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ABSTRACT 

In this note conditions are derived under which 
the linearization of a system described by the set of 
behavioral equations f(w,w(l), . .. ,w(~)) = 0 around the 
equilibrium point w * = O  is indeed F(0)A + af (I) 

00 ,wl(O)A 
+ ... + aw,(O)A af (L) 0. 

1. INTRODUCTION 

Linearization, the raison d’@tre of linear systems, is 
firmly established for systems described by state 
equations 

ic = F(x,u) ; y = H(x,u) 

If 0 F(0,O) and 0 H ( O , O ) ,  then the linearized 
system becomes 

Under suitable smoothness conditions it is readily 
established that this linear system defines indeed the 
linear part of the map (x(O),u)+ y defined by the 
nonlinear differential equation. 

However, more often than not models derived 
from first principles will come to us in the form of 
high order differential equations, for example as 
behavioral equations of the type 

9(Y,Y(l), .. .,Y (L),u,u(’) ,..., $4 0 

The problem of writing state equations for such 
systems is usually studied using differential alge- 
braic techniques. In this paper we will study the 
problem of approximating this system. If g(O,O, ..., 0, 
O , O ,  ..., 0) = 0 it is natural to look for a linear ap- 
proximation. 

In order to linearize around this equilibrium, 
we can do one of two things. Either first find a state 
representation and linearize. However, this is much 
easier said than done, a smooth state representation 
may not even exist ; if it does, it may be impossible 
to find it [ 3 , 4 ] ,  worse yet, we may not need it. A 
second approach is to linearize with the audacity of 
the classical applied mathematician : simply expand 
the right hand side in a Taylor series and keep the 
linear term. This is, of course, much easier to do, 
but is it justified ? This is the problem addressed in 
this note. The results, by the way, are entirely as 
expected. 

2 .  TECHNIQUE 

We will study the linearization of a dynamical 
system described by a set of (high order) differential 
or difference equations. We will describe the setting 
in the case of differential equations. Let f : 
(Rq)L+l -+ R9, assume that it is P, and consider the 
dynamical system described by the behavioral differen- 
tial equations 
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Suppose that U* E Rq (we will take U* 0 )  is an equi- 
librium, that is f(0,O ,..., 0)  = 0.. Linearizing (NL) 
around this operating point yields the linearized dif- 
ferential equations 

fAA + fin‘’) + ... + f;A(L) = 0 (L) 
af af 

af aw 1 
where A :R+Rq , fA = aw,(O,O ,..., O ) ,  f; = - ( O , O  ,..., 
0)  ,..., f’ = - ( O , O  ,..., 0)  are the real (g x q) ma- L aw, 
trices obtain& by taking the first partials of the 
map (wo,wl ,..., w L )  + f(wo,wl ,..., w L ) .  

The question arises when and, if s o ,  in what 
sense (L) describes approximately (NL) in the neigh- 
borhood of U*. We will see that a sufficient condition 
for (L) to be a linearization of (NL) is the following. 
Let w = (wl,w2,. .. ,wg,ug+1,. .. ,wq), f = (fl,f2,. ..,fg) 
denote the components of w and f. Assume that there 
exist nonnegative integers L1,L2, ...,% such that 
locally around 0, the nonlinear equations (NL) may be 
solved as 

J 

with on the right hand side no derivative of wi of 
order larger than (Li-I), for i 1,2, ...,g. This con- 
dition, while representative, is only necessary, and 
our results are a bit stronger. Note that the order of 
the derivatives appearing in the variables &+I, ..., wq 
are arbitrary. In other words, the variables w1 ,w2,. . ., 
wg may or  may not play the r o l e  of outputs in the con- 
ventional meaning of the term. 
Examples : 
1. y(24u(’)y 

2. (y(2) )2+y 
AS’) 

3 .  It is not 
zation of 

l)+siny = U is linearized by A(2)+ Ay= A” 

l)+siny u ( 1 )  is linearized by AS1)+AY= 

clear from o u r  results what the lineari- 
(y(2))2 + u(’)y(l) + siny U is. 

3 .  FORMALISM 

Ca va sans dire that we will consider the fra- 
mework for discussing dynamical systems introduced in 
[I]. A dynamical system is a triple (T,W,B) with T c R 
the time-axis, W the signal space, and B Z  W T  the 
behavior. We will take T = R and W Rq. The dynamical 
system (R,Rq,B) is said to be time-invariant if utB= B 
for all t E R, where u t  denotes the t-shift. It is 
said to be linear if B is a linear subspace of (Rq)R. 

The equations (NL) provide an example of a dy- 
namical system described by behavioral differential 
equations. Define its behavior by 

= {w E C7R;Rq) 1 (NL) is satisfied) 
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Clearly C,, = (R,Rq,B,,) is time-invariant. Defining 
€3, analogously from the equations (L) yields the dyna- 
mical system C, = (R,Rq,B,), which is clearly linear 
and time-invariant. 

Our notion of linearization depends on the no- 
tion of tangency. Let Ci = (R,Rq,Bi), i = 1 ,2 ,  be two- 
time-invariant dynamical systems with Bi  c_ C"(R,Rq). 
We will say thatClandC2are tangent at 0 if (i) 
0 E B i ,  i = 1,2, if (ii) for all sequences Wk E El, 

such that Wk + 0 (in the C?'-topology), there k E N; 

exists 
and a1 

(where 

k+ 
a sequence wk E B2 such that for some N E Z, 

T > 0 there holds 

- -  
and finally if (iii) the analogue of (ii) holds with 
the r o l e s  of Bl and B2 reversed. 

If C l  and C, are tangent at 0 and if C p  is 
linear, then we will call C, the linearization of 1,. 
This makes precise what it means that (L) defines the 
linearization of (NL). It is easy to see that the 
linearization, if it exists, is unique. 

Note that the linearized equations (L) deduced 
from (NL) depend very much on the behavioral equation 
used to represent BNL. The representation (NL) is far 
from unique, however (in order to see this, replace 
f (f1,f2 ,..., f g )  by ((f1)2,(f2)2 ,..., ( f g ) 2 ) .  This 
does not change the behavior, but the linearized equa- 
tions will become trivial ! ) .  This lack of uniqueness 
can be alleviated to some extent by considering f as 
defining a variety in (Rq)L+l. 

4 .  RESULT 

Consider (L). Introduce the polynomial matrix 
R(s) = fA+fjs+ ...+ fLsL E RSxq[s 1. Let g '  be the rank of 
R(s). Then there will exist a unimodular polynomial 
matrix U(s) = U,+Uls+ ...+ UL,sL' such that UR is of the 

with E ( s )  E Rg'xq[s 1 row proper, that is 

1 7 0  

L,-1 

h L 1  1 
is such that Elead /r2:Lz 1 is of full row rank. 

I .  I 

Now assume that the distinct integers 1 < ql,q2,..., jg, 5 q are such that the corresponding columns of 

Now return to the differentia-l equation (NL) : 
f(w,w(l),...,~(~)) 0. For simp-licity assume that f 
is defined as a map of (Rq)'+ to Rg but that it depends 
odly on a finite number of arguments. We will now 
define for each po-lynomia-l matrix F ( s )  E RgXS[sl a new 
such map F 0 f as follows. For F ( s )  F,, define (Fof) 
(wo,wl ,... ) = Fof(wo,wl ,... ) ,  for F ( s )  s, define 

lead are independent. 

af 
aw0 awl 

(F.f)(w,,w 1, .. . )  = af(wo,wl, .. . ) w l  + -(w,,wl,. . .)w2 
+ ... + -(w,,wl ,... ) ~ k + ~  + ..., for F ( s )  sk,  define 
( s k O f )  = ~ O ( s ~ - ~ K r f ) ,  for F ( s )  = Fo+F1s+ ...+ F,s", define 

af 

(Fnf) = F,of + F1O(sOf) + ... + F,ds"@). 

Consider now the differential equation 

F(W,W(l), ..., W ( L 3  = 0 

with = Uof. (It is easy to see that the lineariza- 
tion of (N"L) around w* = 0 is - if it exists - descri- 
bed by 

- d  R ( ~ ) w  0 

with UR = L '  

need not be larger than L plus the degree of U(s). 
Now assume that the map T z (T1 ,T2,. . . ,791 sa- 

tisfies the following conditions involving the inte- 
gers g',L1 ,Lp ,..., Lg, , and ql ,q, ,..., q g t  defined 
earlier on : 

(i) = ... T g  = 0 ; 

(ii) the (g'xg') matrix with (i,j)-th element 

!. ) .  Note that 7 : (Rq)L' + RS and that col 

either g' g or  6 ' + 1  

aTi 
a$ J 
---(O,o,...,O) is nonsingular ; 

(iii) ?i(woiwl, ... ) does not depend on wzj for i,j=l,Z, 
Equivalently for (ii) and (iii), assume that the equa- 
tion (N"L) can, locally around 0, be solved as 

...,g and k > Lj. 

L J 

with on the right hand side only derivatives in wqj up 
to order Lj-I for 1 5 j 5 9'. 
Theorem. Let R(s) f;+fis+ ...+ f;&, and U(s) be uni- 

modular and such that U(s)R(s) = [':'I with row 
proper. Assume that there exist distinct integers 
1 < q1,q2, ...,qgt < q satisfying the relevant condi- 
tions for a and th%t f" = Uof satisfies condition (i), 
(ii), and (iii) above. Then the system with behavioral 
equations (L) defines a linearization of the system 
with behavioral equations (NL). 

5. PROOF 

We will only give a global outline. The proof 
starts from the following observation : w E C" satis- 
fies f(w,w(l), ..., w(L)) = 0 if and only if it satisfies 
U(&)f(w,w(l), ... ) = 0. This latter equation is preci- 
sely T(w,w(') ,... ) = 0 with 7 5 U.f. Similarly R(-h=O 
if and only if E(d)w = 0. This shows that it suffices 
to prove the claim made in the theorem for the system 
discussed in Section 2. The linearization in this case 
can be proven by associating with each w E B, a w €-& 
and vice versa. Let w E PL.  Take i S + 1  la+l ,.. . ,wq; 
wq. Consider then the nonlinear differential equation 
(NL) with initial conditions wi(j)(O) = wi(j)(O) for 
for 0 < j < Li-I and 1 <i 5 9. In order to associate a 

d 
dt 

dt 

- -  



w E E, with a w E E,,, interchange the ro les  of 8, 
and B,, in this construction. Now prove, using stan- 
dard facts from the theory of differential equations, 
that this association satisfies the required lineari- 
zation condition. Consider f o r  instance Example 1 ,  

with w I (u,y) , g=1, q=2 and -(O,O) 1. Therefore 

L1=2 and the linearization is then 

af 

a 4  

A$2) + A y  = A u .  
af 
aw: 

Now consider Example 2, with w = (u,y), - ( O , O )  = 1 

so that L1=l. The linearization is then A i l )  + A y  = A i l )  

Note than here a f ( 0 , O )  = -1 .  
aw 1 

6 .  LATENT VARIABLES 

Often mathematical models obtained from first 
principles will rontain other variables than those 
which we are interested in modelling. In the case of 
systems described by behavioral equations which are 
differential equations this will lead to a model of 
the type 

f(w,w (I) ,..., w(L),a,a(l) ,..., a(L)) o (NL') 

Formalizing this yields a dynamical system with latent 
variables Cc = (R,Rq,RR,Bf) relating the signal tra- 
jectory w : R -t Rq to the latent variable trajectory 
a : R + R L  via the f u l l  behavior B f  c (RsxRQ)R. I f  B f '  
is described by a behavioral differential equation as 
above then B f  consists o f  all solutions of this diffe- 
rential equation. Let us again consider the Cm case. 
The latent variable system CR induces the system 
C (R,Rq,B) with intrinsic behavior B = {w : R + Rq( 3 
a : R+ RI1 such that (w,a) E B f } .  If in the above dif- 
ferential equation f is linear then it can be shown 
that B will also he  described by a linear differential 
equation. However, for nonlinear systems this need not 
be the case. 

The question arises if we can obtain the linea- 
rization of B from the linearization o f  5,. I n  parti- 
cular, assume that (w*,a*) E Rq xRkdefines an equili- 
brium o f  (NL') (assume U* 0 and a* = 0 ) .  Linearizing 
(NL') around this equilibrium yields the linear diffe- 
rential equation 

f '  A +f' A (  I ) + .  . .+f& A(L)+fAoAa+fA,AA' )+. . .+ 
WO W N 1  W L W  

+f' A ( , )  = 0 (L') a~ a 

(the notation is-hopefullyself-explaining). By intro- 
ducing the polynomial matrices R(s) fC; +f&s+...+ 
f '  WL sL and M(s) = fAo+fAls+ ...+ fALsL, we canowrite this 
as 

d 
dt dt R(d)w + M(-)a = 0 

This equation describes, under conditions o f  the type 
spelled out in Section 4 ,  the full behavior of the 
linearization o f  the latent variable system (NL'). It 
is well-known [2] that the intrinsic behavior o f  (L') 
can be expressed by a differential equation o f  the 
type 

R'(d)w dt = 0 (1") 

f o r  some suitably chosen polynomial matrix R ' ( s ) .  The 
question arises i f  this differential equation descri- 
bes the linearization of the intrinsic behavior B 
associated with the nonlinear system (NL'). 

T 

It turns out hat this is the case if the 
system ( L ' )  is observable. Observability is defined 
abstractly in [2]. For  the system ( L ' )  it means that 
there must exist a polynomial matrix N(s) such that if 
(w,a) satisfies (L') there will hold a N(-)w. 
Actually, as proven in [ Z ] ,  (L') will be observable 
if and only if rand M ( X )  R f o r  a l l  h E C. 

There holds that if (i) ( L ' )  is a lineariza- 
tion of (NL')  (cfr. Section 4) and if (ii) ( L ' )  is 
observable, then (L") will define a linearization of 
the intrinsic behavior induced by (NL') .  

Example : The linear state space system of the intro- 
duction is a linearization o f  the nonlinear one, if we 
consider in both cases the full behavior (with x as 
latent variable). The intrinsic behavior o f  the linear 
one will be a linearization o f  the intrinsic behavior 
of the nonlinear one if in addition the pair of matri- 
ces (E(,,,), E ( 0 , O ) )  is observable. That observabi- 
lity is not superfluous in this may be seen-from the 
example ic = U ; y = x3. The linearization, A x  = A" ; 
A = 0 is not observable and the sequence of constant 
tFajectories U = 0, y = Ek in the intrinsic behavior 
o f  the nonlinear system can be made to converge to 
zero, but has no approximant in the linearized version! 

d 
dt 

ax 

7 .  DISCRETE TIME 

Fur discrete-time systems, identical results 
are obtained in case the time axis in 2 ,  and the 
linearization condition is changed to 

- _  

F o r  discrete-time systems with time axis Z, the poly- 
nomial matrix U(s )  should be chosen such that R(s) is 
a bilaterally row proper. 
Examples : 
4 .  yt+* = yt+,ut, is linearized by Ayt+2 = 0 
5. yt+l = yt+2ut, is linearized by d y t + l  = 0 
6. What, the linearization of y:+2 = yt+lut is not 

clear from our results. 
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