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Ports and Terminals
Jan C. Willems1

Abstract

A terminal of an electrical circuit is a wire that allows the circuit to interact with its envi-
ronment through a potential and a current. Interconnectionis defined as variable sharing: two
terminals share the same potential and current. A port of an electrical circuit is a set of terminals
that satisfy port-KCL (Kirchhoff’s current law). Power andenergy that enter a circuit is defined
for ports. Terminals are for interconnection, ports are forenergy transfer. A port of a mechanical
system is a set of terminals that satisfy port-KFL (Kirchhoff’s force law).

1 Introduction

It is a pleasure to contribute an article to this Festschriftin honor of Yutaka Yamamoto on the occasion
of his 60-th birthday. I had the privilege to develop a fruitful research collaboration with him over the
last decade, leading to a number of articles [11]–[17] combining ideas from behavioral theory with
system representations in terms of rational and pseudorational symbols. I am also grateful to him for
hosting me on several pleasant extended visits to Kyoto University over this period.

The aim of this article is to explain the distinction that should be made in physical systems between
interconnection of systems on the one hand, and energy transfer between systems on the other hand.
Interconnection happens via terminals, while energy transfer happens via ports. We consider systems
that interact through terminals, as wires for electrical circuits, or pins for mechanical systems. We
develop the ideas mainly in the context of electrical circuits, but, towards the end of the paper, we
also study mechanical systems.

2 Behavioral circuit theory

We view a circuit as follows. An electrical circuit is a device, a black-box, with wires, called terminals,
through which the circuit can interact with its environment. This interaction takes place through two
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real variables,a potential and a current, at each terminal. The current is counted positive when
it flows into the circuit. For the basic concepts of circuit theory, see [2], [6], or [1]. The setting
developed in [?] and [6] has the same flavor as our approach.

Thebehavior of N-terminal circuit is a subsetB ⊆
(

R
2N
)R

; (V, I)∈B means that the time-function
(V, I) = (V1,V2, . . . ,VN, I1, I2, . . . , IN) : R→ R

N ×R
N is compatible with the architecture and the ele-

ment values of the circuit.

Circuit properties are conveniently defined in terms of the behavior.
A circuit obeysKirchhoff’s voltage law (KVL) if (V1, . . . ,VN, I1, . . . , IN) ∈ B andα : R → R imply
(V1+α, . . . ,VN +α, I1, . . . , IN) ∈ B.
A circuit obeysKirchhoff’s current law (KCL) if (V1, . . . ,VN, I1 . . . , IN) ∈ B impliesI1+ · · ·+ IN = 0.

KVL means that the potentials are defined up to an arbitrary additive constant (that may change in
time), while KCL means that the circuit stores no net charge.

3 Interconnection

We view interconnection as the connection of two terminals,as shown in the figure below. We start
with two circuits, one withN and one withN′ terminals. We assume that one terminal (terminalN)
of the first circuit is connected to another terminal (terminal N′) of the second circuit. The intercon-
nection equations are

VN =VN′ and IN + IN′ = 0.

This yields a new circuit withN +N′−2 terminals, with behaviorB1⊓B2 defined in terms of the
behaviorB1 of the first circuit andB2 of the second (we consider the connected terminals as internal
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to the interconnected circuit) as follows.

B1⊓B2 := {(V1,V2, . . . ,VN−1,V1′,V2′ , . . . ,VN′−1, I1, I2, . . . , IN−1, I1′, I2′, . . . , IN′−1)

| ∃ V, I such that (V1, V2, . . . , VN −1,V, I1, I2, . . . , IN −1, I) ∈ B1

(V1′ ,V2′, . . . ,VN′−1,V, I1′, I2′, . . . , IN′−1,−I) ∈ B2}.

The idea is that the connected terminals share the voltage and the current (up to a sign) of after
interconnection. Note that the product of the shared variables has the dimension of power. The same
idea of interconnection applies to the interconnection of two terminals of the same circuit, and to the
connection of more terminals of two or more circuits way by connecting one pair of terminals at the
time.

Interconnection preserves many circuit properties. In particular, if B1 andB2 obey KVL, or KCL,
then so doesB1⊓B2.

4 Ports

In this section, we introduce a notion that is essential to the energy exchange of a circuit with its
environment and between circuits. Consider a circuit withN terminals, and single outp terminals,
which, for simplicity, we take to be the firstp terminals.

Terminals{1,2, . . . , p} form a (electrical)port :⇔
(

V1,V2, . . . ,Vp,Vp+1, . . . ,VN, I1, I2, . . . , Ip, Ip+1, . . . , IN
)

∈ B

⇒ I1+ I2+ · · ·+ Ip = 0.

We call this relationport KCL. KCL implies that all the terminals combined form a port. It can be
shown that for linear passive circuits satisfying KVL and KCL, port KCL is equivalent to port KVL,
defined by
(

V1, . . . ,Vp,Vp+1, . . . ,VN, I1, . . . , Ip, Ip+1, . . . , IN
)

∈ B, andα : R→R

⇒
(

V1+α, . . . ,Vp +α,Vp+1, . . . ,VN, I1, . . . , Ip, Ip+1, . . . , IN
)

∈ B.

If terminals{1,2, . . . , p} form a port, then we define thepower that flows into the circuit at timet
along thesep terminals to be equal to

power = V1(t)I1(t)+V2(t)I2(t)+ · · ·+Vp(t)Ip(t),
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and theenergy that flows into the circuit along thesep terminals during the time-interval[t1, t2] to be
equal to

energy =
∫ t2

t1
(V1(t)I1(t)+V2(t)I2(t)+ · · ·+Vp(t)Ip(t)) dt.

Note that port KCL implies that the additive constant from KVL does not appear in the expressions
of power and energy.

The above formulas for power and energy are not validunless these terminals form a port ! In
particular, it is not possible to speak about the energy thatflows into the circuit along a single wire —
a conclusion that is physically quite obvious. Power and energy flow are not ‘local’ physical entities,
but they involve action at a distance. Note that the terminals of a 2-terminal circuit that internally
consists of the interconnection of circuits that all satisfy KVL and KCL form a 1-port, since KVL
and KCL are preserved under interconnection. In particular, a 2-terminal circuit that is composed of
resistors, capacitors, inductors, transformers, gyrators, memristors, etc. forms a 1-port. However, a
pair of terminals of a circuit with more than two terminals rarely forms a 1-port. In particular, for
the circuit shown below, the terminals{1,2,3,4} form a port, but there is no reason why the terminal
pairs{1,2} and{3,4} should form ports.

An example of an element that consists of more than one port isa transformer.
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The behavioral equations of an ideal transformer are

V1−V2 = n(V3−V4), I3 =−nI1, I1+ I2 = 0, I3+ I4 = 0, with n theturns ratio.

Clearly {1,2} and{3,4} form ports, and the energy that flows into the port{1,2} is equal to the
energy that flows out of the port{3,4}.

5 Internal ports

In order to study the energy flow inside a circuit, we introduce in this section circuits with both
external and internal terminals. Consider a circuit withN external terminals and alsoN′ internal
terminals. Assume that the internal terminals are directed.

We can define the behavior of this circuit analogously as we did for circuits with only external termi-
nals. A set of terminals, say{1′,2′, . . . , p′}, forms aninternal port :⇔ for all elements of the behavior,
I1′ + I2′ + · · ·+ Ip′ = 0. A circuit has in generalexternal ports, consisting of only external terminals,
internal ports, consisting of only internal terminals, andmixed ports, consisting of both external and
internal terminals. The internal ports allow to consider the power and energy flow between parts of a
circuit. For example, it is possible this way to consider theenergy transferred into the ports formed
by terminals{1,2} and{3,4} of the circuit below, since these pairs form internal ports.

6 Terminals are for interconnection, ports for energy transfer

As explained before, interconnection means that certain terminals share the same potential and current
(up to a sign). This is distinctly different from stating that the power or the energy flows from one side
of an interconnection to the other side. Power and energy involve ports, and this requires consideration
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of more than one terminal at the time. For example, the two circuits in the figure below share four
terminals, but it is not possible to speak of the energy that flows from circuit 1 to circuit 2, unless the
connected terminals form internal ports. Similarly, it is not possible to speak about the energy that
flows from the environment into circuit 1, or from the environment into circuit 2, unless the external
terminals of system 1 and of system 2 form ports. Of course, assuming KVL and KCL, the external
terminals of the interconnected system always form a port.

Setting up the behavioral equations of a circuit involves interconnection and variable sharing. Ex-
change of power and energy involves ports. Interconnections need not involve ports or power and
energy transfer. These observations put into perspective power-based modeling methodologies of in-
terconnected systems, as bond graphs [7, 3] and port-Hamiltonian systems [9, 4]. In [10] we propose
a modeling methodology for interconnected systems based ontearing, zooming, and linking, which
involves interconnection by sharing variables, but in which power considerations do not take a central
place.

7 Mechanical systems

We view a mechanical system as a device, a black box, with pins, called terminals, through which the
system can interact with its environment. This interactiontakes place through two vectors,a position
and a force, for each terminal. Even though angles and torques play an important role in mechanical
systems, we do not consider these here. The position and the force are elements ofR for rectilinear
motion, or ofR2 for motions in the plane, or ofR3 for spatial motion. We indicate the fact that we
want to leave open which of these cases we consider by the notation qk : R→ R

• andFk : R→ R
•.

Mechanical
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k
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Thebehavior of the mechanical system is a subsetB ⊆ ((R•)2N)R; (q,F) ∈ B means that the po-
sition/force time-function(q,F) = (q1,q2, . . . ,qN,F1,F2, . . . ,FN) : R→ (R•)N × (R•)N is compatible
with the architecture and the element values of the mechanical system.

Basic building blocks for mechanical systems under rectilinear motion are masses, springs, and
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dampers. Their behavioral equations are

mass: M
d2

dt2q = F,

spring: q1−q2 = ρ(F1), F1+F2 = 0,

damper:
d
dt

q1−
d
dt

q2 = d(F1), F1+F2 = 0,

with ρ : R→ R the spring characteristic, andd : R→ R the damper characteristic.

We now list some properties of mechanical systems that are conveniently defined in terms of the
behavior.
A mechanical system isinvariant under uniform motions if (q1, . . . ,qN, F1, . . . ,FN) ∈ B andv : t ∈
R 7→ (a+bt) ∈ R

•, a,b ∈ R
•, imply (q1+ v, . . . ,qN + v,F1, . . . ,FN) ∈ B.

A mechanical system obeysKirchhoff’s force law (KFL) if (q1,q2, . . . ,qN,F1,F2, . . . ,FN)∈B implies
F1+F2+ · · ·+FN = 0.
The spring and the damper obey KFL, but the mass does not. Invariance under uniform motions, a
most basic premise of mechanics, is important in the sequel.

The interconnection of two mechanical systems is defined by interconnecting two terminals at the
time, identifying the positions of the interconnected terminals, and putting the sum of the forces acting
on the interconnected terminals equal to zero. The interconnecting equations are

qN = qN′ and FN +FN′ = 0.

Note that the product of the shared variables does not have the dimension of power.

This yields, with notation analogous to the one used for circuits,

B1⊓B2 := {(q1,q2,. . .,qN−1,q1′,q2′,. . .,qN′−1,F1,F2,. . .,FN−1,F1′,F2′,. . .,FN′−1)

| ∃ q,F such that (q1, q2, . . . ,qN −1, q,F1, F2, . . . ,FN −1, F) ∈ B1

(q1′ ,q2′, . . . ,qN′−1,q,F1′,F2′, . . . ,FN′−1,−F) ∈ B2}.

This leads to interconnection of different terminals of thesame mechanical system, and to intercon-
nection of many pairs of terminals of two or more mechanical systems. Interconnection preserves
invariance under uniform motion and KFL.

8 Mechanical ports

We now introduce conditions that allows to study power and energy flow in mechanical systems.
Consider a mechanical system, and single outp terminals, which, for simplicity, we take to be the
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Terminals{1,2, . . . , p} form a (mechanical)port :⇔
(

q1, . . . ,qp,qp+1, . . . ,qN,F1, . . . ,Fp,Fp+1, . . . ,FN
)

∈ B,

⇒ F1+F2+ · · ·+Fp = 0.

We call this relationport KFL. Note that KFL imply that all terminals combined form a port.Also,
the external terminals of the interconnection of port devices form again a port. Note that including
masses with external forces acting on them form a difficulty for KFL.

If terminals{1,2, . . . , p} form a port, then we define thepower that flows into the mechanical system
at timet along thesep terminals and theenergy that flows into the circuit along thesep terminals on
the time-interval[t1, t2] to be equal to

power = F1(t)
⊤ d

dt
q1(t)+F2(t)

⊤ d
dt

q2(t)+ · · ·+Fp(t)
⊤ d

dt
qp(t),

energy =
∫ t2

t1

(

F1(t)
⊤ d

dt
q1(t)+F2(t)

⊤ d
dt

q2(t)+ · · ·+Fp(t)
⊤ d

dt
qp(t)

)

dt.

The above formulas for power and energy are not validunless these terminals form a mechanical
port ! Note that port KFL implies that power and energy are invariant under the additive constant that
can be added to the velocities due to the port invariance under uniform motion. A mass, a spring and
a damper obey invariance under uniform motion. A spring and adamper form a mechanical port, but
a mass does not. The inerter [8] is a mass-like device that is aport. In order to be able to consider the
energy that flows into a mechanical system, we should make sure that the total external force acting
on the masses is zero. This can be obtained, albeit in a physically artificial way, by introducing a
‘ground’, an infinite mass that cannot be accelerated, on which the negative of the total force acts, and
with respect to which positions are measured, as illustrated below.

We now compute the kinetic energy stored inN moving masses with massesM1,M2, . . . ,MN, po-
sitionsq1,q2, . . . ,qN ∈ R

3, and with forcesF1,F2, . . . ,FN ∈ R
3 acting on them. By Newton’s second

law,Mk
d2

dt2 qk = Fk. If we assume that KFL is satisfied,F1+F2+ · · ·+FN = 0, then it is readily verified
that

d
dt

(

1
4 ∑

i, j∈{1,2,...,N}

Mi M j

M1+M2+ · · ·+MN
||

d
dt

qi −
d
dt

q j||
2

)

= ∑
i∈{1,2,...,N}

F⊤
i

d
dt

qi.

Hence the kinetic energy equals

Ekinetic=
1
4 ∑

i, j∈{1,2,...,N}

Mi M j

M1+M2+ · · ·+MN
||

d
dt

qi −
d
dt

q j||
2
.
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Ekinetic is invariant under uniform motions, as a physically meaningful quantity should be. The ex-
pression forEkinetic can also be justified by computing the energy that can be stored in a spring or
dissipated in a damper, mounted between the masses, while bringing all the masses to the same ve-
locity. This expression is distinct from the classical expression of the kinetic energy,

Eclassical=
1
2 ∑

i∈{1,2,...,N}

Mi ||
d
dt

qi||
2
.

In fact, without requiring KFL, there holds

d
dt

(

1
2 ∑

i∈{1,2,...,N}

Mi ||
d
dt

qi||
2

)

= ∑
i∈{1,2,...,N}

F⊤
i

d
dt

qi.

The classical expressionEclassicalfor the kinetic energy can be made compatible with the expression
for Ekinetic by assuming the presence of an infinite mass at rest on which the force−(F1+F2+ · · ·+FN)
acts without accelerating it, and applying the formula forEkinetic.
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