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Abstract

A ''Universal adaptive stabilization algorithm is
presented which, for any m, stabilizes all minimum
phase mxm multivariable systems having an invertible
high frequency gain.

Introduction

Recently, much progress has been made in the
design of universal adaptive controllers for
stabilizing minimum phase plants in the presence of a
more limited knowledge of certain discrete invariants
than had previously been thought necessary (see e.g.
[11-141). Specifically, in [4] & parameter adjustment
scheme for the gain parameter in a comnstant
proportional output-feedback law was shown to be
globally stabilizing for minimum phase systems of
relative degree one. This scheme is based on
classical, frequency domain design using constant gain
feedback, where the sign of the gain is dictated by a
generalization of a switching-law strategy recently
used by Nussbaum [3] in the case of first-order
systems. Perhaps most significant, however, is the
fact that, because the underlying feedback law is an
ocutput-feedback law, no a priori knowledge or estimate
of the McMillan degree of the system is required.
This same approach has been extended to scalar systems
of relative degree not exceeding two by Morse [2] and
thus several of the standard assumptions (see [1])
required for the more traditional adaptive
stabilization schemes now appear superfluous.

The purpose of this note is to extend these
techniques to the multivariable setting. Explicitly,
we show the existence — for mxm strictly proper linear
systems — of a universal edaptive controller, which
globally stabilizes any minimum phase plant having an
invertible high frequency gain. This specializes,
when m=1, to the main result in [4] and indicates that
the recent output feedback based, adaptive
stabilization techniques for scalar systems ought to
extend, mutatis mutandis, to the multivariable
setting, We emphasize that the controller proposed
here is of a more existential contribution and expect
to have more to say on, e.g. the high—gain features of
universal controllers, in a future paper. It is a
pleasure to thank our promovendi Bengt Martenson and
Harry Trentleman for useful discussions, particularly
on the material in sections 1 and 2.
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1. Adaptive Stabilization of Multivariable Systems
with Stable Instantaneous Gain.

In this section we consider the mxm multivariable
linear system, described by strictly proper transfer
functions

7(s) = 6(s)u(s) = N(s)D(s) Tuls) (1.1)
where G(s) is assumed to satisfy the conditions

(H1) det N(s) = 0 => Re(s) < 0;
(H2) spec (G,) C , where

G(s) = } Gis-i
i=1

(H1) and (H2) are, of course, the multivariable
analogues of the minimum phase condition and of the
condition, ¢b < 0, for scalar systems. Indeed, any
square system satisfying (H1)-(H2) possifgfi & minimum
1
y

realization of the form, with state x =

£, 0= Ajaxg + ALY (1.2)
¥y = A, ,x

21%; t A7 + Gyu

1

where spec (A,,) coincides with the locus of det N(s).

In particular A;, end G, are stable systems. We claim
that for any such system the control law
2
x = llyll , u=ky (1.3)

stabilizes (1.2). More precisely,

Theorem 1.1. Suppose the multivariable linear
system (1.,1) satisfies (H1), (H2). Then, the closed
loop system corresponding to the feedback strategy
(1.3) satisfies, for 211 initial data (x,, k,)

(i) kt converges as t —> ®;
(ii) 1lim x, = 0
t->w
Proof. Since kX, is monotone nondecreasing, k

will converge to a limit, k_, provided k, remains
bounded. We note that, from the form of Ehe closed
loop equations:

2, = A,x, ALy

[

A, ,x, + A,y + kGy (1.4)

Hyll?

¥

|3

assertion (ii) also follows from tgg b%undedness of
k. . For if k_ is bounded, y e L2(R', R). Since A ,
i§ stable, it then follows that x,, X, are square
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Since k is bounded, kGy and therefore y
Thus,

integrable.

is square integrable.
+

x, £ ¢ L2(R", RD)

1im x(t) = 0.
t- =

and we have

To see that kt is bounded, choose Q = QT such
that

6¢la + a6 = -I
and note
d T T T
g Yoy =2« Ayyxy v > 4y (Q4,, + A0y,

2
-x llyll (1.5)

Viewing A,,x, as the output of the stable system

i, = A,x, + A,,Q (ay)
driven by the input Qy we have
T

Lemma 1.1. ([4]) I < Ap,x,,Qy > dt
°

T

3
c°+cif Tiyll at
0

<

where ¢, depends only on x,(0).

Integrating both sides of (1.5) we have
T T T

2 2 2
corey | Nylllaere, [ 1lyt1%ae - [xllyii®ar
0 0

<

T T
y QY‘o
0

and recalling (1.3), we have
Y, £ 7,K(T - k3(T)

for y,, v, constant. In particular, k(T) is bounded

from above.

2. Stabilization by Static Precompensation.

In this section, we consider the following
matrix~theoretic problem: Is there a finite
collection ﬁvof mxm matrices such that for any
B ¢ GL(m,R) at least one of the matrices

K siﬁy

BK ,
is stable?

For example, if m=1 then we can take K = {+ 1},
If w=2, then a more elaborate argument (which we owe
to H. Trentleman) shows that one can take

K = {diag (e, ):e, +1}.
i i

Unfortunately, for m > 3 the class of signature
matrices no longer suffices and, as far as we are
aware, even for m=3 the question we pose is open,

Conjecture: There exists a finite subset,
Y= Mm(R), such that for all B ¢ GL(M,R), at least omne
of

BK ,

K e X
is (asymptotically) stable.

If our conjecture were true, the universal
stabilizer we construct in section 3 would of course
have a simpler form. For our purposes, however, it is
sufficient to prove the following result.
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Propogition 2.1. For any m, there is a countable
collection X of real mxm matrices, such that for any
B ¢ GL(m,R) at least one of

K ¢ )(

is asymptotically stable.

Gk ,

Proof. Taking q ¢ Q, it suffices to prove:
Lemma 2.2. For any q > 0 there is a finite seta(

of stabilizing matrices for the subset
B, = (B e 6L(m R : 1B I ¢ q1.

Proof of Lemma 2.2. Denoting by S the unit
sphere in the space of mzxm matrices, the subset S_NB
is closed in S and hence compact. For an
K ¢ GL(m,R) the subset

Ué = {B ¢ GL{m,R): BK is asymptotically stable}

is open and therefore

Ug

UK a) Sm gl Bq

is open in S M B ., Noting that B is stable if, and

only if, AB is stable for positive scalars XA, there

exists a finite set’)Lof stabilizing matrices by the

Heine—Borel Theorem.

3., Global Stabilijzation by Means of & Switchipg Law.
In the section we will construct a feedback

control law which stabilizes the linear system

y = Ay + Bu (3.1}
u e RT, y & R®, A e R™*®, B ¢ Rmxm’ with A and B
unkngwn, under the a prior: knowledge that
B ¢ e We will assume tnatﬁ% bas the property
that there exjsts a finite or countably infinite set
of matricesA< R such that for each B ¢ at least
one matrix of the set (BEKIK ¢X ] has its eigenvalues
in the open left half plane. As we have seen in the
previous section, this will be the case with X, finite
if for example

63 = Gl{m) with m=1 or 2
or 8= B e cimIim 1B ¢m
and, with :Kcountably infinite, if

e 61(m

We will treat the case that){ is finite
explicitely and atterwards indicate the extemsion of
this result to the countably infinite cese.

Our control law consists of a high gain feedback
law, modulated Ky 2 switching gain policy. More
precisely, with X= {K;, K N KN} a finite set, we
use the control law

2

2
E = yll (3.2a)
y = kKs(k) (3.2b)
with s: R -> {1, 2, ..., N} a suitable switching law.

In particular, we will take for s(k) a switching
policy which rotates the gain among the different

Ki's. Specifically, take
(k) = i
for TINe§ <k ( TINGi+1 2: ;: 2',”.&



with the thresholds 0 < t,, ¢ v, < chosen such
that for every i e {1, 2 .., N} the Cesaro mean

k

1

X j fi(y)d
[
+1

»

An example of such a switching policy is

’

(3.3)

lim inf ®

k-)e

- whenever s(o) = i

where f,(0)
! whenever s(o) # i

n?
]

n=20,1, 2,
We will prove:

Proposjtion 3.1: For any k, ¢ R, y, ¢ Rm,

AeR , and B ¢ B « R™™, the system (3.1) - (3.2),
with (3.3) holding, satisfies:
(1) lim k, =k, <=
t->w
(ii) 1lim v, = 0
t->=
Proof: Since one of the matrices {BK,, BK,, ...,
BKN} is asymptotically stahle, there exists an
iegf{1,2, ..., K} and a8 Q@ =Q > 0 such that

K'BTa + QBK, = -I
i i
Let a > 0 be such that
K?h?b + QBK, ( al for j # i
J ] J
and B be such that
ATa + QA ¢ BT

Clearly k
of (3.2)., We will prove that lim k

contrary and consider the é:h:vior of yTQy along
solutions of (3.2). Then for t sufficiently large

is monotone increasing along solutions
{ ®», Assume the

Ny, I1°
(p - kt) Y, when s(kt)

=i
4 yTQy <
dt "t 7t 3 .
(B + ak )y, |1 when s(k,)) # i
t t t
Equivalently,
4 T (g - kt)it when s(kt) =i
at Tt £
(B + ak )E when s(k,) # i
tt t
Integrating this equation yields
k
T T, t
Ytot { 7,0y, + I (B - min(1,a) fi(c))du (3.4)
]
Now (3.3) implies that for any @', B’ ¢ R with a’ > O
k
lin inf (8" ~ o’ £,(0))do = = (3.5)
ke ) *
This implies that, as kt - =,
T T
ve@y, + [ (B -~ min(1,0) £,(o))do
-]
will become negative. Since however it equals yTQy
this is impossible and consequently kt —> k< DE t

t—o®
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Now, by (3.2a) this implies that the solution y
of (3.1) - (3.2) satisfies y & L,([0,®); R), while
(3.2b) yields uw e L, ([0,2); R™), and (3.1) yields
v e L,([0,); R"). Now {y, y ¢ L,([0,=); RD} >
{lim v, = 0}, and the proposition is proven.

t=Do
In order to extend Proposition 3.1 to the
countable case K = {K,, K,, o ...}, we can set
up, instead of the periodic switching pattern of the
finite case, a switching pattern as shown below

’

w o

- R KWK
w8 oK
laRaNalal

w

-~

Now by using switching thresholds <, , <, . which
are progressively sufficiently high we can obtain the
extension of the result of the countable case. The
details are omitted.

Finally, we would like to emphasize strongly that
Proposition 3.1 should only be considered as an
existence result for a globally stabilizing control
law. We make no claim whatsoever that (3.2) gives a
reasonable adaptive control law.

A Universal Stabilization Algorithm for Minimum
Phase Systems with Invertible High Frequency Gain.

4.

Combining the algorithms developed in the
previous sections, we obtain & universal controller
which is globally stabilizing for minimum phase
systems with invertible high frequency gain.
Explicitly, consider an mxm system (1.1) satisfying
the minimum phage condition (H1) and (H2)' det G, # O,

2 G.s-l.
i
. i=1 sy s s :
a collection ,pr stabilizing matrices for
G, ¢ GL(m,R) and form the strategy (3.2)

where G(s) As in sections 2, 3 we choose

1

2
k= ||y|| , u = kxs(k)
with s(k) an appropriate switching law; for example,
having the form described in (3.3).

Theorem 4.1. Suppose the multivariable linear
system (1.1) satisfies (H1) and (H2)'. Then, the
closed loop system corresponding to the feedback

strategy (1.3) satisfies, for all initial dats
(x4,k4):
(i) lim k, exists;
t-de
(ii) lim x, = 0.
t=>
Proof. As before, it suffices to verify (i).

Choose i such that G,K, is stable and solve
Lyapunov's equation

Q6,K, + KGoQ = -1
1 1

Modifying the arguments in sections 1 and 3, from the
closed-loop equations (1.2)

0= Az, + ALY

Vo= Agxy ALY ¢ kG;Ks(k)y
2

E = lyll



we deduce

T k

T

. £2 J. < A,,x,, Q7 > 4t + _[ (B - atf (t))dt
o [

T
vy,

for a, B ¢ R with a > 0.

From Lemma 1.1 we conclude the existence of constants
such that

kt
v ¢ 8K(T) + j (8 - atf (1))at

L]

or, equivalently,
kt
y < [ (" - ate (e)at (4.1)
(]

Since the left-hand side of (4.1) has, by choice of
the switching law s(k), limit infinum -= as k -> =, k

is bonded. t
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