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Abstract

The second law of thermodynamics is studied from
the point of view of stochastic control theory.

We find that the feedback control laws which are
of interest are those which depend only on average
values, and not on sample path behavior. We are
lead to a criterion which, when satisfied, permits
one to assign a temperature to a stochastic system
in such a way as to have Carnot cycles be the
optimal trajectories of optimal control problems.
Entropy is also defined and we are able to prove
an equipartition of epergy theorem using this
definition of temperature. Our formulation allows
one to treat irreversibility in a quite natural
and completely precise way.

1. Introduction

Stochastic control has been rather successful
in providing precise formulations for interesting
problems but it has been far less successful in
actually solving these problems. Thermodynamics,
on the other hand, has been very successful in
solving problems but it has a rather shakey founda-

tion ~- especially insofar as the statistical theory

is concerned. The purpose of this paper is to
construct a2 mathematically consistent theory whose
assumptions and conclusions can be put in corres-
pondence with thermodynamic ideas. Our goal, which
is partially realized here, is to simultaneously
remove the aforementioned shortcomings of each
field, i.e. to suggest an axiomatic basis for a
mathematical theory of statistical thermodynamics
and to discover a new class of stochastic control
problems which can be intuitively understood and
solved.

Because of its power and subtlety we are mainly

interested in the second law of thermodynamics. Of
the classical formulations, the one of Maxwell
involving a demon controlling a trap.door between
two gas chambers is perhaps the most suggestive

of a stochastic control theoretic interpretation.
The Caratheodory statement in the macroscopic
theory involving the hypothesis of inaccessible
states also has an obvious connection with control
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theory. However, we do not find either of these
to be a useful point of departure; for our
present purpose it seems best to start with a very
concrete form of the fluctuation - dissipation
equality, namely the Nyquist-Johnson model for
electrical conductors in thermal equilibrium.
Using this model, together with well established
facts about lumped element electrical circuits we
are able to arrive at an intuitive and reasonably
general setting in which to study statistical
thermodynamics.

The essential points of this theory may be
summarized as follows.

1. The stochastic control formulation of a thermo-
dynamic process involves manipulating a dynamical
systems using open loop control laws. More speci-
fically, carrying out a thermodynamic process
involves steering a variance equation along a
certain path and Carnmot cycles turn out to be the
solutions to optimal control problems.

2. Equilibrium and nonequilibrium thermodynamics
are captured in the same framework. We can, in
principle, determine the deviation from Carnot
efficiency which is dictated by the necessity of
carrying out a thermodynamic process in finite
time.

3. Within the linear, quadratic, gaussian context
we isolate those conditions which permit one to
assign a single temperature to a stochastic system.
We use this idea to establish an equipartition of
energy theorem.

4. We give a definition of entropy which is
consistent with both the macroscopic theory and
the statistical theory.

The remainder of the paper is organized as
follows. Section 2 presents a detailed analysis
of the simplest example. All the intuitive ideas
are to be seen here with a minimum of complexity.
In section 3 we set up a much more general model
and define what we mean by a monotemperaturic
system. In section 4 we define entropy and use it
to establish a Carnot efficiency. Finally we give
an equipartition of energy theorem in section 5.
Because of the limitations on space certain of the
arguments are only sketched here. We hope to
publish a full account shortly.

2. Example and Motivation

In 1929 H. Nyquist [1] made a theoretical
analysis of some experimental work of Johnson

CH1392~0/78/0000-1007%00.75 © 1978 IEEE



thereby arriving at the so-called Nyquist-Johnson
model for resistor noise. This model relates the
statistical properties of the current i and
voltage v in a resistor to the temperature of the
resistor via the equation

i=gv+n

where g is the conductance and n is white noise
with a characteristic variance v2kgT. Here k is
Boltzmann's constant whose numerical value

depends on the units chosen for the other quan-
tities and T is temperature measured on an

absolute scale. The fact that the variance depends
on /E rather than some other function of g is
easily atgued from examining the series connection
of two resistors. The fact that it depends on
rather than some other T dependence cannot be inter-
preted more deeply without discussing the choice

of temperature scale itself. Here after we agree
to choose a temperature scale so that k = 1.

If we combine the equation of a Nyquist-
Johnson resistor with that of a linear capacitor
having capacitance c¢, the result is an Ito equation

dev = -gvdt + v2gT dw

The steady state value of €(v2) is easily seen

to be
Evz =T/c

and so the expected value of the energy stored in
the capacitor in steady state, % cvz, is just % T.

The key point is that this is independent of both
g and c. This is, a very special form of an equi-~
partition of energy theorem we will prove later.

We now consider a thermodynamic cycle con~
structed by using resistors at two different
temperatures and a variable capacitor.

o

~

L4

Figure 1: The basic model for this section 2.

We are interested in analyzing the possibility
of extracting energy from the system using control
laws which depend on.average values only and not
any properties of sample paths. Now of course one
way to get mechanical energy (i.e. work) out of
such a system is by changing the capacitance when
a charge is present. Since the energy stored in a
capacitor is % cv2 where v is the voltage we see
that when we change the capacitance we extract work
e according to

e = 1 évz
2

phenomenalogically speaking, this might show up,
for example, as the work done in moving the plates
of a charged parallel plate capacitor. The
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Problem 1:

equation of motion for the system in figure 1 is

dv = —(é/c)vdt—(gi/c)vdt+(/2giTi/c)dw;
i=1, 2or 8 = 0

The expected value of the energy which comes
out of the conductance N is just

2
9 = J L, (t)g vide;

1 if By is connected

Ii(t) = {

This quantity is interpreted as a heat flow because
it is energy supplied by the random fluctuations.

0 otherwise

From the stochastic equation for the network
we get a variance equation

G = -2(8/c)0 - 2(g; /)0 + 28,7, /<’

which implies two important relations

T
d _  de i
e (0) = - g+ 28,7 -0 (a)
and
. . 2g. T,
=8 =R S S
it (&n c“0) = st 2 c P (Uc 1 (B)

The first of these expresses conservation of energy
and the second is to be iInterpreted as defining the
flow of:entropy. To justify this language it is
enough to observe that the right hand side of
equation (B) can be though of as dq/T along
reversible paths. This will become clearer as we.
go on.

We now state a control problem which will lead

to Carnot cycles. To do so we introduce the
special notation

[£(e) ], = % LE(E)+ £(8) ]

Given the differential equation

o &(r) _ 5 8(t) g(t)T(t)
g(t) = -2 (D) o(t) 2 (o) a(t) + 2 cz'(t)

and given the constraints

a
a, = 2 f (EOIE) _ gryo(ryat < 1

0 c(t)
(i) o(0) = a(a), (ii) ¢(0) = c(a) ,
(iii) ec(t) > 0 (iv) g(t) 2 0
(v T, £ T(t) ¢ T,

find ¢(-), g(+), T(-) on the interval [0,a] such as
to maximize

a
e = J c(t)o(t)de
0

The interpretation of this problem is, of
course, that of maximizing the work for a given
quantity of heat inflow.



This problem will have solutions for a < =

but such solutions correspond to irreversible thermo-

dynamic processes. There is, however an idealized
solution corresponding to a particular limit as a
goes to infinity which is quite easy to compute
and which corresponds to the idea of a quasi-
static process in classical thermodynamics. We
now develop some ideas which we need to explain
this limit. The following lemma is fundamental.

Lemma 1: Consider Problem 1.
which T is constant we have

Along any path for

a

co <0

a a 2
+ f édt + Tn(c 0)
0 0 0

From equations (A) and (B) we have

Proof:

ca

a a a
+ f adt = f (T-c0) 2 f de
o ‘o 0

n(co)

a a 1
- I (1-co) 25 2 & ae
0 0

Multiplying the second equation by T and subtract-
ing it from the first we see that, in an obvious
notation,

a a ) 12
oc + f édt-Ti&nco
0 0 0
But since p > 0,(2—p—p_1) € 0 we see that the
inequality holds.

N -1,,2
= 1| [(1-p)+-p~H 1
0

If we look at the special case where the
initial conditions and the final conditions are the
same this statement carries the force of the Kelvin-
Planck statement of the second law. That is, it
shows that it is impossible to remove work from a
single heat bath using a cycle which begins and
ends at the same state. The usual thermodynamic
reasoning from this point on is to construct a
reversable cycle which uses two heat sources, one
at T. and one at T, and which produces work
according to the Carnot efficiency. This is easy
to do here. However one then shows that if there
exists any heat engine with efficiency greater than
the Carnot efficiency it could be.used, together
with the original one, to violate the Kelvin-Planck
statement. We find it more convenient to proceed
differentially since to define mathematically some
of these terms would be cumbersome.

Theorem 1: Consider Problem 1. For any closed
path in (c,0)-space along which T takes on only
the values T. and T, with T, > T, we have

1 2 1 2
Tl_TZ)q
Tl +

e £ (

Proof: Suppose we break the path up into segments
along which the temperature is T, and segments

along which it is T2. We can pu% the g = 0 segments
in either part. Then by the lemma

b,

2

T(eo)| T+ ei“Tifn c Yeo; 1=1,2
a

i i
Adding this inequality for T

a

1 to that for T2 and
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using the fact that b1 = a_ etc. we get

2

2 (Pt
e + Z(Tl-Tz)ln e o £ 0
3
But we have b
2 i
q, = ZTl fn c'C .
i
Thus T -T
e s (L 2)q
h Tl +

This result gives an answer to problem 1 in the
following sense. If € > 0 is given then we can
find a time a(e) and a choice of control policy on
[0,a] for which the energy is within € of the
value (Tl-Tz)/Tl. To do this we comstruct a

finite time approximation to the c¢ycle shown in
figure 2. The line AB corresponds to the system
being connected to the hot resistor and ¢ varying

in such a way as to keep c0 = T. This takes
I T f
D C
)c#g-
Figure 2: A-Carnot Cycle

infinite time. The line from B to C corresponds

to setting the conductance to zero and changing

c to reduce c¢0 to T,. This can be done any positive
time interval. The line C to D corresponds to the
system being connected to the cold resistor and c
being changed to keep ¢0= T,. This also takes
infinite time. And finally along DA we reverse

the BC process. A glance at the proof of Theorem 1
shows that for this process we have equality for all
inequalities which appear there and so this is a
Carnot cycle.

Finite time versions involve letting c0 be
slightly less than Tl (greater than Tz). This

will enable the variance equations to reach near
the end point in finite time but at some small
loss of efficiency. It would be interesting to
make a detailed comparison with the recent results
in the literature on finite time Carnot cycles [2].

3. Linear Stochastic Systems

We now turn to a more general situation which
illustrates the much broader scope of the previous
somewhat special reasoning. For a more detailed
account of the background ideas involved here see {3]
and [4], on the deterministic side, and [5] for
the stochastic.

By a linear, finite dimensional, gaussian system
(FDLGS) we understand a pair

dx = Axdt+Budt+Gdw



dy = Cxdt+Dudt+Hdf

where dw and df are independent vector valued
Wiener processes, and x, u, y are all finite dim-
ensional. This system is said to be minimal if
(A,B) is a controllable pair and (A,C) is an
observable pair.

We call

6(s) = C(Is-A) 1B+D

the transfer function associated with the system
and we call

8(s) = (B+C(-Is-A)"1g)' (w+c(Is-a) Lo)

the power spectrum of the system. We say that the
system is externally reciprocal if G(s) = G'(s).
The system is said to be determinately passive if
G(s) is a matrix valued positive real function.

A conservative system is one for which G(s) is
positive real and G(iw)+G'(-iw) = 0.

We now introduce a key idea. A deterministic-
ally passive FDLGS is said to be monotemperaturic
if there exists a proportionality factor 8 3 0
such that

(C(-Is-8) "Lo+m) ' (C(1s-) Yosm) =
BIC(-Is+A) ™ 1B) "+H'+C(Is-A) "1B)+H] *)

In the language of thermodynamics, what this
equation expresses is a fluctuation-dissipation
proportionality. In the language of system theory
it expresses a proportionality between the power
spectrum and the parahermetian part of the transfer
function. If equality (*) holds we callﬂ the

temperature of the system.

Several justifications for this definition can
be given. One is that (*) expresses a property of
electrical networks constructed from linear constant
inductors, capacitors and resistors in Nyquist-
Johnsonr form. The theorems of the next two sections
provide a more intrinsic justification.

We conclude this section with a canonical form
for monotemperaturic systems. This theorem might be
thought of as a generalizationm of the Darlington
normal form of [5].

Theorem 2: If S is a minimal, externally reciprocal,
monotemperaturic system then we can make a linear
change of coordinates on x such that it takes the
form (@ = -Q')

1

dx = (- 26 GG')xdt+Budt + Gdw

Bxdt + Didt + /2PD df

dy

Conversely, any system of this form is monotempera-
turic.

Proof: That systems of this form are monotempera-
turic is just a calculation.

Consider the deterministic system

x = (A-GG')x+Bul+Gu2; ¥y = Bu; y, = G'x
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Adopt the notation
n
[91}= [Gn(s) °12(s)][“1]
» ~
¥, Gy(8) 6y (8) LT,
The characterization of monotemperaturic implies

that this system is convervative and hence by [5]
it can be realized with A‘E%G'G skew symmetric.

4, A More General Kelvin Planck Statement

Corresponding to the general monotemperaturic
system we have a generalization of lemma 1 enabling
us to conclude in a wider setting that one cannot
get work from a single heat bath.

Theorem 3: Consider a minimal, monotemperaturic
(FDLGS) with scalar input and scalar output

dx = Axdt+budt+Gdw
dy = b'xdt+0dt+/2dB df

If we adjoin the equation
decv = dy;

then for any choice of c(-) which is differentiable,
which starts and ends with the variance of these
combined equations in the same, equilibrium, state
we have

u *® =v

a
J e(E v2) £0
1]

Proof: The equations of motion for the combined
system can be written in terms of the variables
Ve v =z and x. They are

-1/2

[x] A -c b][x Gdw ]
al " |- dt+|
z L'”%' -d-¢/c ML 2 ] 738 M a5

The resulting variance equation is expressed in

terms of
xx' xvev
' 22
X' YCcv cvVv

[0k

. A b Y. _T[a b'
z=[ ]z+z[ ]
b' -d-é/c -b'c -d-é&/c
[GG' 0 1
+
0 2Rd/c J

Now conservation of energy is just (note ¢ does
not have the same meaning here as in section 2.
Here work is the integral of &0 /c.)

1

E'E% (tr o+ %)+ % 0 = tr(A)+tr GG'~2(d/c) (B-0)

a"n
The flow of entropy is given by
22 (er 20 Z#tn o) = 20er a+66"ET4(24/c0) (B-0) ]
(3")
This last calculation may call for some comment.
First of all, because I is symmetric and positive



definite it has a logarithm and tr n I is the
natural vector version of entropy as defined im
section 2. Now tr %n I = Rpn det Z. (Think about
the eigenvalues!) We cam easily see, that the
derivative of fn det I is just tr I = 1 since the
derivative of det M is tr((Adj M) -M).

We now use theorem 2 to assume that

1 e - Q'
28 GG'; Q Q

combining A' and B' in some way as in the proof
of theorem 1 we get

A=Q -

d [Ty 4.
clt[t1~(2)+ c} ZSEE[tr n(Z)+&n o] + .

-tr(G'G- ic;'z:c) + tr[G'G-ZBG'Z-lG]-(l—p)‘*'(l"D_J)

28

Reasoning as before, the trace term is upper
bounded by zero and the remaining terms are upper
bounded by zero.

5. Equipartition of Energy

One of the beautiful facts about the linear
theory of equilibrium thermodynamics is the equi~
partition of energy theorem which states that the
expected value of the energy of each mode of a
system in equilibrium is the same. For example,
a balloon in still air can be expected to have as
much kinnectic energy as an.0, molecule.
finds its expression here in terms of the inter-

comection of lossless systems with monotemperaturic

systems.

Let 'S be a (LFDGS) with inputs u, outputs y
and transfer functiom G(s). We will say that it
has the equipartition property if there exists a
positive number B such that whenever it is
connected to a conservative system with impedance
Z(s) the resulting system has a unique invariant
measure and for this measure

Eyy' = BG;  G(s) cos'l+cls'2+...

1

+2 s_2+...

>t = . = -
€ uu! = BZ; Z(s) = Z s 1

regardless of the impedance Z(s) of the conservative

system,

The explanation of this definition is that
if one chooses normal coordinates for the lossless
system then it appears as

x = QxtBu;
Equipartition means that 8xx' = BRI for some B and
thus £ yy' = BB'B.
Similar but more involved calculations apply to
&uu'. The following theorem is easily verified.

y = B'x

Theorem 4:
if and only if it is monotemperaturic.

6. Conclusions

In this paper we have comstructed. a. linear
quadratic gaussian theory which embraces many of
the important aspects of thermodynamics. The
original motivation came from an attempt to under-

This idea

However Z(s) = B'BS~1+B'ABS-2+...

A (FDLBS) has the equipartition property

stand in what sense the concept of a dissipative
dynamical system could be useful in a statistical

setting.

The translation of thermodynamics ideas

into this setting proved to be remarkably faithful.
It would be interesting to study these models
further to see if there are problems from other
fields, such as economics, which they may be
applied to.
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