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Ports and Terminals

Jan C. Willemg

Abstract

A terminal of an electrical circuit is a wire that allows thiecait to interact with its envi-
ronment through a potential and a current. Interconnedsaefined as variable sharing: two
terminals share the same potential and current. A port ofetrizal circuit is a set of terminals
that satisfy port-KCL (Kirchhoff’s current law). Power aedergy that enter a circuit is defined
for ports. Terminals are for interconnection, ports aregioergy transfer. A port of a mechanical
system is a set of terminals that satisfy port-KFL (KircHtoforce law).

1 Introduction

It is a pleasure to contribute an article to this Festschrifionor of Yutaka Yamamoto on the occasion
of his 60-th birthday. | had the privilege to develop a frulitfesearch collaboration with him over the
last decade, leading to a number of articles [11]-[17] conmigi ideas from behavioral theory with

system representations in terms of rational and pseudaedtsymbols. | am also grateful to him for

hosting me on several pleasant extended visits to Kyotoeysity over this period.

The aim of this article is to explain the distinction that sltbbe made in physical systems between
interconnection of systems on the one hand, and energyfdrdmstween systems on the other hand.
Interconnection happens via terminals, while energy feartsappens via ports. We consider systems
that interact through terminals, as wires for electricatuits, or pins for mechanical systems. We
develop the ideas mainly in the context of electrical citsubut, towards the end of the paper, we
also study mechanical systems.

2 Behavioral circuit theory

We view a circuit as follows. An electrical circuit is a degj@ black-box, with wires, called terminals,
through which the circuit can interact with its environmehiis interaction takes place through two
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real variablesa potential and a current, at each terminal. The current is counted positive when
it flows into the circuit. For the basic concepts of circuiedny, see [2], [6], or [1]. The setting
developed inP] and [6] has the same flavor as our approach.

Thebehavior of N-terminal circuit is a subse® C (RZN)R; (V,1) € # means that the time-function
(V,1) = (V1,Va, ..., W, 11,12, ., IN) : R — RN x RN is compatible with the architecture and the ele-
ment values of the circuit.

Circuit properties are conveniently defined in terms of takdvior.
A circuit obeysKirchhoff’s voltage law (KVL) if (Va,...,Wn,l1,...,In) € B anda : R — R imply
(V1+a,...,VN+a,|1,...,IN) S
A circuit obeysKirchhoff’s current law (KCL) if (V1,...,Wn,l1...,In) € Bimpliesl;+---+ 1y =0.

KVL means that the potentials are defined up to an arbitradytiad constant (that may change in
time), while KCL means that the circuit stores no net charge.

3 Interconnection

We view interconnection as the connection of two terminatsshown in the figure below. We start
with two circuits, one witiN and one withN’ terminals. We assume that one terminal (termMjl
of the first circuit is connected to another terminal (terahid’) of the second circuit. The intercon-
nection equations are

W=W and Iy+Ily=0.

This yields a new circuit wititN + N’ — 2 terminals, with behaviof; N %, defined in terms of the
behavior#; of the first circuit and%, of the second (we consider the connected terminals as aitern



to the interconnected circuit) as follows.

@lﬂﬁz = {(V17V27"'7VN717V1/7V2/7"'7VN/—17|17|27"'7IN717|1/7|2/7"'7|N/—1)
| AV,I such that (V1, Vo, ..., W -1, V,I1,l2, ... In—1, 1) € Py
(V]_/,Vzl,...,VN/,]_,V,|1/,|2/,...,|N/,1,—|) c %2}

The idea is that the connected terminals share the voltagiehencurrent (up to a sign) of after
interconnection. Note that the product of the shared vhasalhas the dimension of power. The same
idea of interconnection applies to the interconnectiomaf terminals of the same circuit, and to the
connection of more terminals of two or more circuits way bymecting one pair of terminals at the
time.

Interconnection preserves many circuit properties. Iti@aar, if 81 and %, obey KVL, or KCL,
then so does4; M %s.

4 Ports

In this section, we introduce a notion that is essential ®oghergy exchange of a circuit with its
environment and between circuits. Consider a circuit Wtkerminals, and single oyt terminals,
which, for simplicity, we take to be the firgtterminals.

Terminals{1,2,..., p} form a (electrical)port : <

(V1. Vo, .., Vp, Vi1, Vs 1,2, Dy D, - IN) € B
= ly+l2+--+1p=0.

We call this relatiorport KCL. KCL implies that all the terminals combined form a port. dincbe
shown that for linear passive circuits satisfying KVL and IK@ort KCL is equivalent to port KVL,
defined by

(V,...,Vp,Vp+1,...,VN,|1,...,|p,|p+1,...,|N) €A, anda :R - R

= (M+a,... Vo+a,Vpia,...,. W, 1, Dp lpta, -, In) € B

If terminals{1,2,..., p} form a port, then we define timwer that flows into the circuit at time
along these terminals to be equal to

power = Vl(t)|1(t) +V2(t)|2(t) + - —|—Vp(t)|p(t),
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and theenergy that flows into the circuit along thegeterminals during the time-intervéh, t,] to be

equal to t
energy = [ (VIO +Va(D)l2(t) + -+ VoDl (D) .

t1
Note that port KCL implies that the additive constant from IKd#oes not appear in the expressions
of power and energy.

The above formulas for power and energy are not vafitkss these terminals form a port! In
particular, it is not possible to speak about the energyfitsas into the circuit along a single wire —
a conclusion that is physically quite obvious. Power andgnftow are not ‘local’ physical entities,
but they involve action at a distance. Note that the terrsioéla 2-terminal circuit that internally
consists of the interconnection of circuits that all sgtikiVL and KCL form a 1-port, since KVL
and KCL are preserved under interconnection. In partical@-terminal circuit that is composed of
resistors, capacitors, inductors, transformers, gysatoemristors, etc. forms a 1-port. However, a
pair of terminals of a circuit with more than two terminalselg forms a 1-port. In particular, for
the circuit shown below, the termina{4, 2, 3,4} form a port, but there is no reason why the terminal
pairs{1,2} and{3,4} should form ports.

An example of an element that consists of more than one partrensformer.
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internal terminals

The behavioral equations of an ideal transformer are
Vi—Vo=n(V3—Vy), I3=—nlq, I1+12=0, I3+14=0, with ntheturnsratio.

Clearly {1,2} and{3,4} form ports, and the energy that flows into the pftt2} is equal to the
energy that flows out of the pof8,4}.

5 Internal ports

In order to study the energy flow inside a circuit, we introgluic this section circuits with both
external and internal terminals. Consider a circuit Witrexternal terminals and al9d’ internal
terminals. Assume that the internal terminals are directed

We can define the behavior of this circuit analogously as wéaticircuits with only external termi-
nals. A set of terminals, say’, 2, ..., p'}, forms aninternal port :< for all elements of the behavior,
ly +1» +---+1y = 0. Acircuit has in generatxternal ports, consisting of only external terminals,
internal ports, consisting of only internal terminals, amdxed ports, consisting of both external and
internal terminals. The internal ports allow to consider power and energy flow between parts of a
circuit. For example, it is possible this way to consider ¢inergy transferred into the ports formed
by terminals{1,2} and{3,4} of the circuit below, since these pairs form internal ports.

6 Terminalsarefor interconnection, portsfor energy transfer

As explained before, interconnection means that certamit@ls share the same potential and current
(up to a sign). This is distinctly different from stating thilae power or the energy flows from one side
of an interconnection to the other side. Power and energynaports, and this requires consideration
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of more than one terminal at the time. For example, the twauds in the figure below share four
terminals, but it is not possible to speak of the energy tlatslfrom circuit 1 to circuit 2, unless the
connected terminals form internal ports. Similarly, it ©t possible to speak about the energy that
flows from the environment into circuit 1, or from the envinsent into circuit 2, unless the external
terminals of system 1 and of system 2 form ports. Of courssyrasig KVL and KCL, the external
terminals of the interconnected system always form a port.

Setting up the behavioral equations of a circuit involvesrconnection and variable sharing. Ex-
change of power and energy involves ports. Interconnesti@ed not involve ports or power and
energy transfer. These observations put into perspeabwepbased modeling methodologies of in-
terconnected systems, as bond graphs [7, 3] and port-Hamaiit systems [9, 4]. In [10] we propose
a modeling methodology for interconnected systems basdeaoimg, zooming, and linking, which
involves interconnection by sharing variables, but in vialpower considerations do not take a central
place.

7 Mechanical systems

We view a mechanical system as a device, a black box, with galled terminals, through which the
system can interact with its environment. This interactakes place through two vectoesposition
and a force, for each terminal. Even though angles and torques play poritant role in mechanical
systems, we do not consider these here. The position andite dre elements d for rectilinear
motion, or of R? for motions in the plane, or dk® for spatial motion. We indicate the fact that we
want to leave open which of these cases we consider by thearotp : R — R® andFR: R — R®.

terminals

Thebehavior of the mechanical system is a subgetC ((R*)*N)®; (q,F) € # means that the po-
sition/force time-functior{g, F) = (q1,dz, . .., N, F1, o, ..., ) : R = (R*)N x (R*)N is compatible
with the architecture and the element values of the mechbsystem.

Basic building blocks for mechanical systems under reetdr motion are masses, springs, and
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dampers. Their behavioral equations are
d2
: M—qg= F
mass g2 ,
spring: Gu—0=p(F), F+FR=0,
d d
. —Q1— —Q2= d(F F =
damper i d(F), 1+F = 0,

with p : R — R the spring characteristic, and R — R the damper characteristic.

We now list some properties of mechanical systems that areeciently defined in terms of the
behavior.
A mechanical system igwariant under uniform motionsif (q,...,dn, Fi,...,Fn) € Z andv:t €
R — (a+bt) eR®, a,be R®, imply (g1 +V,...,an+ V. Fp,...,Fn) € .
A mechanical system obey@rchhoff’sforcelaw (KFL) if (q1,092,...,0n,F1, P2, ..., Fn) € Zimplies
Fr+F+--+R=0.
The spring and the damper obey KFL, but the mass does notridnea under uniform motions, a
most basic premise of mechanics, is important in the sequel.

The interconnection of two mechanical systems is definedtgréonnecting two terminals at the
time, identifying the positions of the interconnected tevafs, and putting the sum of the forces acting
on the interconnected terminals equal to zero. The interecimg equations are

On=0av and Fv+FRy=0.
Note that the product of the shared variables does not hawitirension of power.

This yields, with notation analogous to the one used foudis¢

@:U_I@Z = {(CILCIZa- - ON=1,91, G- . ~,QN’—1,F17 FZ?' [ FN—17 F]_/?FZ/:' . '7FN/—1>
| = q7F such that (q17 gz, .-, 0ON -1, q7F17 F27 "'7FN -1 F) € ‘%1
(q1/7q2’7"'7qN/—17q7F1/7FZ’?"'7FN/—17_F) 6'@2}

This leads to interconnection of different terminals of #a@ne mechanical system, and to intercon-
nection of many pairs of terminals of two or more mechanigatems. Interconnection preserves
invariance under uniform motion and KFL.

8 Mechanical ports

We now introduce conditions that allows to study power anergy flow in mechanical systems.
Consider a mechanical system, and single mtgrminals, which, for simplicity, we take to be the
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(Fi+F+---+F)

first p terminals.

Terminals{1,2,..., p} form a (mechanicalport :<

(q1a---7Qpan+la---aQNaFla---7Fp7Fp+la---7FN) 6@7
= Fi+FR++Fp=0.

We call this relatiorport KFL. Note that KFL imply that all terminals combined form a poAiso,
the external terminals of the interconnection of port desitorm again a port. Note that including
masses with external forces acting on them form a difficudty<tFL.

If terminals{1,2,..., p} form a port, then we define thmwer that flows into the mechanical system
at timet along these terminals and thenergy that flows into the circuit along thegeterminals on
the time-intervalty, ty] to be equal to

d d d
power = Fl(t)Ta%(t) + Fz(t)Taqza) T+ Fp(t)Taqlo(t)a

t2

(R G0+ Fo) a0+ -+ Fo) (D)) e

enerey = |, (R0 @

ty
The above formulas for power and energy are not vatiess these terminals form a mechanical

port! Note that port KFL implies that power and energy are invdnarder the additive constant that
can be added to the velocities due to the port invariancerwmd®rm motion. A mass, a spring and
a damper obey invariance under uniform motion. A spring addraper form a mechanical port, but
a mass does not. The inerter [8] is a mass-like device thaghdstaln order to be able to consider the
energy that flows into a mechanical system, we should maletkat the total external force acting
on the masses is zero. This can be obtained, albeit in a @ysastificial way, by introducing a
‘ground’, an infinite mass that cannot be accelerated, on which thegimegf the total force acts, and
with respect to which positions are measured, as illustriagtow.

We now compute the kinetic energy storedNrmoving masses with massbg, Mo, ..., My, po-
sitionsqy, Oy, . . ., an € R3, and with forced, P, ...,y € R2 acting on them. By Newton’s second
law, ngTzzqk = k. If we assume that KFL is satisfiel, +F>+ - - -+ Fy = 0, then it is readily verified
that

d /1 Mi M; d d 2 +d
perll I ||—Qi——q1'||> = F'—qi.
dt <4i,je{1,zz,...,N} Mi+Mz+---4+Mydt ©  dt ie{l,zz,...,N} L dt

Hence the kinetic energy equals

Seneto = - MM g S
kmetlc_4i.jg{12,_,N}M1+M2+'”+MN dth dtql )
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Skinetic 1S INvariant under uniform motions, as a physically meafuhguantity should be. The ex-
pression foréiinetic Can also be justified by computing the energy that can bedsiara spring or
dissipated in a damper, mounted between the masses, wimtgry all the masses to the same ve-
locity. This expression is distinct from the classical egsion of the kinetic energy,

1 d
Sclassical= = M; H_Qi | |2-
2ie{1,zz,...,N} dt

In fact, without requiring KFL, there holds

d /1 d d
— | = M; ||—Qi||2> = R
dt <2ie{17zz,...,N} dt ie{l,zz,...,N} ! dt

The classical expressiafiassicalfor the kinetic energy can be made compatible with the exqivas
for &kinetic By assuming the presence of an infinite mass at rest on whedbitte— (F1 + R+ - - - + Fy)
acts without accelerating it, and applying the formuladfetic.
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