabilizing feedback laws that were 
made possible by suitable use of the notion of passivity and, 
in particular, by the solution, that we recently obtained [7], to 
the problem of when  a given nonlinear sys tem can be rendered 
passive via state feedback .  

2. Outpu t  Regulation of Nonlinear Systems 

An important problem in control theory is that of con- 
trolling a fixed plant in order to have its output tracking 
(or rejecting) reference (or disturbance) signals produced by 
some external generator (the exosystem). In a general mul- 
tivariable nonlinear setting, the problem in question can be 
formulated in the following terms. Consider a system mod- 
eled by equations of the form 

i = f(s,w,u) 
w = s(w) 
e = h(x, w) 

in which x is the plant state vector, U the control input, w 
a vector of exogenous signals, e the output  error, the differ- 
ence between the actual plant output and its desired reference 
behavior, and f(., ., .), s(.), h(., .) are smooth functions, de- 
fined in a neighborhood of a reference (equilibrium) point, 
namely (x,w,u) = (O,O,O). The control action to (2.1) is 
to be provided by a dynamic compensator, which processes 
the output error e ,  generates the appropriate control input 
U, and is modeled by equations of the form 

i = ~ ( z ,  e )  (2.2) 
= e(%) 

in which Q( a,  .), e(.) are Ck functions (for some integer k 2 2) 
defined in a neighborhood of the equilibrium ( 2 ,  e )  = (0,O). 

The purpose of the control is twofold: closed-loop stability 
and output regulation. More explicitly, we require 

(S) 
and (2.2) with w = 0, i.e. the closed loop system 

Closed-loop stability: The interconnection of (2.1) 

has a (locally) exponentially stable equilibrium at ( 2 , ~ )  = 
(01 0). 

(R) Ou tpu t  regulation: For each initial condition ((z(O), 
z(O), ~ ( 0 ) )  in a neighborhood of (O,O,O), the response r(l), 
z ( t ) ,  w(t) of the closed loop system (2.1)-(2.2) satisfies 

lim e ( t )  = 0, 
t-oo 
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As in the case of linear systems, in order to identify appro- 
priate necessary and sufficient conditions for the solvability 
of the output regulator problem, it is very reasonable to as- 
sume that the exosystem does not contain any asymptotically 
stable “subsystem”. If this were the case, in fact, at least 
for some subset of initial states w(O), the output regulation 
property (R) would be a straightforward implication of the 
stability property (S). The property that w = s(w) does not 
contain any asymptotically stable subsystem, together with 
the already assumed stability of its equilibrium w = 0, can 
be, for instance, given the form of the following hypothesis. 

(H) Neutral  Stability: The exosystem has a Lyapunov 
stable equilibrium at w = 0 and, for some neighborhood W 
of w = 0, the set R of all w-limit points of all trajectories 
which are initialized in W is such that R n W is dense in W .  

Theorem 2.1 [9] A s s u m e  (H). A s s u m e  the  plant i s  locally 
ezponentially stabilizable and the  composition plant - exosys- 
t e m  i s  exponentially detectable. T h e n ,  the  output regulation 
problem can  be solved if and only if the following pair of equa- 
t1OnS 

(RE11 

0 = h(n(w),  w) (RE2) 

an 
= f ( n ( w ) ,  w, c(‘u))) 

are solved by s o m e  Ck mappings n(w),c(w) (satisfying n(0) 
0, c(0) = 0). 

Remark 2.2 In case the state 3 of the plant and the 
state w of the exosystem are available for feedback, then it is 
possible to prove that-under the assumption that the plant is 
locally exponentially stabilizable and the exosystem satisfies 
(H)-the solvability of the regulator equations (RE) is still 
a necessary and sufficient condition for the existence of a 
feedback law of the form U = a ( x ,  w) yielding both properties 
(S) of exponential stability and (R) of output regulation. 

3. Remarks o n  the  General Regulator Problem 

The results described in section 2 do give necessary and suf- 
ficient conditions for the local solution of the nonlinear regu- 
lator problem, provided the system is locally (exponentially) 
stabilizable and the exosystem is neutrally stable. However, 
in several rather interesting simulations involving the control 
of the “ball and beam” experiment and for lateral control of 
the Harrier I1 aircraft we have observed that these regulation 
schemes actually may continue to apply relatively far from 
the system equilibrium, leading to the possible improvement 
of those results in two important directions: 

(i) a regulator theory valid on a perhaps a priori given 
open neighborhood W of (0,O) in IRn x Re; 

(ii) a regulator theory valid for exosystems which are not 
necessarily “neutrally stable”, including for example 
exosystems which have stable limit cycles, invariant 
tori, etc. 

In this direction we first note that the proof of the suffi- 
ciency in Theorem 2.1 is constructive and results-in case z 
and w are available for feedback-in the design of a control 
law of the form 

u(3, w) = IC(% - .(W)) + C(W) (3.1) 

where U = k ( z )  is any (locally) exponentially stabilizing feed- 
back law. Indeed the graph of the function z = n ( w )  is a 
smooth submanifold which is complementary to the invari- 
ant submanifold w = 0. The first regulator equation asserts 

that the submanifold, gr(n) ,  is controlled invariant-in fact 
rendered invariant under (3.1). The second regulator equa- 
tion asserts that the error vanishes on gr(n). And, since 
w = 0 is in fact the stable manifold of the augmented sys- 
tem, the center manifold theorem implies that gr(n) is locally 
attractive. In this light, one sees that there are three essential 
ingredients in the construction of a nonlinear regulator: 
(Rl) The existence of a controlled invariant submanifold, 

91.(n); 
(W 97(n) c e - V ) ;  
(R3) A principle of asymptotic phase for gr(n); i.e. for all 

( X O , W O )  E W there exists (n(iiIo),z~~) E g r ( x )  such 
that 

In this setting (Rl) is equivalent to a solution of the first 
regulator equation (RE1) and (R2) is equivalent to (RE2). 
The principle of asymptotic phase, however, does not follow 
from the regulator equations. Locally, it will follow from the 
center manifold theory under weaker conditions than (H), 
which also plays a role in the necessity of solving the regulator 
equations. Indeed, this extension already allows for inclusion 
of more general exosystems, as in (ii). 

Definition 3.1 The dynamical system 

ti = s(w), w E R‘, s(0) = 0 

is weakly neutrally stable provided it is Lyapunov stable and 
“purely center”, in the sense that 

R e ( X )  = O for X E o(Juc(s)lw=o) 

Proposition 3.2 Suppose the  s y s t e m  t o  be controlled i s  
locally ezponentially stabilizable and t h e  exosystem is weakly 
neutrally stable. I f  n ( w )  and C(W) are solutions t o  the  regula- 
tor equation (REi)-(REi?), t h e n  (9.1) is a feedback law which 
achieves local nonlinear regulation. 

Example 3.3 (This example was suggested to us by J.W. 
Grizzle). Consider (2.1) where the exosystem is a van der Pol 
oscillator with a stable limit cycle 

w1 = w2 

w2 = -w 1 + E(W2 - 4) (3.2) 

with E > 0. 

This system cannot be immediately treated by means of the 
methods illustrated in section 2, because its Jacobian matrix 

(3.3) 

has eigenvalues in the right-half plane. However, one can 
consider the parameter E as an additional state variable sat- 
isfying 

i = O  

thus obtaining an augmented exosystem which is weakly neu- 
trally stable. In fact for the control law (3.1), the closed loop 
system (2.4) has a center manifold M near ( x , w )  = (O,O), 
viz. the graph of the Ck mapping w -+ n(w) .  Since this 
manifold is locally attractive, and the amplitude of the stable 
limit cycle goes to zero with E ,  if the second regulator equa- 
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tion (FtE2) is satisfied the output regulation requirement (R) 
is also achieved for some open set of initial data provided E 

is sufficiently small. In this sense, we can track sufficiently 
small amplitude, stable limit cycles. 

4. Passive systems. 

We shall henceforth consider nonlinear systems described 
by equations of the form 

x = f(x) + g(x)u (4.la) 
Y = h(x) (4.lb) 

with state space X = Et", set of input values U = Rm and 
set of output values Y = R". The set U of admissible inputs 
consists of all U-valued piecewise continuous functions de- 
fined on R. f and the m columns of g are smooth (i.e. C") 
vector fields and h is a smooth mapping. We suppose that 
the vector field f has at least one equilibrium; thus, without 
loss of generality, after possibly a coordinates shift, we can 
aasume f ( 0 )  = 0 and h(0)  = 0. 

We begin by reviewing a number of basic concepts related 
to the notions of dissipativity and passivity (see [24], [ll] and 
171 for additional details). 

A system C of the form (4.1) is said to be 
passive if there exists a CO nonnegative function V : X -t R, 
called the storage function, with V(0)  = 0, such that for all 

Deflnition 4.1 

U EU,XO E X , t  2 0, 

V(z) - V(X0) 5 yT(s)u(s)ds  1' 
where z = d( t ,  xo, U). 

Remark 4.2. Setting U = 0, we see from this definition 
that V is decreasing along any unforced trajectory of (4.1); 
it. follows then that passive systems having a positive definite 
storage function V are Lyapunov stable. Reciprocally, we see 
also that V is decreasing along any trajectory of (4.1) con- 
sistent with the constraint y = 0. Since all such trajectories 
define what are called the zero dynamics of a system [l], we 
can deduce that passive systems having a positive definite 
storage function V have a Lyapunov stable zero dynamics. 
Sometimes, among the passive systems, it is convenient to 
identify those systems corresponding to the limiting situa- 
tion in which the dissipation inequality (4.2) becomes a strict 
equality 

V is said to be lossless if for all U E U, x E X ,  t 2 0, 
Deflnition 4.3 A passive system C with storage function 

V(x) - V(X") = yT(s)u(s)ds  Jd' 
Passive systems are related to positive real systems. The 

latter can be defined as follows. 

Deflnition 4.4 A system C is said to be positive real if 
for all U E U , t  2 0 ,  

whenever x ( 0 )  = 0. 

The relation between passive and positive real systems de- 

pends on the property, of the state space realization, of being 
reachable form the equilibrium point x = 0. We recall that a 
state x is reachable from 0 if there exists t > 0 and U E U such 
that x = 4(t, 0, U). We also recall that the available storage, 
denoted V,, of a system C is the function V, : X 3 R 
defined by 

Proposition 4.5[26]. A passive system is positive Teal. 
Conversely, a positive real system in which any state is reach- 
able from the origin, and in which v, is co is  passive. 

We now turn to another fundamental property of passive 
systems which is one nonlinear enhancement of the ubiquitous 
K h a n -  Yacubovitch-Popov Lemma for positive real lineax' 
systems. 

Definition 4.6 A system C has the KYP property if there 
exists a C1 nonnegative function V : X 4 R, with V(0) = 0, 
such that 

LfV(X) 5 0 (4.3a) 
L,V(x) = hT(x)  (4.3b) 

for each z E X .  

The two relations (4.3) can be interpreted as the infinites- 
imal version of the dissipation inequality (4.2) for a passive 
system (although one could, as in the papers [11][12], view 
the dissipation inequality itself as another nonlinear version of 
the Kalman-Yacubovitch-Popov Lemma). Concerning (4.3) 
it is possible to prove, as in [lo], the following result. 

Proposition 4.7[10]. A system C which has the KYP 
property is passive, with storage function v. Conversely, a 
passive system having a C' storage function has the KYP 
property. 

Remark 4.8. Consider a system of the form (4.la), i.e. 
with no specific output defined, and suppose there exists a C' 
nonnegative function V : X -t IR, with V(0)  = 0, satisfying 
(4.3a), i.e. such that L / V ( z )  5 0. Several authors (see e.g. 
[9][15][16][18]) have studied the problem of stabilizing such a 
system using a state feedback of the form U = -[LgV(z)lT. 
In view of (4.3) and of Proposition 4.8, we observe that this 
control law can be interpreted as a unit gain negative out- 
put feedback U = - y  imposed on the passive system defined 
choosing for (4.la) the output map y = [LgV(z)lT. We will 
return later to this point. 

We revisit now a certain number of known results about the 
possibility of asymptotically stabilizing a nonlinear 
passive system by means of memoryless output feedback. 
The asymptotic stability of interconnected passive system has 
been studied in depth in the literature by several authors, ei- 
ther from an operator theoretic point of view (as in [8][19] 
[20][22][23][25][28]) or in terms of the corresponding state 
space descriptions (as in [lo]-[12], [26][27]). In particular, 
Hill and Moylan [lo]- [12] have developed a synthesis of the 
techniques from the theory of passive systems and the Lya- 
punov stability theory which yields a number of important 
stability results under suitable observability l~ypothcscs. 

First of all, we will show how the obsrrvnbility rollditioll 
used by Hill-Moylan can in fact b(. sliglit 1y \\.c.nk(.ll(.tl I I l l d  
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brought to a form, that we call detectability, which is partic- 
ularly suited to the analysis that will be presented later. In 
particular, we will derive a direct criterion for detectability 
for a passive system, stated in terms of Lie brackets of the 
vector fields which characterizes the input-state decription 
(4.la), and is reminiscent of the well-known rank conditions 
for accessibility. This will enable us to show, in the last part 
of the section, that certain stabilization laws independently 
proposed in the literature on geometric nonlinear control, and 
some generalizations thereof, can all be derived from a basic 
stabilizability property of passive systems. Observability and 
detectability are defined as follows. 

Definition 4.9 A system C is locally zero-state detectable 
if there exists a neighborhood U of 0 such that, for all z E U, 

h ( d ( t , z , O ) )  = 0 for all t 2 0 =+ limd(t,x,O) = 0. 
t-*m 

If U = X ,  the system is zero-state detectable. A system C is 
locally zero- state observable if there exists a neighborhood 
U of 0 such that , for all z E U, 

h ( d ( t , x , O ) )  = 0 for all t 2 0 + x = 0. 

If U = X ,  the system is zero-state observable. 

These two definitions are natural extensions of well esta- 
bilished concepts from linear system theory. Note however 
that in some of the literature on passive systems, the term 
detectability is used to mean what here is defined as observ- 
ability (see e.g. [lo]).  

The following statement, whose proof is a natural adapta- 
tion of the proof of LaSalle’s invariance principle, describes 
a basic stabilizability property of passive systems. For more 
general informations about stability of interconnected passive 
systems, we refer to the papers [10]-[12] by Hill and Moy- 
lan. For convenience, we recall that a nonnegative function 
V : X -i R is said to be proper if for each a > 0, the set 
V - l ( [ O , a ] )  = { x  E X : O 5 V ( x )  5 a }  is compact. 

Theorem 4.10 [7]. Suppose C i s  passive with a storage 
f u n c t i o n  V which i s  positive definite. Suppose C i s  locally 
zero-state detectable. Le t  $ : Y + U be a n y  smooth f u n c t i o n  
such  tha t  d(0) = 0 and y T d ( y )  > 0 f o r  each nonzero y. T h e  
control law 

U = -d(Y) (4.4) 

acymptotically stabilizes the  equilibrium x = 0. If C i s  zero- 
state detectable and  V is  proper, the control law (4.4) globally 
asymptotically stabilizes t h e  equilibrium x = 0. 

The previous Theorem shows that any passive system hav- 
ing a positive definite storage function V ,  if zero-state de- 
tectable, is (globally) asymptotically stabilized by pure gain 
output feedback. We will now describe how these assump- 
tions can be tested and will use the conditions thus derived 
in order to state different criteria for stabilizability. For sim- 
plicity, we discuss only the conditions for global asymptotic 
stabilization. We first recall a result of Hill-Moylan (Lemma 
1 of [lo]) showing how the positive definiteness of V is implied 
by the property of zero-state observabilily. 

Proposition 4.11[10]. Suppose C i s  passive with storage 
f u n c t i o n  V .  Suppose C i s  zero-state observable. T h e n  V is  
positive definite. 

The next result, which is slightly more subtle, describes 
conditions which imply zero-state detectability. The result 
itself is, to the best of our knowledge, a new result, although 
its proof is substantially based on a clever argument proposed 
by Lee-Arapostatis (in the proof of Theorem 1 of [IS]). In 
order to describe this result we need some preliminary mate- 
rial. With the vector fields f, 91,.  . . , gm which characterize 
(4.la) we associate the distribution 

D = span{ad:gi : 0 5 k 5 n - 1,1 I i I m}. 

Moreover, we recall that for a passive system having a C’ 
storage function V which is positive definite and proper, 
for any initial condition x E X , the trajectory d ( . , x , O )  is 
bounded, and the associated limit set is nonempty and com- 
pact. Set 

R = U,.E,y(w -limit set of q5(. ,xo,0)) 

The objects thus introduced are useful in testing the zere 
state detectability and/or observability of a passive system. 

Proposition 4.12 1’71. Suppose C is passive wi th  a proper 
C r , r  2 1, storage f u n c t i o n  V .  L e t  S denote the set  
S = { x  E X : L f m L , V ( x )  = 0 ,  f o r  a l l  r E D, all 0 5 m < r }  

If S n R = (0) and V is  positive definite, t h e n  C is zero- 
state detectable. I f  S = { O }  and C i s  lossless, then  C i s  
zero-state observable. 

Using either one of the conditions described in Propositions 
4.12 and 4.13 in order to check the assumptions required by 
the basic stabilization strategy expressed by Theorem 4.10, 
it is possible to recover a number of stabilization results inde- 
pendently proposed in the literature by various authors, thus 
showing that a number of apparently independent stabiliza- 
tion schemes (see [9][15][16][18]) reduce, in fact, to the one of 
a passive system subject to pure gain output feedback. 

5. Feedback equivalence t o  a passive system. 

In this section we address the problem of when a given 
nonlinear system is feedback equivalent to a passive system 
with positive definite storage function V. As we shall see in 
a moment, a role of major importance is played by property 
- for the system - of being minimum phase. We assume the 
reader familiar with the concepts of relative degree, normal 
form, and zero dynamics (see (11 or [13] for details). In partic- 
ular, we recall that a system of the form (4.1) is said to have 
relative degree (1,. . . , l} at z = 0 if the matrix L,h(O) is 
nonsingular. If this is the case and if the distribution spanned 
by the vector fields g l ( x ) ,  . . . , g m ( x )  is involutive, it is pos- 
sible to find n - m real-valued functions z 1 ( z ) ,  . . . . Z ~ - ~ ( Z ) ,  

locally defined near x = 0 and vanishing at x = 0, which, t e  
gether with the m components of the output map y = h(z) ,  
qualify as a new set of local coordinates. In the new coor- 
dinates ( z ,  y ) ,  the system is represented by equations having 
the following structure (normal form) 

where the matrix a ( z , y )  is nonsingular for all (z,y) near 
(070). 

In the normal form (4.1) the zero dynamics of the system, 
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which describe those internal dynamics which are consistent 
with the external constraint y = 0, are characterized by the 
equation i = q(z ,O)  := f * ( z ) .  In what follows, we shall 
sometimes reexpress q ( z , y )  in the form q ( z , y )  = f*(z) + 
p ( z ,  y ) y  where p ( z ,  y )  is a smooth function. 

In [4], necessary and sufficient conditions for the existence 
of a globally defined normal form of the type (5.1) have been 
investigated. In addition to the nonsingularity of the matrix 
L g h ( x ) ,  these conditions require further properties on set of 
m vector fields gl(z), , , . ,gm(x) defined by [gi(x). . . jm(x)] 
= g ( x ) [ L , h ( x ) ] - ' .  More precisely, there exists a globally 
defined diffeomorphism which tranforms the system (4.1) into 
a system having the normal form (5.1) if and only if: 

(Hl) the matrix L,h(z) is nonsingular for each x E X ,  
(H2) the vector fields g l ( x ) ,  . . . ,gm(x) are complete, 
(H3) the vector fields j i (x ) ,  . . . ,gm(x) commute. 

If this is the case, then globally defined zero dynamics exist 
for the system. Note that the condition (H3) is equivalent 
to the condition that the distribution spanned by si(.), . . . , 
g m ( x )  is involutive. 

A system whose zero dynamics are asymptotically stable 
has been called a minimum phase system (see [1]-[3]). In 
the following definition, we specialize this concept in a more 
detailed manner. 

Deflnition 5.1 Suppose L,h(O) is nonsingular. Then C 

(i) minimum phase if z = 0 is an asymptotically stable 
equilibrium of f*(z), 

(ii) weakly minimum phase if there exists a C',T 2 2, 
function W*(z) ,  locally defined near z = 0 with W*(O) 
= 0, which is positive definite and such that L p V ( z )  
5 0 for all z near z = 0. 

is said to be: 

Suppose (Hl) - (H2) - (H3) hold. Then C is said to be: 

(iii) globally minimum phase if z = 0 is a globally asymp- 
totically stable equilibrium of f*(z), 

(iv) globally weakly minimum phase if there exists a C', T 

2 2, function W*(z) ,  definedfor all z with W'(0) = 0, 
which is positive definite and proper and such that 
L p V ( z )  _< O for all z. 

We proceed now to illustrate how the concepts of relative 
degree and zero dynamics arise naturally in the study of pas- 
sive systems, playing in fact an important role. We begin by 
analyzing the relative degree of a passive system. In what 
follows, for convenience, we will say that a point x is a regu- 
lar point for a system C of the form (4.1) if rank(l,h(x)} is 
constant in a neighborhood of x. We also assume throughout 
the section that rank(g(0)) =rank{dh(O)} = m. 

Theorem 5.2 [7]. Suppose C is passive with a C2 storage 
func t ion  V which is positive definite. Suppose x = 0 is a 
regular point f o r  E. T h e n  L,h(O) is nonsingular and C has 
relative degree {I,. . . ,1} at x = 0. 

The next result characterizes the asymptotic properties of 
the zero dynamics of a passive system. 

Theorem 5.3 [7]. Suppose C is passive with a C2 storage 
func t ion  V which is positive definite. Suppose that x = 0 is 
a regular point f o r  C .  T h e n  the zero dynamics  of C locally 
ezist at x = 0 and C is weakly m i n i m u m  phase. 

Theorems 5.2 and 5.3 show, in essence, that any passive 
system with a positive definite storage function, under mild 
regularity assumptions, necessarily has relative degree 
(1,. . . ,1} at x = 0 and is weakly minimum phase. The 
next step of our investigation is to show that exactly these 
two conditions characterize the equivalence, via state feed- 
back, to a passive system. We consider here regular static 
(i.e. memoryless) state feedback, i.e. a feedback of the form 
U = a(.) + @x)v where a(.) and p ( x )  are smooth func- 
tions defined either locally near x = 0 or globally, and p ( x )  
is invertible for all x .  

Theorem 5.4 171. Suppose x = 0 is a regular point f o r  
C .  T h e n  C is locally feedback equivalent to  a passive q s t e m  
with a C2 storage func t ion  V ,  which is positive definite, if 
and only if C has relative degree (1,. . . ,1} at x = 0 and i s  
weakly minimum phase. 

Remark 5.5. In a linear system 

i = A x + B u  
y = c x ,  

with rank{B} = m, x = 0 is always a regular point and a 
normal form - whenever it exists - is globally defined. Thus, 
from the previous result we immediately obtain that any lin- 
ear system is feedback equivalent to a passive linear system 
with a storage function V(x) = zTQx, which is positive defi- 
nite, if and only if CB is nonsingular and the system is weakly 
minimum phase. Since any controllable linear system is pas- 
sive, with a storage function V ( x )  = x T Q x  which is positive 
definite, if and only if it is positive real (see e.g. [27]), we also 
see that any controllable linear system is feedback equivalent 
to a positive real system if and only if CB is nonsingular and 
the system is weakly minimum phase. 

A global version of Theorem 5.4 indeed exists if the system 
in question has a global form. 

Theorem 5.6 [7]. A s s u m e  (Hl) - (H.?). T h e n  C is glob- 
ally feedback equivalent t o  a passive sys tem with a C2 storage 
func t ion  V ,  which is positive definite, if and only if C i s  glob- 
ally weakly m i n i m u m  phase. 

So far, we have investigated the feedback equivalence of a 
given system to a passive system with positive definite stor- 
age function V .  In the next statement, we analyze the par- 
ticular configuration in which the system in question can be 
expressed in the form 

t = fo(0 + f l ( C , Y ) Y  (5.3a) 
i = f(x) + &)U (5.3b) 
Y = h ( x )  (5.3c) 

which we assume to be globally valid (of course, correspond- 
ing local results also hold). The analysis of configurations of 
this type was considered in a number of previous papers (see 
e.g. [3][17][24]). In view of the particular structure of (5.3), 
we will call (5.3b)-(5.3c) the driving system, while (5.3a) d l  
be called the driven system. 

First of all, note that if the point ( [ , I )  = (0,O) were 
a point of regularity for the full system (5.3), then its 10- 
cal feedback equivalence to a passive system would be of 
course determined by the conditions described in Theorem 
5.5, namely the properties of having relative degree (1,. . . ,1} 
at (C, x )  = (0,O) and of being weakly minimum phase. Note 
also that, in view of the special structure of (5.3) the point 
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( C ,  x) = (0,O) is a point of regularity for the full system if and 
only if the point I = 0 is a point of regularity for the driving 
system and that, in particular, the full system has relative 
degree (1,. . . ,1}  at ( C ,  x) = (0,O) if and only if the driving 
system has relative degree (1 , .  . . ,1} at I = 0. Finally, note 
that, in this case (that is, if L,h(O) is nonsingular) the zero 
dynamics of the full system have the form 

c = f o ( 0  (5.4a) 
i = f * ( z )  (5.4b) 

where f * ( z )  is exactly the zero dynamics vector field of the 
driving system. Thus, the full system is weakly minimum 
phase if and only if the driving system is, and there exists 
a positive definite function U((), locally defined near C = 0 
with U(<) = 0, such that LfoU((^)  5 0 for all C. Similar 
considerations can be repeated in a global setting, and we can 
therefore deduce, as an immediate application of our previous 
discussion, the following result. 

Corollary 5.7. Suppose the triplet { f , g ,  h }  satisfies the 
assumptions ( H l )  - (H3) (OT,  what i s  the  same,  suppose a 
normal  f o r m  of the type (5.1) globally exists f o r  the driv- 
ing s y s t e m  of (5.3)). T h e n ,  the f u l l  s y s t e m  (5.3) i s  feedback 
equivalent t o  a passive s y s t e m  with a C2 storage f u n c t i o n  V ,  
which i s  positive definite, ;f and only if the driving s y s t e m  
i s  weakly minimum phase and there exists a positive definite 
f u n c t i o n  U ( ( ) ,  defined f o r  all C = 0 with U ( ( )  = 0,  such tha t  
Lf,,U(C) 5 0 f o r  all C.  

In the next statement, we show how feedback equivalence of 
(5.3) to apassive system can be determined without assuming 
the existence of a normal form for the driving system. 

Theorem 5.8 [7]. Consider the s y s t e m  (5.3). Suppose 
(5.4a) is globally asymptotically stable and ( f , g , h )  is pas- 
sive with a Cr,r > 1, storage f u n c t i o n  V ,  which is positive 
definite. T h e  s y s t e m  is feedback equivalent t o  a passive sys- 
t e m  with a C' storage f u n c t i o n  which i s  positive definite. 

6. Global stablization of weakly minimum phase 
nonlinear systems. 

We now apply some of the results illustrated so far to the 
problem of deriving globally asymptotically stabilizing feed- 
back laws for certain classes of nonlinear systems. In par- 
ticular, we give a fairly general theorem which incorporates 
and extends a number of interesting results which recently 
appeared in the literature. 

Theorem 6.1 [7). Consider a s y s t e m  ,E described by 

j = f O ( 0  + f l(C7Y)Y (6.la) 
i = f (x) + g ( x ) u  (6.lb) 
Y = N I )  (6.1~) 

Suppose ( = fO(6) i s  globally asymptotically stable. Suppose 
( f , g , h }  i s  passive with a C',r 2 1, storage f u n c t i o n  V ,  
which is positive definite and  proper, and suppose s = ( 0 )  
wi th  S defined as in section 4.  T h e n  C is globally asymptot-  
ically stabilizable by  smooth  state feedback. 

As a n  immedia te  application of this result we obtain. 

Corollary 6.2. Consider a s y s t e m  E described by 

t = fo(0 + f l ( 5 ,  Y)Y 
li = f(C, Y )  + s(C, Y)U 

Suppose g ( C , y )  is invertible f o r  all c ,  y .  SUppOSe ( = f o ( 6 )  18 

globally asymptotically stable. T h e n  C i s  globally asymptoti-  
cally stabilizable by smooth state feedback. 

The system considered in this statement is just a globally 
minimum phase system with relative degree (I,. . . ,1} r e p  
resented in its global normal form. Thus, Corollary 6.2 coin- 
cides with Theorem 2.1 of [3]. One of our next applications 
consists in showing that the minimum phase assumption of 
Theorem 2.1 of [3] can in fact be weakened, in the sense that 
also weakly minimum phase systems may be globally asymp 
totically stabilized by smooth feedback. We will prove this 
result after having shown how Theorem 6.1 specializes in case 
the driving system has a globally defined normal form. 

To this end, recall that if a system 

is globally weakly minimum phase, there exists a Cr , r  > 1, 
function W*(z),  defined for all z with W*(O) = 0, which is 
positive definite and proper, and such that L p  W*(z)  5 0 for 
all z. Set g * ( z )  = p ( z , O )  and define 

(6.48) 

(6.4b) 

I)' = span{adj,kg,+,O 5 k 5 n - m - 1,1 5 i 5 m} 

S' = { z  E Z* : L J * ~ L , W * ( Z )  = 0,  fora1l.r E D', all0 5 m < r)  

Then, the following statement expresses the form to which 
Theorem 6.1 reduces in case the driving system has a globally 
defined normal form. 

Theorem 6.3. cons ider  a s y s t e m  C described by 

Suppose the unforced dynamics of the driven s y s t e m  (6.5) i s  
globally asymptotically stable and suppose the driving sys tem 
(6.6) has relative degree (1,. . . ,1} at  each point and i s  glob- 
ally weakly minimum phase.  Suppose s* = (0) (where s* is  
defined as in (6.4)). T h e n  C i s  globally asymptotically stabi- 
litable by smooth  state feedback. 

Taking the driven system to be trivial in Theorem 6.4, we 
obtain the following Corollary, an extension of Theorem 2.1 of 
[3], which describes conditions under which a globally weakly 
minimum phase system can be globally asymptotically stabi- 
lized by smooth feedback. 

Corollary 6.4. Suppose the sys tem C described by 

has relative degree (1,. . . ,1} at  each point and is globally 
weakly m i n i m u m  phase.  Suppose S' = (0). T h e n  C is glob- 
ally asymptotically stabilitable by smooth state feedback. 

Finally, we consider the special situation in which the driv- 
ing system is linear and controllable. We will also assume that 
the driving system satisfies either of the following conditions: 

(i) CB is nonsingular and the system is weakly minimum 
phase; or 

(ii) the system is feedback equivalent to a passive system, 
with positive definite storage function V(z) = z T Q z ;  
or 
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(iii) the system is feedback equivalent to a positive real 

As a matter of fact, the characterization we obtained for 
feedback equivalence of a nonlinear system to a passive sys- 
tem proves, in the case of linear systems, the equivalence of 
(i), (ii) and (iii). Accordingly, we obtain a Corollary, which 
contains as a particular case Theorem 2.1 of [17]. 

system. 

Corollary 6.5. Consider a sy s t em C described by  

= f o ( 0  + fl(C1 Y)Y 
x = A x + B u  
y = cx 

Suppose the  unforced dynamics  of t h e  driven s y s t e m  i s  glob- 
ally asymptotically stable. Suppose (A ,  B )  is controllable and 
suppose the  driving s y s t e m  { A ,  B ,  c} satisfies either one  of 
the  three equivalent conditions (i), (ii) OT (iii),  T h e n  C i s  
globally asymptotically stabilizable by  smooth state feedback. 
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