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Abstract
This paper puts forward the idea of system interconnection as the
central idea of control. It contrasts this with intelligent control, which
refers to the usual measurement-to-control-action feedback type of control.
As illustrations, stabilization and linear-quadratic control are treated from
this vantage point.

1 Introduction.

The purpose of this essay is to question the universal appropriateness of the
usual signal flow graph, input/output structure which is invariably taken as the
starting point in control. We will argue that it is much more reasonable and
pragmatic to view instead interconnection as the basic idea in control.

This paper is written in honor of George Zames at the occasion of his sixti-
eth birthday. I first met George in the mid-sixties when I was a beginning
graduate student at MIT. My doctoral dissertation, which appeared in 1968,
later expanded into the monograph [1], dealt with input/output stability. It
was greatly influenced by Zames’ seminal papers [2] and built on the ideas of
Lo-stability, the small loop gain theorem, and the positive operator theorem
which he had laid out in [2]. One of the things which George’s work taught me
was to appreciate the importance of clear and elegant problem formulations (as
Lo-stability) and of general principles (as the small loop gain theorem). The
present paper is written in this spirit.
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The usual approach to thinking about control design takes the feedback loop
shown in figure 1 as its starting point. The control inputs drive the actuators,
while the sensors produce the measured outputs. In this view, the aim of con-
trol theory is to design a feedback processor, i.e., a device that processes the
observed outputs in order to compute the control inputs. Very powerful control
design principles have emerged from this paradigm, combining identification
and parameter estimation, observers and state reconstructors, motion planning
enhanced with set point servo control and gain scheduling, etc.

Figure 1: Intelligent control

We will refer to the control scheme of figure 1 as an intelligent controller. Before
elaborating, we would like to make a short comment on the use of the word
intelligent. We use it because the controller of figure 1 involves observation
(through the sensors), analysis (for example in the form of state and parameter
estimation), decision making for example, in the form of an (adaptive) control
algorithm), and action (through the actuators). Of course, this scheme could
involve a very low level of intelligence (for example in a room thermostat).
Without wanting to engage in the AI debate, we feel that for the purposes of
this paper the use of the term intelligent is an appropriate one for clarifying the
issues which will be discussed. In fact we use intelligent control in contrast to
passive control.

2 Passive control.

Many, if not most, control devices used in engineering practice do not function
as intelligent controllers. In many such devices it is unnatural to view the con-
troller action as feedback, and to think of it in terms of a signal flow graph.



Examples of such situations abound: mechanical dampers to attenuate vibra-
tions, commercial devices for temperature, flow and pressure control, passive
elements introduced in electrical signal processing devices in order to improve
frequency transfer characteristics, etc. When one analyzes such devices it is
often impossible to regard one variable as being measured and used in order to
decide what value another variable should take on. When a resistor is added
in a circuit in order to improve the response characteristics, it makes no sense
to view the current as input and the voltage as output, or vice-versa. To think
of a damper, for example a damper in a car, as a device that measures the
position (or velocity) of the body and the chassis, and decides from there what
force to exert on the body of the car, is an anthropomorphic caricature (and an
unnecessary one at that). It makes just a much (or better just as little) sense to
turn the situation around and to view a damper as a device that measures the
force exerted on the piston and decides how fast to make the piston move. In
other examples, say a simple expansion value with a spring for pressure control,
it would perhaps be possible to think of the pressure as the measured input and
the extension of the spring as the control output. However, it is obvious that
this signal flow is merely in our minds (and could hence be useful for enhancing
our understanding of the situation), not in nature.

Our point of view will be the following. When a controller is attached to a
plant there are some variables which interface between the controller and the
plant. Before the controller is attached, these variables have to obey only the
laws imposed by the plant. After the controller is put in place, they have to
obey both the laws of the plant and of the controller. Through this intervention,
the dynamic behavior of the plant variables is adjusted. This adjustment effects
not only the interfacing variables, but, through these, also the other plant vari-
ables. This is important when the to-be-controlled variables are not available
for interconnection. By properly choosing the controller one can achieve in this
way desired dynamic characteristics for the interconnected system.

The plant and the controller may or may not have an input/output structure
when viewed from the interfacing variables. When this input/output struc-
ture is present, then the intelligent control paradigm is suitable. When this
input/output structure is not present, then it is not. The aim of this paper is
to put forward a framework for control design which does not take the signal
flow input/output structure as its starting point, but treats it as a special case.

In order to avoid misunderstandings, we would again like to emphasize that
there are many situations where the intelligent control paradigm is eminently
suitable. It is a deep and attractive paradigm which is basically a must when-
ever logic devices are involved in the controller. Thus it will undoubtedly gain
in importance as logic devices become cheaper and more reliable and more in-
telligence can be incorporated in controllers. Nevertheless, it remains puzzling



why control theory textbooks, those with a practical as well as those with a
theoretical outlook, have, ever since the subject was formalized, chosen to work
in an input/output framework. By regarding control this way, our subject can
be viewed as a part of signal processing, instead of making it a part of integrated
system design, of properly designing subsystems.

3 Control as interconnection.

The behavioral framework [3,4,5] provides a suitable setting for our purposes.
One of the important features of this approach is that it does not take the usual
input/output structure as its starting point. Instead, it lays out a framework for
discussing dynamical systems in which all external system variables are treated
on equal footing. However, it recognizes ab initio the importance in modelling
of internal variables, auxiliary variables which unavoidably need to be intro-
duced in the modelling process and which are different from the variables whose
behavior the model aims at. These internal variables are called latent variables,
while the variables which are being modelled are called manifest variables.

In control applications, it is natural to distinguish between those variables which
are available for control and those which are not. Using again the above lan-
guage we will call the variables available for control, manifest variables, and
the remaining plant variables, latent variables. We can think of the manifest
variables as control variables, and of the latent variables as to-be—controlled vari-
ables. This leads to the setting for control shown in figure 2.

Figure 2: Control as interconnection

However, for the sake of exposition we will first assume that all the plant vari-
ables are available to the controller. This leads to the situation shown in figure
3. This will now be formalized.

Let ¥, = (T,W,B,) be the plant, viewed as a dynamical system (in the sense
explained in [5]). Thus T' C R denotes the time-axis. For the purposes of this



Figure 3: Control as interconnection

paper, in which we will consider for simplicity continuous-time systems, think
T = R. W denotes the space of plant variables. Think W = R?.%8,, is a sub-
set of W7, i.e., a subset of all maps from T to W. The (model of the) plant
imposes certain laws on the plant variables. This results in the fact that some
time function w : T — W (namely those in 9B,) are declared possible by the
plant model, while the others (those not in 8,) are declared impossible. 9B, is
called the behavior of X,,.

The controller £. = (T,W,B,) is, as ¥, a dynamical system. It imposes new
laws on the variables: the functions w : T — W are now required to lie in 9B..

The controlled system ¥ is the interconnection of ¥, and ¥.. This is denoted
as ¥ = X, A X.. The interconnection is defined as

S =3,A%, = (T,W,B,N%B,) (1)

In other words, in the interconnected system, the realizable trajectories w : T —
W will have to obey both the laws imposed by the plant and by the controller.
The control design problem is thus:

Given the plant ¥), and given a family of admissible controllers €, find a ¥, € €
such that ¥, A X, has desirable properties.

4 Stabilization.

We will now explain, as an example, how the stabilization question for linear
time-invariant systems can be formulated in this setting. Let £7? denote the
family of linear differential systems with ¢ variables. Thus each element of L7 is
described through a polynomial matrix R € R**?[¢] by the differential equation

d

R(E

Jw =0 (2)



(2) yields the dynamical system ¥ = (R,R?,%) € LY, where B consists of all
w : R — R? satisfying (2). The precise meaning of what it signifies that w sat-
isfies a system of differential equations as (2), is not important for the purposes
of this paper.

Call ¥ = (R,R?,B) € L? controllable [5] if for all wy, w2 € B there exists ¢’ > 0
and w € B such that w(t) = w;(¢) for t < 0 and w(t +¢') = wa(t) for ¢ > 0.
Call it stabilizable if for all w € B there exists w' € B such that w(t) = w'(¢t)
for t < 0 and such that tll)rgo w'(t) = 0. It can be shown that (2) is controllable

[5] if and only if rank(R()\)) = rank(R) for all A € C and stabilizable if and
only if this holds for all A € Ct := {\ € C|Re(\) > 0}.

Next, call ¥ autonomous if wy, w2 € B and wy(t) = wa(t) for ¢ < 0 imply

wy = wsy. It can be shown that (2) is autonomous if and only if rank(R) = g.

Finally, define ¥ to be stable if w € B implies tli}m w(t) = 0. It is easy to see
o0

that stability requires autonomy. In describing systems ¥ € £9 by differential
equations (2) (many R’s will generate the same 9B!) we can always assume that
R has g rows. If the number of rows in the original R is less than ¢, then this
is trivial: simply add zero rows to R. If it is more than ¢ then this fact requires
an (easy) proof. Let ¥ € £9 and let it be described by (2), with R € R?*[¢].
Now define yx, the characteristic polynomial of ¥, by xx := det(R). Thus ¥ is
autonomous if and only if xys # 0, and stable if and only if yy is Hurwitz.

Now consider a plant ¥, € £9. Assume that it is described by

P(%)w =0 (3)

Take as controllers elements of £7. A typical element is thus described by

C(%)w =0 4)

Now restrict the class of admissible controllers to those for which

rank({ g ]) = rank(P) + rank(C) = ¢ (5)

Thus in this case € = {X, € L?]X, can be described by (4), and (5) will be
satisfied }

We will return to condition (5) later. For the moment, treat it as a techni-
cal requirement. As far as stabilization and pole placement is concerned, the
following results can be obtained:



1. Let ¥, € L9. Then there exists ¥. € € such that ¥, A X. is stable if and
only if ¥, is stabilizable.

2. Let ¥, € L2. Then the following conditions are equivalent:

(i) £, is controllable
(i) For each monic polynomial r € R[{], there exists a £. € € such that
XEpnE, =T

5 Implementation of controllers.

In intelligent control, it is usually taken for granted that every controller which
processes the sensor measurements and delivers the actuator inputs is admis-
sible. From an applications point of view, it is somewhat surprising that this
very broad feasibility and implementability of intelligent controllers has not
been questioned more often. In many practical circumstances it is difficult to
see why and how such sophisticated devices should be used. Computer control
is important, but it is not the whole picture.

In addition, there is usually some reference to causality which is sometimes for-
mulated as implying the absence of a differentiating action. This last condition
is then justified by referring to noise amplification which differentiating con-
trollers may cause.

There are, however, many control devices which, if we insist in viewing them as
input/output processors, will act as differentiators, but which cause no trouble
at all. Take as an example a controller consisting of a mass/spring/damper
combination which is attached to a given mass and serves to hold this given
mass in a particular equilibrium, while achieving a gentle transient response. A
traditional door closing mechanism is an example of a device which functions
exactly in this way. Our point of view is that it is much better in such examples
not to insist on an input/output interpretation, but simply take the intercon-
nection point of view.

Nevertheless, the implementation issue is an important one. In our approach,
it can simply not be avoided and should be incorporated in the specifications
of €. In particular, the following question occurs: if ¥, € L? and we want to
control it by means of a controller . € L7, how would we achieve this?

For example:

(i) Assume that the control terminals correspond to electrical terminals or
terminals of a mechanical system, can the controller be realized using



passive components?

(ii) Can the controller be implemented by means of an input/output device?
In other words, can we choose some of the control variables and make them
act as inputs to the controller, while the other variables act as outputs?

(iii) Is (ii) possible while making the transfer function of the controller proper?
In this case the controller could in principle be implemented as an intelli-
gent controller using logic devices.

(i) is a research question, for which we have obtained some partial results. We
will not report them here. We can give complete answers to (ii) and (iii).
However, before doing this, we need to introduce some integer invariants of £%.
Define three integer valued maps on £? as follows:

m: L£?—{0,1,2,...,q}
p: £ —{0,1,2,...,q}
n:  L£7-1{0,1,2,..} =12,

Take ¥ € L9, let it be represented by (2), and assume (without loss of generality
- see [5]) that R has full row rank. Define

m(X): = q—rowdimension(R)
p(X): = rowdimension(R)
n(X): = McMillandegree(R)

Recall that the McMillan degree of a full row rank polynomial matrix is the
largest degree of its maximal size minors. In terms of minimal input/state/output
representations, m(X), p(X) and n(X) can be given a very concrete interpreta-
tion. They correspond respectively to the number of input variables, the number
of output variables, and the number of state variables of X [5].

Let ¥, € £? and ¥, € L7, and assume that ¥, A ¥, is autonomous. Assume
that

p(Ep) +p(Zc) =p(Z, AEe) = ¢ (6)
(note that condition (5) is precisely equivalent to this). Then it can be shown
that the control variables can be partitioned in such a way that ¥, and ¥ have
a complementary input/output structure, and with the transfer function in ¥,
proper, but that of 3. in general not proper. If we want the transfer function
of X, to be proper and the feedback system to be well posed, then we need also

n(E,) +n(E) =n(E, A ;) (7)

For a precise statement see [6]. Generalizations to the case that ¥, A . is not
autonomous are also possible.



6 LQ-control.

Let ¥ € £9 = (R,R?,B) and assume for simplicity that it is controllable. Let
(2) be a representation of it. Assume, to avoid smoothness difficulties, that
B consists of the C° solutions of (2). As in [5] we will call this a kernel
representation of X.. Consider also the two-variable polynomial matrix L €
RI*9[¢,n] and assume that it is symmetric, i.e., L((,n) = LT (n,¢). L induces
the quadratic differential form Qp, : C*°(R,R?) — C*(R,R) defined by

k 4
Quiw) = (G () Q
k,l
where
L(¢m) =) LieCFnf (9)
k.l

Consider now the following optimization problem: Determine 8* C B such that
w* € B* implies

(i) (stability) tlirglow (t)y=0
(ii) (optimality) for all A € B of compact support, there should hold:

—+o0

/ (Qu(w + A) — Qr(w))dt > 0 (10)

View (10) as a question of determining the optimal trajectories of the system
(2) with the cost functional [ Qr(w)dt. Note that this formulation of the LQ-
problem departs radically from the classical formulation: we do not start from
a state model, there are no specified initial conditions, no inputs, the cost func-
tional may contain higher order derivatives.

The optimal behavior 8* can be characterized as follows. It is non-empty
(equivalently, 0 € B*) if and only if there exists a polynomial matrix X €
R7**[£] such that

L(—iw,iw) + X7 (—iw)R(iw) + RT (—iw) X (iw) > 0 (11)

for all w € R. Assume that this is the case with the left hand side of (11) of
rank m(X) (regard this as a technical condition, similar to observability in the
classical formulation). Then B* can be computed as follows: find X € R?**[¢]
and C' € R™(®)*4 such that

L(—£,€) + XT(=OR() + RT (=) X (&) = CT(-6)C(¢) (12)



and such that

det({ i })is Hurwitz (13)

Proofs and further details will be given in [7]. This way of obtaining B* is
reminiscent of the spectral factorization approach to LQ control as explained
for example in [8, section 26]. Equation (12) is a complete generalization of the
Riccati equation.

Note that our way of thinking about optimal control comes up with B*, the
optimal behavior, not with the optimal controller ! The question thus remains
how to implement the closed loop system ¥* = (R, R?,B*). We will take this
up in the next section.

7 Implementation of controlled behavior.

Let £, = (R, R?,B,) € L? be a plant. A system ¥ = (R,R?,'B) € L7 is said
to be a subsystem of ¥, if B < B,. A controller ¥, = (R, R?,%B,) is said to
implement X if

Y=¥,A%, (14)

This implementation problem is very akin to what, particularly in the Russian
literature, is called a synthesis. Note that if we do not restrict X., then it is
trivial to solve this problem: take ¥. = Y. The problem becomes interesting
when X, is further constrained, for example to be passive, or such that in addi-
tion to (14), (6), or (6) and (7) hold.

The one case where we have rather complete results is specifying when (14) is
implementable with a controller satisfying (6). The result says that if ¥ € £¢
is any subsystem of a controllable system ¥, € £?, then there exists a X. € £¢
such that (14) and (6) hold. Using the results mentioned in section 5, this
implies that ¥ can be implemented using a controller with an input/output
structure which is complementary (in the sense that the input/output struc-
ture of the plant and the controller go in opposite directions) to that of the
input/output structure of the plant but with a transfer function which may not
be proper. Thus any subsystem of a controllable system is implementable using
an improper controller of feedback type.

Let us now return to the optimal LQ controller of section 6. The algorithm given
there yields the optimal behavior 28*, i.e., the family of all optimal trajectories.
The question is how to implement %* by means of a controller. Let ¥* :=
(R, R?,9B*). Obviously ¥* € £9. Then every time someone proposes a controller
Y., we can check whether ¥* = ¥, A 3.. Note that this departs from the usual



situation in LQ control, since, while our %* is unique, there will be many
Y. € L2 such that

S, A%, = 5* (15)

In particular it can be shown that since X, is controllable, there exists a ¥, such
(15) and (6) hold. In addition, it can be shown that if the 2-variable polynomial
matrix L is of degree 0 (i.e., if it is a constant), then X, can be taken to be a
memoryless state controller.

We close this section by making the remark that the non-uniqueness of the
controller ¥. which achieves (15) has important practical consequences, since
it shows that optimal control can be achieved by means of controllers which in
the traditional point of view would not be admissible controllers.

8 Control of latent variables.

We will now return to the situation of figure 2, in which not all the plant variables
are available to the controller. Assume again that the plant is described by a
constant coefficient linear differential equation. This yields

d d
—w = M(=)¢ 1
R(w = M(%) (16)
as the plant model, with w = col(wy,...,w,) the manifest variables (the vari-
ables available to the controller) and ¢ = col(f1,...,¢;) the latent variables

(the to-be-controlled variables). The question which we will discuss is what
controlled behavior can be achieved by a controller

d
dt
which acts on the manifest variables only.

C(=)w=0 (17)

We will call (16) observable [5] if £ can be deduced from w, i.e., if whenever
(w,?y) and (w, f2) satisfy (16), then ¢; = ¢ must hold. It can be shown [5]
that (16) is observable if and only if the complex matrix M () has full column
rank for all A € C. In this case (16) can equivalently, in the sense that (16)
and (18) have the same solutions (w, £), be described by a system of differential
equations of the form

(=M'"(—)w (18a)

Jw =0 (18b)



for suitable polynomial matrices R', M'.

Now, assume that a controller is designed for (16) which disregards the fact that
only the w’s are available for interconnection:

d d
Cl(dt)w+02(dt) 0 (19)
Then, using (18a), it easily follows that the alternative controller
n, d

will achieve the same controlled behavior. In other words, the solutions of (16,
19) will be the same as those of (16, 20). It follows that for an observable system
any controlled behavior which can be achieved by a controller using the (w, £)’s
as control variables, can also be achieved by a controller using only the w’s
as control variables. We remark, however, that the observability requirement is
more severe than it might appear at first sight. For example, the usual situation
of additive noise in the measurements already obstructs observability.

9 Epilogue.

In this paper we have put forward a theory of control in which system intercon-
nection is the central idea. This in contrast with what we have called intelligent
control, where we can view a controller as a signal processor, processing the
measurements in order to compute the control action. This last type of con-
troller is actually a special type of interconnection. In fact, the issue of what
interconnections can be implemented by means of an intelligent controller comes
up naturally and was briefly discussed in the present paper.

Ever since control theory was established as a scientific discipline, it has chosen
to formalize its questions in an input/output setting. This can be observed in
older and in more recent texts alike [8, 9,10,11]. Also mathematical system the-
ory, which can be seen as an outgrowth of control theory, has invariably adopted
the input/output framework. This may be seen, for example, from the attempts
at axiomatization in [1,12].

One thing is clear: as a basic structure for modelling dynamical systems, the
input/output framework is unsuitable. In an off-the-shelf modelling package,
modules (standard elements) and interconnections (standard ways of intercon-
necting standard elements) are the key components: modelling proceeds by tear-
ing (examining the interconnections) and zooming (examining the subsystems)
in a hierarchical fashion. Physical components (resistors, capacitors, trans-
formers, masses, spring, dampers, etc, etc.) will be specified by giving their



parameter values. The specification of the system architecture will tell how the
components are inserted in the system. As such, it is unnecessary, awkward,
and illogical to specify the components in input/output form. It may, but need
not be the case that the overall system needs to be specified in input/output
form, for example because of the presence of logic devices in the system. This
input/output structure will have its effect on the components and may translate
into an input/output structure on a particular component. However in what
input/output structure this particular component will function will depend on
the architecture. It is because of such considerations that modelling packages
based on simple interconnection ideas (as SPICE) are bound to be much more
usable that those based on input/output thinking (as MATLAB’s SIMULINK).

True, many of the issues underlying the behavioral framework have been touched
on before. The limitations of input/output thinking is very clearly addressed in
books on circuit theory [13,14]. Also Zames’ original papers [2] on Lo-stability
work with input/output relations, rather than with maps (as in [1]). This in-
put/output relation point of view was even more strongly emphasized by Safonov
[15], where, however, the for-that-time-radical-step of dropping inputs and out-
puts altogether was not taken. The need to work with both external and internal
variables is one of the key ingredients in the state space description of dynamical
systems. The feeling that the state is but a limited implementation of this need
for involving internal variables in models is what led Rosenbrock to introduce
(always in an input/output setting) the partial state [16]. We may view this as
a precursor of our latent variables. Also descriptor system formulations of state
models (implicit systems, singular systems) point to discomfort with the usual
input/state/output approach. Indeed, anyone who examines the suitability of
input/output structures for models obtained from first principles will discover
that it is unreasonable to take ‘é—f = f(z,u);y = f(x,u) as the starting point
for dynamics.

The fact that in optimal control, it is sometimes convenient to first define the
optimal behavior and the proceed to find the optimal controller is implicit in
Brockett’s approach [8, section 26].

Finally, the fact that it is the solution set of equations and not the equations
themselves that are important in modelling underlies the system representation
questions, from co-prime factorizations to Hankel matrices to the state space
isomorphism theorem.

Whenever an axiomatic framework, as the behavioral setting, is put forward,
whenever its effectiveness is argued and compared to an existing framework,
as the input/output setting, it is unavoidable that there will be countless links
with older work. It is unavoidable that many researchers will recognize their
own discomforts. The merit of the behavioral framework has been in bringing



the appropriate framework to the foreground explicitly. Mathematics is mainly
discovery of existing structures, and inventing the language to discuss them in.
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