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Abstract

First principles modelling invariably leads to models which con-
tain latent variables in addition to the manifest variables that the
model aims at describing. The problem of elimination of these latent
variables and specifying the manifest behavior for real differential al-
gebraic dynamical systems is posed.
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1 Introduction

The purpose of this note is to attract attention to what is called the elimina-
tion problem, which we believe to be an important but largely open problem
in mathematical modelling. A typical way of modelling dynamical systems is
by the method of hierarchical tearing and zooming: a system is decomposed
into subsystems until a level is reached where the subcomponents have mathe-
matical models that are assumed to be “known”. This procedure is described
for example in [17]. Electrical circuits and robotic kinematic chains form the
prototype examples of this sort of first principles modelling. These ideas also
lie at the basis of modelling concepts as bond-graphs and object-oriented
computer-assisted procedures used frequently for instance in chemical pro-
cess modelling.

As a consequence of the introduction of internal interconnections, the result-
ing model invariably contains more variables than those that the model aims
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at describing. We call these additional variables latent variables, in order to
distinguish them from the manifest variables, as we call the variables of pri-
mary interest in the modelling process. The problem discussed in this note
is the extent to which the latent variables can be eliminated.

We now formulate this question in mathematical terms for differential alge-
braic systems. Let f be a vector of polynomials. We will be interested in
polynomials over both the real and complex field, since the results will be
quite different. Let K = R or C. The vector of polynomials f is used to de-
fine a system of differential equations in the variables w and /. The w’s are
the manifest variables, and the ¢’s are the latent variables, and the fact that
they both appear is of the essence. The order of this differential equation is
denoted by n. The assumption that each of the differential equations has the
same order n in both w and ¢ can be achieved by putting the appropriate co-
efficients to zero. This is reflected in the following notation for the variables
in f, the indeterminates:

w,w® w® .o ™ g 0 L g (1)

where each of the w®)’s consist of ¢ variables, and each of the ¢()’s consists
of d variables. This leads to

flw,w®, - w™ g, 0O ... gy, (2)

a vector of polynomials with coefficients in K in (n+1)(¢+d) indeterminates.
Expression (2) leads to the system of differential equations

fo(w, ’ ! ‘

d
%w,---,%w,ﬁ,%ﬁ,---,%@:0. (3)
The end result of the tearing and zooming modelling process referred to
above is typically such a system of differential equations, assuming that each
of the subsystems are described by polynomial differential expressions. Of
course, often more complicated functions than polynomials appear, but for
the purposes of this note, we concentrate on polynomial functions. Note
that static (i.e., algebraic) equations can be accommodated in (3) by having
differential equations of order zero. This is important, since first principles
modelling invariably leads, because of the interconnection equations, to a
predominance of algebraic as compared to dynamic equations.

2 Elimination of latent variables

Equation (3) defines a dynamical system with latent variables as this term is
defined in [18]:

Y= (R, Kq’Kd’%f) (4)



where R is the time-axis, K’ the space of manifest variables, K? the space of
latent variables, and the full behavior By is defined as

B = {(w,0) : R — K x K| (3) is satisfied} (5)
We are deliberate vague about the solution concept that is involved in the
definition of By, since flexibility in this respect will be required in order to

obtain satisfactory results. When we suppress the latent variables in (4), we
obtain the manifest system induced by (4), defined as

2= (R K’ ®) (6)
with manifest behavior
B={w:R—-K|F{:R— K’ such that (w,l) € B;} (7)

We view (6) as a system in which the latent variables have been eliminated.
The question which we address is:

What sort of equations, formulae, describe the manifest behavior D7

We call the problem of obtaining such formulae the elimination problem. In
order to obtain a clean theory, it may be necessary to amend the definitions
of By and B suitably, e.g., by allowing solutions defined on finite intervals
only, or by allowing solutions that are distributions or hyper-functions.

2.1 The linear case

When f is a linear map (3) leads to the system of differential equations

d d

R(dt)w B M(dt)

with R and M polynomial matrices over K. In this case it is known [10] that
after elimination of the latent variables we obtain again a system of linear
differential equations. More precisely, for any pair of polynomial matrices R

and M over K, there exist a polynomial matrix R’ over K such that the set

¢ (8)

{we (R, K)| 3 ¢ € ¢°(R,K%) such that (8) holds} (9)
consists ezactly of all € solutions of
d
R'(=)w =0 10
(S (10)

It is important to note that, in order to cope rigorously with lack of con-
trollability and common factors, this elimination result requires more than
just transfer function thinking. This elimination result has recently been
generalized to constant coefficient PDE’s [9] and to time-varying systems [8].



2.2 The complex case

A more complicated situation has been studied in [3] for complex differen-
tial algebraic systems, i.e., with f a vector of polynomials and K = C. In
this case, elimination (using an algebraically motivated solution concept for
algebraic differential equations) is shown to lead to a system of resultant
equations, i.e., it is shown that ® leads to the finite set of B,’s (with « € A,
and A a finite index set), each described by combined algebraic differential
equations and inequations. The relation between 9B and the B,’s appears to

be that 9B is contained in A ®B,, where A B, denotes the concatenation
acA acA
product of the B,’s.

Each of the 3, ’s is specified by a finite set of polynomials
fa(w,w(l),---,w("“)) (11)
over C and one polynomial
ga(w, wh, . w(na)) (12)

over C such that

d dme
%a: 'R ! « y LWttty T = 1
{w:R—=C" | foo(w iy dt”aw) 0 (13)

d d"e
(ga © (w, 0 dt—”aw))(t) # 0 for all t € R}

In fact, [3] also describes an algorithm for passing from f to (fa, ga)’s. In ad-
dition, this result remains true in the more general case in which the starting
point (3) contains also inequations. As such, it is much more logical to start
in the complex case from the very beginning with a system of differential
algebraic equations and differential algebraic inequations (or a finite union
of these). And indeed, that is what is done in [3]. Note, however, that in

general B will be properly contained in A B,. Moreover, in the dynamic
acA
case, when trajectories come from differential equations, and pass from one

of the B,’s to another, certain gluing conditions have to be satisfied. We will
return to these in the next section.

3 Open problems

The question raised is to study the case that K = R. It is easy to see that in
addition to inequations also inequalities are needed in this case. A concrete
conjecture therefore is that the resulting equations (7) will then consist of a
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finite union of systems of differential equations, differential inequations, and
differential inequalities. Hence each of the resulting B,’s will be specified
by fa’s, ga's, and h,’s, with the f,’s and g,’s as (11, 12), but with real
coefficients, and

ha(wa w(l)a T w(na)) (14)

a system of polynomials over R, such that

d dme
—{w:R— R L, L) = |
B, ={w:R— | fao(w, il ’dt”aw) 0 (15)
d d"e
— X for all R
d d"e
APy >
(he o (w, W w))(t) > 0 for all t € R}
and ® C A B,.
acA

Of course, once this result has been established, it follows that in the real case,
it is more natural to start, instead of with (3), with a vector of differential
algebraic equations, inequations, and inequalities (or a finite union of these),
and take the development from there. An excellent reference that gives a
starting point for the problem put forward here is [5].

The ®B,’s contain the manifest behavior ®, in the sense that  C A B,.

acA
The question occurs what has to be added in order to specify & exactly.

The concatenations cannot occur freely, in the sense that for example the
concatenation of w; € B,, and wy € B,, at t = 0 will be an element of B
only if certain conditions matching the derivatives of w; at t = 0~ with those
of wy at t = 0™ are satisfied. These relations are called the gluing conditions.

In conclusion, the open problem consists of the following parts.

(i) Establish the resulting f,’s, ga’s, hq's, in the real case (in particular,
prove that there are only a finite number of these).

(ii) Prove (both in the complex and in the real case) that each w € B is the
concatenation of trajectories from the 3,’s.

(iii) Establish (both in the complex and in the real case) the gluing conditions.
The important system theoretic implication of all this is that nonlinear dif-

ferential equations form not a particularly natural starting point for the man-
ifest behavior of a nonlinear dynamical system. Since each system is in some



sense the result of interconnecting subsystems, it is unclear how the problem
of elimination of latent (interconnection) variables can be avoided. Inequal-
ities and inequations will be introduced, not necessarily because of “hard”
constraints that may be present in a system, but because they are introduced
during the process of elimination.

The problems presented here are natural in the development of the study of
algebraic difference or differential equations. Such systems where introduced
in the system theory literature by Sontag in his thesis (see [12]), and further
developed in [13, 14] (see [15] for a tutorial exposition). Other system theory
work in this areas centers around the names of Fliess [6, 7] and Glad [4, 5]. Tt
is interesting to observe that the gluing conditions can been seen as additional
motivation for hybrid systems work as reported for example in [1, 16].

We remark in closing that the motivation of this open problem comes from
an awareness of the urgency to generalize the algorithmic aspects of the
behavioral theory (elimination, controllability, observability, control, etc.,
etc.) from linear systems to the differential algebraic systems. Differential
algebraic systems have been studied from a control perspective for instance by
Fliess and Glad [6, 7]. It is likely that Ritt’s algorithm [5, 4, 11] and Grébner
bases techniques [2] can be used effectively in the problems proposed.
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