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ABSTRACT 

We study the continuity of the behavior of dynamical 
systems as a function of the parameters in their behavioral 
equations. The problem is motivated by means of an RLC-circuit 
whose port behavior exhibits a surprising discontinuity as a 
function of the numerical values of the elements in the 
circuit. The main result states that a system described by 
means of difference equations involving manifest (external) and 
latent (internal) variables will have a continuous behavior in 
the limit if the limit system is observable. 

1. INTRODUCTION. One of the important issues in the study of 
mathematical models is the continuity of their behavior as a 
function of the parameters describing the behavioral equations. 
Bifurcation theory and structural stability questions are 
examples of research areas which address such questions. 
However, also areas as system identification, robustness of 
control systems, and the performance of adaptive control 
schemes, are other areas where (implicitely ) continuity 
questions are raised. The question of continuity is indeed an 
important issue in automatic control theory in particular, and 
in modelling in general. 

A suitable mathematical formulation of the continuity 
property involves more than meets the eye. To begin with, it is 
not clear how to formalize it. Second, since a typical 
parametrization of a system’s behavior involves a many-to-one 
map one cannot expect that system continuity will simply 
correspond to  parameter continuity. In addition, in physical 
systems neither the input/output structure nor the (dimension 
of the) state space structure will be robust under parasitic 
perturbations and it is clear that the state space framework 
does not always provide a satisfactory general setting for 
studying the continuity issue. Finally, it is possible to  give 
examples of innocent looking physical, lumped, linear, 
time-invariant systems whose behavior exhibits surprising 
discontinuities as a function of the numerical values of the 
physical elements. In Section 2 such an example is worked out 
in detail. 

In [1,2] we have initiated a fundamental study of the 
continuity issue. Our setting follows the framework of [3,4,5]: 
a system is defined in terms of its behavior and continuity 
requires that this behavior is continuous in the limit. The 
main result of [1,2] may be formulated as follows. Consider a 
family of dynamical systems which can all be described by a 
system of difference or differential equations ( U  denotes the 
shift) 

or 

the rank and the maximal degree of the Re’s) the behavior of 
these dynamical systems will be continuous as E-+O if and only 
if the polynomials R, converge. The precise formulation of the 
‘only if’ part of this claim is quite involved (see [1,2]). In 
any case, this is an appealing result which, roughly speaking, 
permits us to  identify (for this class of systems and under 
suitable conditions!) system convergence with parameter 
convergence. 

The present paper may be viewed as a continuation of this 
study. The problem raised stems from the observation 
(elaborated in [4,5]) that models obtained from first 
principles will invariably involve both manifest (external) and 
latent (internal) variables. For example, when describing the 
port behavior of an electrical circuit, one will need to 
introduce the voltages across and the currents through the 
internal branches in order to  express the laws governing the 
circuit: the constitutive equations of the elements and 
Kirchhoff’s voltage and current laws. In the context of the 
class of systems introduced above this leads to systems 
described by difference or differential equations of the type 

with w the manifest and a the latent variables. The question 
arises whether, when the coefficients of the polynomial 

matrices R&(s,s-’) and M,(s,s-’) or R,(s) and M,(s) converge, 
this also holds for the manifest behavior (the port behavior in 
the case of electrical circuits). In Section 2 an example of a 
simple RLC-circuit is studied where this continuity does not 
hold. Our Main Result formulated in Section 5 states that this 
continuity holds under the requirement that the limit system is 
observable! 

2. AN EXAMPLE. In order t o  illustrate the sort of phenomenon 
which will be studied in this paper, we will start with a 
simple concrete example. Let us model the RLC-circuit shown 
below: 
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in which the polynomial matrix R , ( s , s ‘ ~ )  or R,(s) depends on a 
real parameter E 2 0. Then under suitable conditions (involving 
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We assume that the values of the elements R,, RL, L, and C 
arc all positive. The circuit interacts with its environment 
1,hrough the external port. The attributes which describe this 
in1,eraction are the current I into the circuit and the voltage 
V across its external terminals. We will call these manifest 
variables. In order to specify the terminal behavior, we will 
int.roduce as auxiliary variables the currents through and the 
voltages across the internal branches of the circuit, as shown 
in Figure 2. We will call these auxiliary variables latent 
oariables. 
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\ 

FIGURE 2 
The following equations specify the laws governing the 

dynamics of this circuit. They define the relations between the 
port variables arid the la,tent variables. We will call these 
equations the full behavioral equations. 

Constitutive equations : 

V R ~ = R C I R ~  ; V R ~ = R L I R ~  i 

C r l v C = &  d t  ; L dt !EL#, W E )  

liirchhoff's current laws: 

I=I ,QctIL ; IRc=IC ; I L = I R ~  ; 

& t I R  = I  (KCL)  

liirchhoff's iioltage laws: 

v = v R c t v c  v=vLtvRL ; 

v R c  t VC = VL t v R L  W L )  

'This yields the fu l l  (or internal) behavior, defined as: 

B~ = { ( I ,  v ,IR,,VR~, I R ~ , V R ~ , I C , V C , I L , V L )  : R+R" I (w, W L ) ,  

From this the (manifest, external) port behavior, follows. It 
is formally defined as: 

8 = { ( I .  V )  : R*R' I IRC, v R C ,  I R ~ , V R ~ , I C , ~ ~ ,  IL,VL) : R+R' 

such that 

and (IWL) are satisfied} 

( I - V ,  V R ~ ,  I R ~ ,  V R ~ ,  IC,  Vc,  IL,  V L )  E Bf} 

Let us now carry out the elimination of the latent 
variables in order to come up with an explicit relation 
iiivolving the port. variables V and I only. Eliminating IRc, 
V,L+.? I R ~ ,  and V R ~ ,  using (KCL) and (IWL) leads to: 

V=Vc+RcIc ; V=VL+RLIL ; C 3  =IC ; 

L+VL ; I=I , t I ,  

Next, eliminate IC using the first of these equations and V ,  
using the second, to  obtain the 'state equatias': 

V -  RCI = V c  - RCIL 

Now? substitute V ,  from the third of these equations in the 
first to obtain: 

Using t,he second of the above equations, leads to: 

Now distinguish 2 cases: 

CASE 1: 1 = T .  RL Then the above equation yields 

I J 

as the desired port relation between the variables V and I .  

CASE 2: & # q. Then use the earlier equation to  solve for 

I,,. Upon substit iition in the previous equation this yields, 
after some reorganization: 

1 

I I 

ds the desired port relation between the variables V and I .  
1 R  Note that if we set = -f in the second equation we 
C 

ol,talll 

I J 

Of further interest is the case in which in addition t o  
z!- K L  , there also holds Rc = 1. 
CKc = 77 a;: 

Let IIS now state some results which follow from earlier 
work of ours. The first one concerns the presence of common 
~ U C ~ O T S  in the polynomials p and q in a differential equation 
inotlel 

describing the relation between U(.):IR*R and y(.):R+R, While a 
common factor can indeed be cancelled if we are only concerned 
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with the transfer fuiiction, it, cannot he cancelled when we are 
considering tlic I)c.havior! ('oininiol? factors do contribute to the 
hchavior. The presencc of c o r i ~ n i o ~ i  lactors signifies lack of 
controllability in the tlyilamical system. Cancelling cMn7llOn 
factors corresponds to taking the controllable part of the 
system [4,5]. 

The second fact concerris the limit behavior of systems 
described by a set of dillerential equations whose coefficients 
depend on a parameter. Under reasonable conditions (which are 
satisfied for the full behavioral equations describing the 
above circuit and for equations ( A ) ,  ( B ) ,  and ( C ) )  it can be 
shown that the limit behavior is, as may be expected, described 
hy the equatioiis obtained by substituting the limit of the 
parameters in the original cqu;itions. 

The third fact concerns the observability of the latent 
variables in the full behavioral equations (CE),  (KCL), and 

(KI'L). These equations are observable if and only if -#p. 1 R  
CRC 

This yields the following situation for the circuit a t  
hand (remember that throughout we assume RL, Rc, L, and C>O): 

1 R L  :\ssume __ = - Then the port behavior is described by 

equation ( A ) .  'Ihe full behavioral equations are 

ohservable. If 2 # 1, then the port behavior is 

controllable. 

Assume ~ + . Then the limit port behavior is 

described by equation (C) .  This limit behavior differs 

C R C  L ' 

R 
R L  

1 R L  

C R C  

from the behavior for 2 = 9 by the common factor 

[ CRc E t 1 ) , yielding a non-controllable mode. If # 1, 
CRc d 

RL 
then the controllable part of this limit behavior equals 
the behavior a t  the limit. 

1 R L  RC Assume ~ = - and - = 1. Then the full behavioral C R ,  L R ,  L' L 
equations are unobservahle and the port behavior is 
dcscribetl by 

This defines a non-controllable dynamical system. Its 
controllable part is described by V = R c I .  

1 R L  R @  Assume ~ + - and - + 1. Then the limit port behavior C R C  L R L  

It is iiot cont,rollable; its controllable part is described by 
V = RcI.  'Thus i n  this case the limit behavior strictly includes 
the behavior a t  the limit which, in turn, strictly includes the 
controllable behavior. 

Note that, it follows from this example that, the difference 
hctwcen the limit behavior and the behavior at the limit is 
mor< '  than mercly a matter of cancelling common factors. It 
illiist,rates that taking limit systems (and cancelling common 
JrLctoTs) is 'tricky b~irsiness'. 

Note that careless calculation of the open circuit 
hchavior of this circuit ( I = o )  would have given 

[L CR,& + lt 8 
R L  d t 2  i 

with no warning bells (as the common factor phenomenon for the 
port behavior) that, when CRc=K L , these equations cease to be 

valid. Indeed taking CRcjT L yields 
L 

as the limit behavior, while the behavior when CRc= 4 is 

actually described by 
RL 

We hasten to correct two erroneous impressions which the 
above example may have given. First, the phenomenon that the 
limit behavior is unequal to  the behavior a t  the limit for 
systems described in terms of latent variables can be seen from 
much simpler examples than the one given. For instance the full 
behavioral equations 

wit,h lat,ent variable a give wz=wl  for the limit behavior, while 
the behavior at the limit is w1=w2=o.  Second, as this last 
example also shows. the difference between the limit behavior 
and the behavior a t  the limit is not just a matter of 
uncontrollable modes (equivalently, of common factors) at the 
limit. 

The point of this extensive example is to  illustrate that 
I l i c  1)chavior of a linear.. time-invariant dynamical system 
tlcscrihiiig a simple electrical circuit need not be continuous 
i n  the physical parameters. This discontinuity is moreover not 
clue to element, values going to  zero or to  infinity. In 
particular, it is not a problem of singular perturbations. The 
p~irposc of this article is to formalize this phenomenon and to  
give a very nat,ural system theoretic condition (observability) 
which yiclds the desired continuity of the behavior in terms of 
the system parameters. (The reason why the example gives the 
iriipressioii that controllability is an issue is due to  the fact 
that for this electrical circuit observability and state point 
controllability simultaneously hold). 

3. OUR MODELLING TRIPTICH. We start our development with a 
brief exposition of the modelling philosophy and language which 
WP have been preaching during the last decade. The basic 
irigretlients of this theory constitutes a tryptich consisting of 
tlic behavior, behavioral equations, and latent variables. 

We define a (mathematical) model as a pair (U,B) with U a 
7 1 7 1 i 7 ~ e ~ . ~ ~ i ~ i n  and B a subset of U called the behavior. Thus a 
iiiiil.liematica1 model is an exclusion law: from all the a priori 
imssihililies in  U, it recognizes only those in B as being in 
p i  iiiciple possible. In most examples the behavior B will be 
spccified by equations bl(u) = b&). Formally, we assume that we 
are given two  maps b,,b,:U+Q (with Q a set called the equating 
space) specifying B as B = { u ~ U l b , ( u )  = b2(u)} .  The 'equilibrium' 
equations bl(u) = b2(u)  are called behavioral equations. Clearly 
these behavioral equations specify 8, but the converse is not 
true: there are obviously very many equivalent behavioral 
rquations (equivaleiit in the sense that they specify the same 
Ibehavior). This illustrates the ancillary role which equations 
play in mathematical modelling. 

In addition to the behavior and behavioral equations, there 
is a third element in our general language for mathematical 
modelling: latent variables. The introduction of latent 
variables stems from the realization that in most modelling 
exercises, it will be necessary to  introduce other variables in 
addition to those which we are trying to  model. We will call 
t,hese auxiliary variables latent variables and the basic 
variables which our models aims a t  describing manifest 
variables. 

Formally, a latent variable model is a triple (U,z!,Bf) 
with U the universum of manifest variables, z! the universum of 
latent variables. and 8, a subset of UXC, called the full (or 
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internal) behavior. It induces the manifest mathematical model 
(U,%) with 8={uEU13t?EC such that (u , . t )EBf}  the manifest (or 
internal, or intrinsic) behavior. In practice, B f  will often be 
described by full behavioral equations bf,l(u,4) = bf,2(u,.t) 
leading, after elimination of .t (if this proves to  be 
possible), to the behavioral equations bl(u) = b2(u) for the 
manifest behavior. 

We view a dynamical system merely as a mathematical model 
in which the behavior consists of a family of time functions. 
Thus a dynamical system C is defined as a triple C =  (T,W,B) with 

TER the time axis, W the signal space, and B r W T  the 
behavior. Thus B consists of those maps from U to W satisfying 
the laws governing t,he dynamical system. A dynamical system is 
said t,o be linear if W is a vector space and B is a linear 

subspace of WT. We will consider only the case with time axis 
T = Z (discrete-time systems) or U = R (continuous-time systems). 
We will call E=(U,W,B) with T=Z or R time-invariant if otB=B 
for all t eU .  Here ut denotes the t-shift: ( d w ) ( t ' )  : = w ( t ' t t ) .  
Thus in a linear system the behavior satisfies the 
superposition principle: w 1 , w 2 ~  B and a,@ scalar imply 
cxw1+Pw2E 8. Time-invariant systems on the other hand are 
governed by laws which do not depend explicitely on time, w e 8  
implying 0% E B. 

We will be especially interested in dynamical systems 
described by difference or (ordinary) differential equations. 

Let, us consider the discrete-time case first. Let R'X4[~,~-1] 
dcnote the farnily of polynomial matrices with q columns and any 
(-finite-) number of rows. Specifically, we will consider 

dynamical systems S =  (Z,Rq,B) in which B is described in terms 

of a polynomial matrix R(s,s-') ER*~~[S,S-'] by the difference 
equations 

(AR) 

R( uta- ' )  w = M (  u,  o-' ) a 

L 

(ARMA) 

yielding as behavior ker R(u,u-') with R(a,o-') viewed as a 

linear map from (R4)' into (Rg)' ( g  equals the number of rows 
of R). Clearly this defines a linear time-invariant system 

(i!,iR',,kerR(u,n-')). It is easy to see that kerR(c7,a-l) 

defincs a linear shift-invariant closed subset of (l?')' 
(equipped with the topology of pointwise convergence). In fact, 
it can be shown that every such subspace can be expressed as 
the kernel of a polynomial operator in the shift. We will call 
the behavioral equations ( A R )  AutoRegressive or, briefly, (a) 
equations, and we will denote the family of dynamical systemb 

induced by them by E'. In [1,4] it has been shown that 2' 

consists of all dynamical systems (Z,R',B) which are linear, 
time-invariant, and complete (see [1,4] for a formal definition 
and a discussion of completeness). 

If we introduce latent variables in this setting then we 
obtain a latent variable dynamical system EJ= (U,W,L,Bf) with T 
Ilie tiiiie axis. W the signal space, L the latent variable space, 
and Bf=  ( W X : ~ ) ~  the full behavior. We will consjder latent 

variable dynamical systems C f  = (Z,d,Rd,Bf) with B f  described by 
behavioral equations 

The manifest behavior is defined as 8 = {CUI 3 a such that 

R(o,u-')w = M(a,a-')a}. Equivalently,B = (R(u,o-'))-'im M(o,cr-'). 
It turns out that B itself can also be expressed as the kernel 
of a polynomial operator in the shift. That is, there exists a 
polynomial R'(s,s-') such that B =ker R(o,a-'). The polynomial 

matrix R' can be obtained by premultiplying M(s,s-') by an 
unimodular polynomial matrix U( s,s-') such that 

with M"(s,s-') of full row 
M "  ( s , s - ) 1 

rank (implying that M"(a,a-') is surjective). Then R(s,s-') is 
obtained by taking the conformable partition of 

The above is easily generalized to  differential equations. 
However, in this case there are difficulties with the required 
smoothness of w and the sense in which we want the differential 
equation to  be satisfied. However, for the purpose of this 

paper we will use a c* setting (even though in other context 
this has serious disadvantages). The behavioral equations 

R - W = O  
K t  1 

with R ( s )  E R * ~ ~ [ s ]  defines the continuous-time linear 

time-invariant dynamical system (R,R',B) with B = ker R 

and R [  $ ] viewed as a map from f (R ;R ' )  into c"(R;Rg). 

Introducing latent variables leads to  

(ik) 

R - W = M  L!- a (LVDE) Id",  1 l d t  1 
with i ? ( s ) ~ R ' " ~ [ s ]  and M(s)ER '"~[s ] ,  both having the same number 
of rows. Elimination of the latent variables is carried out by 

pre-multiplying by a unimodular polynomial matrix U(s) edXg[s] 

(implying again that M" (-& ) is surjective). The behavioral 

equations specifying the manifest behavior are then given by 

w = o ,  where ...!l.(k.)... ' is a conformable partition of 
R " ( s )  1 

U (  .s)R( s). 

Let us illustrate these notions a t  the hand of the circuit 
example of Section 2. In this electrical circuit we consider aa 
manifest variables the port variables (Y,I):R+Wa, while B 
consists of all YJ-pairs which the circuit can conceivably 
produce. Our mathematical model involves also the latent 

variables ( Y R ~ , , I R ~ , L ' ~ ~ ,  IRL,Vc,Ic,VL,IL) :R+R8. The full behavior 

equations consist of ( C E ) ,  ( K C L ) ,  and (IWL). In this case the 

manipulations leading to equations ( A )  when = pr;; and ( B )  
when -!- # 6 , correspond to  carrying out explicitely the 

unimodular pre-multiplication alluded to  above. 

1 L  

CRC 

4. PARAMETRIZATIONS AND THEIR CONTINUITY. In our framework a 
mathematical model is a very abstract object. When we represent 
it by behavioral equations it becomes a bit more concrete. 
Often, however, it is possible to  view a model as being induced 
by some concrete parameters. 

Let ovl be a set, for example a family of mathematical 
models. In this case each element M E N  defines a mathematical 
model (W,B). A paramet&zatlan (P,?r) of oul consists of a set P 
and a surjective map n:P+M. The set P is called the parameter 
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spuce. We think of P as a concrete space and of an element PEP 
as a parameter, for example a set of real or complex numbers, 
or vect,ors, or polynomials, or polynomial matrices. Typically 
p e p  determines a behavioral equation and in this way induces a 
niiitheiriatical model. If P is a set of matrices we speak of (P,n) 
as a itiatrix parametrization of Dul. A similar nomenclature is 
used for polynolnial parametrizations, polynaial matrix 
parametrizations, etc. When U' is an abstract space related tg M 
in the same way as abqve, then we will call (P,n) also a 
representation of M. Hence representation (abstract) is 
essentially synonymous to parametrization (concrete). For 
representations, think of a behavioral equatiqn representation 
of a mathernat.ica1 model, or of a latent variable 
representation. etc. 

Let (P,a) be a parametrization of M, and assume that P and 
M are endowed with a topology. We will call (P,n) a continuous 
parametrization of M if whenever p ,  EP, E 2 0 satisfies 1 im p ,  = p,, 

then l i m  x(p,)=~(p,)  and, conversely, whenever M , E M  € 2 0 ,  

satisfies l im M e  = W O ,  then there exists p , e P  such that ~ ( p , )  = M E  

and such that limp,=p,. In other words, in a continuous 

parametrization convergence of the 'abstract' objects in U4 can 
be put into evidence by convergence of the parameters 
representing these objects, that is by the 'concrete' objects 
in P wit,h the corresponding specific convergence with which 
typical parameter spaces are endowed. Actually, for the problem. 
which we will study, all the results remain valid when E is a 

vcctor in some RN. However, for the sake of concreteness, we 
will look at. the case o f  a real parameter € 2 0  with E+O. 

.\'ow coiisitler the family of discrete-time linear 

tirile-iiivariarit complete dynamical systems (Z,Rq,B) denoted, as 

nient.ioned earlier, by Cq. Each element R(s,s-') ~ R * ~ ' [ s , s - ~ ]  

induces the dynamical system (Z,Rq,ker R(o,o-')). Let K denote 
the map which associates this dynamical system with the 
polynomial matrix R. A basic result from [3] reads: 

THEOREM: (R*~~[S,S-'I,A) defines a parametrization of 2". 
The question whether this is a continuous parametrization 

is a more delica.te one. For one thing, it requires specifying a 

topology on Cq and on IRoXq[s,s-']. For Cq we will use the 

following topology. In [2] it has been shown that (Z,Rq,93) 

h~loi igs t.o Zq i t '  and only if 8 is a linear shift-invariant 

closed subspace of (R')', equipped with the topology of 

pointwise convergence. This leads to  a topology on Qq with the 

following notion of convergence. A family C, = (Z ,Rq ,B , )eCq  with 

E > 0 a rea.1 number is defined to converge to E, = (Z,Rq,8,) €13' 
if ( i )  whenever w E k e B  k e N ,  ldmEk=0, and l imw,  = w o  

El 0 

E+ U 

€* 0 

€l 0 

k+m k+m le 

(pointwise convergence), then w O ~ B 0  
whenever w p ~ B o  then 3 w E ~ B J ,  such that l im w, =tuo. arid ( i i )  

On R'"'[s..F-'] we will use the following notion of convergence. 

I,cl l Z E ( ~ ~ , s - l ) ~ R Y e Y q [ ~ . s ~ ' ] ,  €20 .  Then limR,=R, 

if ( i )  gE=go for E sufficiently small 

E+ 0 

E- 0 

( i i )  R(s , s -" )  = R ~ , s ~ , + R ~ ~ _ , ~ ~ ~ - ' + . , .  +R;,sLE satisfy 
Ps&,<L,<I. for all € 2 0  

lint K ;  = Ri  for a.11 & < k g  L .  This last convergence is 
roinporientwise in the entries of the matrices. 

a i d  ( i i i )  
c+ U 

'Thus system convergence means that convergent time-series 
from the behavior of the convergent systems approach a limit in 
the behavior of the limit system and, conversely, that each 
time-series in the behavior of the limit can be approximated by 

elements in the behavior of the convergent systems. Polynomial 
matrix convergence simply means convergence of the matrix 
coefficients. 

It is not possible to prove in full generality that the 
parametrization of the previous theorem is a continuous one. 
I:or one thing, we need to  restrict our attention to full r m  
rank polynomial nmtrices with q columns. We will denote these 

as RT[s,s-']. A refinement of the previous theorem allows us 
to conclude [4,5]: 

THEOFIEM: (~;"'[s,s-'],n) defines U parametrizatjon of cq. 
Actually, we call behavioral equation representation 

/<(o,o-')w = o  of E= (z,R',B)EE' a minimal m-representation if 

K(s,s-')~R~~[s,s-']. Equivalently, (and this is what we have 
taken as our definition [ 5 ] )  if the number of rows in R (that 
is the number of scalar AR-equations) is as small as possible 
subject,, of course, to  the constraint that it must represent E. 
It ra.n be shown that if R(o,o-')w=o is one minimal 
,4K-l'ci)reseritat.ioti of C. then the transformation group (the 

.unimod.ular group) R+UR, where U(s,s-') ranges over the 
unimodular polynomial matrices, generates precisely all minimal 
AR-representations of C. This tremendous non-uniqueness of 
behavioral equation representations is, among other things, the 
source of difficulty in continuity considerations. 

In order to state our result from 111 on continuous 
parametrization, we also need to introduce the notion of the 

ineniory span of an element (Z,Rq,93)~Cq.  It can be shown that p3 
has the property that it has finite memory spun, that is, that 
there exists a AeZ, such that wI,w2e93 and wl( t )  = w 2 ( t )  for 0 ~t I A 
implies that wl A w2 E 93, where w1 A w2 denotes the concatenation 
of wI and wz,  defined as (w,  A w 2 ) ( t )  := wl( t )  for t < O  and 

( w ,  A w z ) ( t )  := w 2 ( t )  for t Z 0 .  The smallest of such numbers AGZ 

will be called the memory spun of E. 
Let R(s,s") =RLsL+RL-,sL-'+... +RCsLER*Xq[s ,s- l ] ,  haveRL#O 

and Re # 0. Then we call L - 4 the degree of R. 

Let us deri0t.e by R;ri[s,s-'] the collection of elements of 

R?'[s,s-'] with degree S A .  Also, let us denote by Ci those 

elements of Py with memory span _<A. In [I] we have proven the 
following interesting continuity result: 

THEOREM: ( R ~ [ S ,  s - ' ] , ~ )  defines a continuous parametrization 
of Cq, in the following sense: 

I .  Assume that R , ( s , ~ - ~ ) e R ~ ~ [ s , s - ' ] ,  €20, satisfy R,T;;;R,,. 
Let 8, := ker R,(a,a-'). Then 8, + ,-DO 8,. 

2. Assume that 8,, belonging to  Cl, V E ~ O ,  satisfy 93,;r;;93,. 

Then there is a A E Z ,  and there exist 
RE(s , s - ' )~R;r~ .[s , . r - ' ] ,  VE>O, such that R,;;;;Ro and 

8, = keT R e ( U , a - ' ) .  

Thus with the restrictions imposed by the above theorem, 
linear time-invariant complete dynamical systems converge if 
and only if their AR-representations converge. 

In [2] we have obtained the continuous-time analog of this 
result. However, we need to  be a bit more restrictive about the 
behavior of (DE) than was advocated in Section 3. We will 
define the behavior of 

R - W = O  (DE)  Itt 1 
as % := ( w e ~ ( R ; R ' ) ( R  tu = o and V n e Z ,  there exists aeR such 

that r(/%(t)l leal '(dtcm).  In order we will be restricting 
-m d t  

attcntion lo Cm solutions of (DE) which together with its 
derivatives are of exponential growth. Let us denote the 
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collection of dynamical systems C = (R,Rq,%) thus obtained by E'. 
A family of dynamical systems C, = (R,Rq&) E Eq, E > 0 is said 

to converge to C o = ( R , R q , % o ) ~ ~ q  if w E e g E ,  E > O ,  and W , - - + W ~  

implies w0€ go and if wo E go implies the existence of w, E B,, E > 0, 
such that w,--+wo. The convergence w,--+wo is taken to  be 

pointwise convergence, uniform on compact subsets of R. 

Convergence of polynomial matrices RE( s) E R ~ ~ ~ ~ [ s ]  is defined 

completely analogously to the case over R[s,s-']. 
The notion of minimal DE-representation requires, as in the 

AR-case, that R ( s ) ~ R ? [ s l ,  Le,, that it is of full row rank. 
The memory span can now be defined as the smallest L for which 

there exists a representation DE of EEC' with 

R( s) = RtsL t RL-'sL-' t . . . t R,. 

E*O 

E.0 E - r O  

Denote by the elements of E' with memory span 2 A and by 

R;:b[sJ with degree SA. In [2] we have proven the following 

generalization of the previous theorem to the continuous-time 
case. 

THEOEM: (R;"'[s].a) defines a continuuus parametrization of 
29. 

'Thus with the restrictions imposed by the above theorem, 
linear time-invariant differential dynamical systems converge 
if and only if their DE-representations converge. 

5. CONTINUITY OF ARMA-MODELS. Let (T,W,L,Bf) be a latent 

variable dynamical system. We will say that it is observable if 
{ ( w ' , ~ ' ) ,  ( w " , a " ) ~ B ~ ,  and w ' = w " }  imply {a'"''}. Observability 
in other words implies that the latent variable trajectory a 
can be deduced from the manifest variable trajectory w. 
Equivalently, if the full behavior is the graph of a mapping 

from the manifest behavior into L'. 
Now consider the ARMA-model 

R(a,o-')w =M(o,o")a 1 (ARMA) 

with R( 5,s-I) E Rgx4[s,s-'] and M (  S,S-'E IRgxd[s,s-']. In this 
situation it is possible to  derive a concrete test for 
observability in terms of R and M .  Indeed, the following result 
is proven in [4]: 

THEOREM: The following conditions are equivalent: 

1. 

2. 

3. 

The above ARMA-model is observable; 
The complex matrix M( A,,+-') is off ull column rank for all 
0 # XEC; 
Thwe exist polynomial matrices R'(s,s-') ~R*~~[s , s - ' ]  and 

K " ( s , s - ' ) ~ R ~ ~ ~ [ s ~ s - ' ]  such that the full behavior of 

R ' ( o , o - ' ) ~ = o  
a = R"( 0 , o - l ) ~  

is equcrl to  that of (ARMA). 

For a full discussion of the notion of observability and the 
companion notion of controllability in our behavioral context, 
and their relation to  the classical versions of these notions, 
we refer the reader to  (3,4,5]. 

Now consider a family of ARMA-models 

R J ( 5 , o - l ) ~  =Me(~ ,b - l )a  
depending on a real parameter ~ 2 0 .  Let 8; denote its full 

behavior and 8' its manifest behavior. From the results from 
[I] mentioned in Section 4 we know that if 

[R,(s,s-')i -Mo(s ,s - l ) ]  is of full row rank and if limR,=R, and 
E+ 0 

lam M,=M,, then l3;-+l3;. The question which we wish to 
address is if and urhen this (parameter or behavior) convergence 

of the fu l l  behavior implies the convergence 8E--80 of the 

,manifest behavior. The example in Section 2 shows that this 
implication wili not be automatic and it is refreshing to take 
note of the fact that observability provides the key to  a 
positive result in this direction! 

E' 0 E + O  

E-0 

THEOREM (MAIN RESULT): Assume that the ARMA-system 

is minimal (i.e., that [Ro(s,s-')i -Mo(s,s-')] is of 
full row rank) and observable (i.e., that M(X,X-') 

is of full column rank f o r  all OZXEC). Then if 
1 im RE(s ,C' )  = R,(s,s-') 
and lim M,(s,s-') =M,(s,s-'), the full behavior 
8; as well as the manifest behavior 8 'will converge: 

lim BF=B: and lim BE=BO 

R,(o,o-')w = Mo(o,a-')a 

5' 0 

E' 0 

E - r O  E - r O  

Proof: See [6]. 

Note that in the above theorem observability is a 
sufficient condition for a convergence. It is, however, 
certainly not a necessary condition. 

For further ramifications of our main result the reader is 
also referred to [6]. 
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