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Abstract  

The second law of  thermodynamics is s tudied  from 
the  point   of   view  of   s tochast ic   control   theory.  
We f ind  that the  feedback  control laws which a r e  
of i n t e r e s t   a r e   t h o s e  which  depend only  on  average 
va lues ,  and not  on  sample  path  behavior. We are 
l e a d   t o  a c r i t e r i o n  which, when sa t i s f i ed ,   pe rmi t s  
one  to   ass ign a temperature  to a s tochast ic   system 
i n  such a way as  to  have  Carnot  cycles  be  the 
optimal  trajectories  of  optimal  control  problems. 
Entropy i s  also  def ined and we  a re   ab le   to   p rove  
an  equipar t i t ion  of   energy  theorem  using  this  
d e f i n i t i o n  of temperature. Our formulation  allows 
one  to treat i r r e v e r s i b i l i t y   i n  a qu i t e   na tu ra l  
and completely  precise way. 

1. In t roduct ion  

Stochast ic   control   has   been  ra ther   successful  
in   p rovid ing   prec ise   formula t ions   for   in te res t ing  
problems  but i t  has   been   fa r  less s u c c e s s f u l   i n  
actual ly   solving  these  problems.  Thermodynamics, 
on  the  other   hand,   has   been  very  successful   in  
solving  problems  but i t  has a rather  shakey  founda- 
t i o n  -- espec ia l ly   i n so fa r  as t h e   s t a t i s t i c a l   t h e o r y  
i s  concerned. The purpose  of  this  paper is t o  
cons t ruc t  a mathematical ly   consis tent   theory whose 
assumptions and conclusions  can  be  put  in  corres- 
pondence  with thermodynamic ideas .  Our goal,  which 
is  p a r t i a l l y   r e a l i z e d   h e r e ,  is  to  simultaneously 
remove the  aforementioned  shortcomings  of  each 
f ie ld ,   i . e .   to   sugges t   an   ax iomat ic   bas i s   for  a 
mathemat ica l   theory   o f   s ta t i s t ica l  thermodynamics 
and to   discover  a new c l a s s  of s tochas t i c   con t ro l  
problems  which  can be   in tu i t ive ly   unders tood  and 
solved. 

Because  of i t s  power and sub t l e ty  w e  a r e  mainly 
interested  in   the  second  law of  thermodynamics. Of 
the   c lass ica l   formula t ions ,   the   one  of Maxwell 
involving a demon con t ro l l i ng  a t r ap .door  between 
two gas chambers is  perhaps  the most sugges t ive  
of a s tochas t i c   con t ro l   t heo re t i c   i n t e rp re t a t ion .  
The Caratheodory  statement  in  the  macroscopic 
theory  involving  the  hypothesis  of inaccess ib le  
states  also  has  an  obvious  connection  with  control 
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theory. However, we  do not   f ind   e i ther   o f   these  
to  be a useful   point   of   departure;   for   our  
present  purpose i t  seems b e s t   t o   s t a r t   w i t h  a very 
concrete form  of t he   f l uc tua t ion  - d i s s ipa t ion  
equa l i ty ,  namely the  Nyquist-Johnson model f o r  
e lectr ical   conductors   in   thermal   equi l ibr ium. 
Using t h i s  model, together  with well es tab l i shed  
facts   about  lumped e l emen t   e l ec t r i ca l   c i r cu i t s  we 
a r e   a b l e   t o   a r r i v e   a t   a n   i n t u i t i v e  and reasonably 
g e n e r a l   s e t t i n g   i n  wh ich   t o   s tudy   s t a t i s t i ca l  
thermodynamics. 

The e s sen t i a l   po in t s  of this   theory may be 
summarized as  follows. 

1. The s tochast ic   control   formulat ion of a thermo- 
dynamic process  involves  manipulating a dynamical 
systems  using  open  loop  control laws. More speci-  
f i ca l ly ,   ca r ry ing   ou t  a  thermodynamic process 
involves   s teer ing  a variance  equation  along a 
cer ta in   pa th  and Carnot  cycles  turn  out  to  be  the 
solut ions  to   opt imal   control   problems.  

2. Equilibrium and nonequilibrium thermodynamics 
a re   cap tured   in   the  same framework. We can, i n  
pr inciple ,   determine  the  deviat ion from Carnot 
e f f i c i ency  which is d ic t a t ed  by the   necess i ty  of 
carrying  out a  thermodynamic p r o c e s s   i n   f i n i t e  
time. 

3 .  Within   the   l inear ,   quadra t ic ,   gauss ian   contex t  
we i so la te   those   condi t ions  which permit  one  to 
ass ign  a s ingle   temperature   to  a s tochast ic   system. 
We use   t h i s   i dea   t o   e s t ab l i sh   an   equ ipa r t i t i on  of 
energy  theorem. 

4 .  We give a d e f i n i t i o n  of entropy which is  
consistent  with  both  the  macroscopic  theory  and 
t h e   s t a t i s t i c a l   t h e o r y .  

The remainder  of  the  paper is  organized as 
follows.  Section 2 presents  a de ta i led   ana lys i s  
of the   s imples t  example. A l l  t h e   i n t u i t i v e   i d e a s  
a re   t o  be seen  here  with a minimum of complexity. 
I n   s e c t i o n  3 we s e t  up a much more general  model 
and  define what we mean  by a monotemperaturic 
system. I n   s e c t i o n  4 w e  define  entropy and use i t  
to   e s t ab l i sh  a Carnot   eff ic iency.   Final ly  we g ive  
an  equipar t i t ion  of   energy  theorem  in   sect ion 5. 
Because  of the   l imi ta t ions  on space  cer ta in   of   the  
arguments are   only  sketched  here .  We hope t o  
publish a f u l l  account  shortly.  

2. Example and  Motivation 

In 1929 H. Nyquist [ l ]  made a theo re t i ca l  
analysis  of some experimental work of  Johnson 
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thereby  arr iving at the so-called  Nyquist-Johnson 
model fo r   r e s i s to r   no i se .   Th i s  model r e l a t e s   t h e  
s t a t i s t i c a l   p r o p e r t i e s  of  the  current i and 
vol tage  v i n  a res i s tor   to   the   t empera ture   o f   the  
r e s i s to r   v i a   t he   equa t ion  

i = g v + n  

where g is the  conductance  and n is  white noise  
with a charac te r i s t ic   var iance  a. Here k is 
Boltzmann's  constant whose numerical  value 
depends  on the  uni ts   chosen  for   the  other  quan- 
t i t ies and T is temperature  measured on an 
absolute   scale .  The fac t   t ha t   t he   va r i ance  depends 
on 6 ra ther   than some o ther   func t ion  of  g is  
easily  argued  from  examining  the series connection 
of two r e s i s t o r s .  The f a c t   t h a t  i t  depends on fi 
ra ther   than some o the r  T dependence  cannot  be  inter- 
p re ted  more deeply  without  discussing  the  choice 
of   t empera ture   sca le   i t se l f .  Here a f t e r  we agree 
to  choose a temperature   scale  so t h a t  k = 1. 

I f  we combine the  equat ion of a Nyquist- 
Johnson r e s i s to r   w i th   t ha t   o f  a l i n e a r   c a p a c i t o r  
having  capaci tance  c ,   the   resul t  is an I to   equa t ion  

dcv = -gvdt + dw 

The s t e a d y   s t a t e   v a l u e   o f   e ( v  ) is eas i ly   seen  2 

to   be  
E v 2  = T/c 

and so the   expected  value  of   the  energy  s tored  in  

the   capac i tor   in   s teady  state, 3 Cv2, is just 7 T. 

The key poin t  is t h a t   t h i s  is independent  of  both 
g  and c.  This is ,  a very  special  form  of  an  equi- 
partition  of  energy  theorem we will prove   la te r .  

1 

We now consider a thermodynamic cyc le  con- 
s t ruc t ed  by us ing   r e s i s to r s  at two d i f f e r e n t  
temperatures and a var iab le   capac i tor .  

Figure 1: The bas i c  model f o r   t h i s   s e c t i o n  2. 

We e re   i n t e re s t ed   i n   ana lyz ing   t he   poss ib i l i t y  
of  extracting  energy  from  the  system  using  control 
laws which  depend  on  average  values  only and not 
any properties  of  sample  paths.  Now of  course one 
way to  get   mechanical  energy  ( i .e.  work) out of 
such a system is by changing  the  capacitance when 
a charge is present .   S ince   the   energy   s tored   in  a 

capac i tor  is $ cv  where v i s  the   vo l tage  w e  see  

t h a t  when we change the  capaci tance we e x t r a c t  work 
e according  to 

2 

& = - &  1 2  
2 

phenomenalogically  speaking,this  might show up, 
f o r  example, as t he  work done i n  moving t h e   p l a t e s  
of a charged p a r a l l e l   p l a t e   c a p a c i t o r .  The 

equation  of  motion  for  the  system  in  f igure 1 is 

dv - ( ~ / c ) v d t - ( g i / c ) v d t + ( ~ / c ) d w ;  

i = l , 2 o r g  = O  i 

The expected  value of the  energy which comes 
out  of  the  conductance gi is j u s t  

qi = I i ( t )g iv  2 d t ;  

1 i f  g. i s  connected 

0 otherwise 
I i ( t )  = 

This   quant i ty  is in t e rp re t ed  as a heat  flow  because 
i t  is  energy  supplied by the  random f luc tua t ions .  

From the   s tochas t i c   equa t ion   fo r   t he  network 
we ge t  a variance  equation 

0 = -2(f/c)u - 2ki/C)U + 2giTi/c 2 

which  implies two important   re la t ions 
m 

and 

The f i r s t   o f   these   expresses   conserva t ion   of   energy  
and the  second is t o  b e  i n t e rp re t ed  as def in ing   the  
flow of: entropy. To ju s t i fy   t h i s   l anguage  i t  i s  
enough t o   o b s e r v e   t h a t   t h e   r i g h t   h a d s i d e  of 
equation (B) can  be though  of as dq/T  along 
revers ib le   pa ths .  This w i l l  become c l e a r e r  as we. 
go on. 

We now s t a , t e  a control  problem which w i l l  l ead  
to  Carnot  .cycles. To do so we introduce  the 
spec ia l   no ta t ion  

Problem 1: Given  the  different ia l   equat ion 

and given  the  constraints!  

( i )  ~(0) = a ( a ) ,  (ii) c(0) = c(a) , 
( i i i )   c ( t )  > 0 ( i v )   g ( t )  2 0 

(v) T 2  6 T(t) 6 T 1 

find  c ( - ) ,  g( . ) ,  T(-) on the   interval   [O,a]   such as 
t o  maximize 

e = L ( t ) o ( t ) d t  
0 

The i n t e r p r e t a t i o n  of t h i s  problem is ,  of 
course,  that  of  maximizing  the work f o r  a given 
quantity  of  heat  inflow. 
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This  problem w i l l  have   so lu t ions   for  a < - 
but   such  solut ions correspond t o   i r r e v e r s i b l e   t h e m -  
dynamic processes.  There is. however an i dea l i zed  
solut ion  corresponding  to  a p a r t i c u l a r  limit as a 
goes t o   i n f i n i t y  which is qu i t e   ea sy   t o  compute 
and  which  corresponds  to  the  idea of a quasi- 
s ta t ic  process   in   c lass ical   thenmdynamics.  We 
now develop some i deas  which we  need to   exp la in  
t h i s  limit. The following lemma i s  fundamental. 

Lemma 1: Consider  Problem 1. Along  any pa th   for  
which T is  constant we have 

CUI: + ib i d t  + T!h(c U) a s O  

Proof: From equations (A) and (B) we have 

C U / ~  + lo &dt  = (T-cU)Z d t  

10 

a a  

0 

Iln(c2u) lo  = 1 (T-cU) 2 d t  
a a  

0 cu  c 

Multiplying  the  second  equation by T and subt rac t -  
ing  i t  from t h e   f i r s t  we s e e   t h a t ,   i n  an  obvious 
no ta t ion ,  

‘0 ’0 ‘0 ’0 C 

But s i n c e  p > 0, (2-p-p-l) < 0 we see   t ha t   t he  
inequal i ty   ho lds .  

I f  we look   a t   t he   spec ia l   ca se  where  the 
i n i t i a l   c o n d i t i o n s  and the   f i na l   cond i t ions   a r e   t he  
same th i s   s t a t emen t   ca r r i e s   t he   fo rce  of the  Kelvin- 
Planck  statement  of  the  second  law.  That is, i t  
shows t h a t  i t  is  impossible  to remove  work  from  a 
s ingle   heat   bath  using a cycle  which  begins and 
ends a t   t h e  same s t a t e .  The usual thermodynamic 
reasoning  from  this  point  on i s  to   cons t ruc t  a 
reversable   cycle  which uses two heat   sources ,  one 
a t  T1 and  one a t  T2 and  which produces work 
according  to  the  Carnot  efficiency.  This is  easy 
to  do here .  However one  then shows t h a t   i f   t h e r e  
e x i s t s  any heat   engine  with  eff ic iency  greater   than 
the  Carnot   eff ic iency i t  could  be.used,  together 
with  the  or iginal   one,   to   violate   the  Kelvin-Planck 
statement.  We f ind  i t  more convenient  to  proceed 
d i f fe ren t ia l ly   s ince   to   def ine   mathemat ica l ly  some 
of  these  terms would be cumbersome. 

Theorem 1: Consider  Problem 1. For  any closed 
path  in   (c ,u)-space  a long which T takes on only 
the  values  T1 and T2 with T > T we have 1 2  

Proof:  Suppose we break  the  path up i n t o  segments 
along which the  temperature is  T and segments 
along which i t  is T2. We can  put  the g = 0 segments 
i n   e i t h e r   p a r t .  Then by the  lemma 

C(co) + ei--Tiin c2 < 0;  i = 1 , 2  

i i 

us ing   t he   f ac t   t ha t  b. = a, etc. we ge t  

Thus T -T 
e 6 (-)q+ 

1 2  

T1 

This r e s u l t   g i v e s   a n  answer t o  problem 1 i n   t h e  
following  sense.   If  E > 0 is given  then we  can 
f ind  a time a ( € )  and  a choice  of   control   pol icy on 
[O,a]  for  which  the  energy is wi th in  E of   the  
value (T -T )/Tl. To do t h i s  we cons t ruc t  a 

f i n i t e  time approximat ion   to   the   cyc le   sham  in  
f igu re  2 .  The l i n e  AB corresponds  to  the  system 
being  connected  to   the  hot   res is tor  and c varying 
i n  such a way as t o  keep cu = T. This  takes 

1 2  

Figure 2 :  A Carnot  Cycle 

i n f i n i t e  ti=. The l i n e  from B t o  C corresponds 
to  setting  the  conductance  to  zero  and  changing 
c to  reduce cu t o  T 2 .  This  can  be done  any pos i t i ve  
time i n t e r v a l .  The l i n e  C t o  D corresponds  to  the 
system  being  connected  to  the  cold  resistor and  c 
being changed t o  keep cU= T2. This   a lso  takes  
i n f i n i t e  time. And f ina l ly   a long  DA we reverse  
the  BC process.  A glance a t   t h e  proof  of Theorem 1 
shows t h a t   f o r   t h i s   p r o c e s s  we have   equa l i ty   fo r   a l l  
i n e q u a l i t i e s  which  appear  there and so t h i s  is  a 
Carno t cycle.  

F i n i t e  time ver s ions   i nvo lve   l e t t i ng  CCr be 
s l i g h t l y   l e s s   t h a n  T (greater   than  T2) .   This  

w i l l  enable  the  variance  equations  to  reach  near 
the  end p o i n t   i n   f i n i t e   t i m e   b u t   a t  some small 
loss of   e f f ic iency .  It would be i n t e r e s t i n g   t o  
make a detai led  comparison  with  the  recent   resul ts  
i n   t h e   l i t e r a t u r e  on f i n i t e  time Carnot  cycles  [2]. 

1 

3 .  Linear  Stochastic  Systems 

We now tu rn   t o  a  more gene ra l   s i t ua t ion  which 
i l l u s t r a t e s   t h e  much broader  scope of the  previous 
somewhat special   reasoning.  For a  more de t a i l ed  
account  of  the  background  ideas  involved  here  see [3]  
and [ 4 ] ,  on the   de t e rmin i s t i c   s ide ,  and [5] f o r  
the   s tochas t ic .  

By a l inear ,   f ini te   dimensional ,   gaussian  system 
(FDLGS) w e  understand a pa i r  

dx = Axdt+Budt+Gdw Adding t h i s   i n e q u a l i t y   f o r  T1 t o   t h a t   f o r  T2 and 
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dy = C%dt+Didt+Edf 

&ere dw and df are independent  vector  valued 
Wiener processes,  and  x,  u,  y are a l l  f i n i t e  dim- 
ensional.   This  system is s a i d   t o   b e  minimal i f  
(A,B) is a c o n t r o l l a b l e   p a i r  and (A,C) is  an 
observable   pair .  

We c a l l  

G ( S )  = c(I~-A)-'B+D 

the   t ransfer   func t im  assoc ia ted   wi th   the   sys tem 
and we c a l l  

= (E+c(-I~-A)-'G) 8 (wc(I~-A)-~G) 

the  power spectrwq  of  the  system. We say  that   the  
system is e x t e r n a l l y   r e c i p r o c a l   i f   G ( s )  = G'(s). 
The system is s a i d  t o  b e   d e t e d n a t e l y   p a s s i v e   i f  
G(s) is a matrix  valued  posit ive real function. 
A conservative  system is  one f o r  which G(s) is 
p o s i t i v e  real and  G(iw)+G'(-iw) = 0. 

We now in t roduce  a key  idea. A d e t e d n i s t i c -  
a l ly  passive PDLGS is said  to  be  monotemperaturic 
i f   t h e r e   e x i s t s  a propor t iona l i ty   fac tor  5 2 0 
such  that  

(c(-I~-A)-~c+R)  (c(I~-A)-~o+H) = 

B [C(-Is+A)-%) '+€I'+C(IS-A)-~B)+H] (*) 

In   the  language  of   themdynamics,   what   this  
equation  expresses is  a f luc tua t ion-d iss ipa t ion  
proportionali ty.   In  the  language  of  system  theory 
i t  expresses a p ropor t iona l i t y  between the power 
spectrum and the  parahermetian  par t   of   the   t ransfer  
func t ion .   I f   equa l i ty  (*) holds we c a l l p   t h e  
temperature of the  system. 

Seve ra l   j u s t i f i ca t ions   fo r   t h i s   de f in i t i on   can  
be  given. One is t h a t  (*) expresses a property  of 
e l e c t r i c a l  networks  constructed  from  linear  constant 
inductors ,capac i tors  and r e s i s t o r s   i n  Nyquist- 
Johnsom  form.  The  theorems  of the  next  two sec t ions  
provide  a more i n t r i n s i c   j u s t i f i c a t i o n .  

We conclude this sec t ion   wi th  a canonical  form 
for  monotemperaturic  systems.  This t h e o r e m  might be 
thought  of as a genera l iza t ion  of the  Darlington 
normal  form  of  [SI. 

Theorem 2: I f  S is  a minimal ,   external ly   reciprocal ,  
monotemperaturic  system  then we can make a l i n e a r  
change  of  coordinates on x such  that  i t  t akes   t he  
form (n = 4 '  ) 

dx = (a- - GG')xdt+Budt + Gdw 1 
28 

dy = Bkdt + D i d t  + df 

Conversely, any system  of  this  form is  monotempera- 
t u r i c .  

Proof: That  systems of t h i s  form are monotempera- 
t u r i c  is just a ca l cu la t ion .  

Consider  the  deterministic  system 

k = (A-GG')xtBul+Gu2; y1 = Bu; y2 = G'x 

Adopt  th-e no ta t ion  

The characterization  of  monotemperaturic  implies 
t ha t   t h i s   sys t em is  convervative  and  hence by [SI 
i t  can  be  real ized  with A - 4 1 ~  skew symmetric. 

4 .  A More General  Kelvin  Planck  Statement 
28 

Corresponding  to  the  general   wnotemperaturic 
system we have a genera l iza t ion   of  lemma 1 enabling 
us to   conclude   in  a wider   set t ing  that   one  cannot  
ge t  work  from a s ing le   hea t   ba th .  

Theorem 3: Consider a minimal,  monotemperaturic 
(FDLGS) wi th   s ca l a r   i npu t  and sca la r   ou tput  

dx = Axdt+budt+Gdw 

dy = b'kdt+&it+m df 

I f  we adjoin  the  equat ion 

dcv = dy; u = -V 

t hen   fo r  any  choice of c ( * )  which is d i f f e ren t i ab le ,  
which starts and  ends  with the variance  of   these 
combined equa t ions   i n   t he  same, equilibrirrm, s ta te  
w e  have 

1; 6 ( €  v2) < 0 

Proof: The equations  of  motion  for  the combined 
s y s t e m  can be   wr i t ten   in '   t e rms   of   the   var iab les  
A v = z and  x. They are 

The resul t ing  var iance  equat ion is expressed   in  
terms of 

A -b 

b '  -d-C/c -b'c  -d-&/c b' 1 
GG' 0 7 

+ [ 0 2Bd/c 1 
Now conservation of energy is j u s t   ( n o t e  u does 

not  have  the same U n g  he re  as i n   s e c t i o n  2. 
Here work is the   in tegra l   o f  cb IC.)  

_ _  df ( t r  C+ ;)+ $ 0 = t r ( S ) + t r  GG'-2(d/c)(B-a) U 

(A') 
The flow  of  entropy i s  given by 

( t r  Ln  E+kn  cU) = 2[tr A+GG'E-1+(2d/cu)(f%U)] d 

(B') 

This las t  ca l cu la t ion  may c a l l   f o r  some coment .  
F i r s t  of a l l ,  because E i s  synrwtr ic   and  posi t ive 



d e f f n i t e  i t  has a logarithm and tr h is the  
natural vector   vers ion  of   entropy as def ined  &a 
s e c t i o n  2.  Now tr !2n E = En d e t  x. (Think about 
the  eigenvalues!) We can e a s i l y  see eat the  
de r iva t ive  of en d e t  is just tr F-' x s ince   t he  
de r iva t ive  of d e t  M is  tr((Adj M) an). 

We now use  theorem  2 t o  assume t h a t  

A = - a'; = -Q' 
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combining A' and B '  i n  some way as i n   t h e  proof 
of  theorem 1 we ge t  

d [ t r ( E ) +   d t   z T - 2 e t t r  gn(Z)+ltn u] + 5 u = 

- t r ( G ' G  *'EG) + t r [G'02BG'C-1Gl - ( l -p )+(1 -p-~  

Reasoning as before ,   the   t race  term is upper 
bounded by zero and the  remaining terms a r e  upper 
bounded by zero. 

5.   Equiparti t ion  of  Enefgy 

One of the beau t i fu l   f ac t s   abou t   t he   l i nea r  
theory  of  equilibrium thermodynamics is t he  equi- 
parti t ion  of  energy  theorem  which states that the  
expected value of  the  energy  of  each mode of a 
system  in   equi l ibr ium i s  t h e  same. For  example, 
a ba l loon  in s t i l l  a i r  can  be  expected  to  have as 
much k innec t ic   energy   as   an  0 molecule. This idea  
f inds  its express ion   here   in  term of the   i n t e r -  
counectfon of l o s s l e s s ,  systems with  monotemperaturic 
systems . 
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Let S b e  a (LFDGS) wi th   inputs  u, outputs   y  
and t r a n s f e r   f u n c t i o n  G(s) .  We w i l l  s ay   t ha t  i t  
has   the   equipar t i t ion   p roper ty   i f   there   ex is t s  a 
pos i t i ve  number 8 such  that  whenever i t  is 
connected t o  a  conservative  system  with  impedance 
Z(s) t h e   r e s u l t i n g  system has a unique  invariant  
measure and f o r   t h i s  measure 

f y y '  = BGo; G(s) = Gos +G1s +.. . -1 -2 

e U d  = 82 - Z(s) = 2 s-l+2 s-2+... 
0' 0 1  

regard less   o f   the  impedance Z(s) of  the  conservative 
system. 

The exp lana t ion   o f   t h i s   de f in i t i on  is that 
i f  one  chooses nod coord ina tes   for   the   loss less  
system  then i t  appears as 

it = M u ;  y = B'x 

Equip r t i t i o n  means t h a t  cxx' = 61 f o r  same 8 and 
thus yy' = 8B'B.  However Z(s) = BIBS-bB'ABS-&. . . 
S i n t l a r   b u t  more involved   ca lcu la t ions   apply   to  
g u u ' .  The following  theorem is e a s i l y   v e r i f i e d .  

Theorem 4: A (FDLBS) has   the  equipar t i t ion  property 
i f  and on ly   i f  i t  is m o t e m p e r a t u r i c .  

6.  Conclusions 

I n   t h i s   p a p e r  we have   cons t ruc ted .a   l inear  
quadratic  gaussian  theory  which  embraces many of 
the w r t a n t  aspec ts  of thermodynamics. The 
Original  r imtivation came from an  attempt  to  under- 

s t a n d   i n  what  sense  the  concept of a d i s s i p a t i v e  
dyaamical system  could  be  useful in a statistical 
se t t i ng .  The t r a n s l a t i o n   o f  thermodynamics ideas  
in to   t h i s   s e t t i ng   p roved   t o   be   r emarkab ly   f a i th fu l .  
It would b e   i n t e r e s t i n g  t o  study  these  models 
f u r t h e r   t o  see i f   t h e r e  are problems  from  other 
f i e lds ,   such  as economics,  which  they may be 
applied to .  
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