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1.1 Introduction

It is a pleasure to contribute an article to this Festschriftin honor of Mathukumalli
Vidyasagar on the occasion of his 60-th birthday. As the subject of our article, we
have chosen the parametrization of stabilizing controllers for linear systems. This
topic goes back to the pioneering contributions of Kučera [2] and Youla-Bongiorgio-
Jabr [7], and is commonly known as the Kučera-Youla parametrization of the set
of stabilizing controllers. This parametrization issue and the algebraic structure that
underpins its solution are main topics discussed in Vidyasagar’s book [4], one of
the few books in the field of Systems & Control that can truly betermed ‘Algebraic
System Theory’. This book served as the inspiration for the present paper.

Our approach is somewhat different from the usual one in thatwe do not view a
linear system as defined by a transfer function. Rather, we view a system in the be-
havioral sense, that is, as a family of trajectories. All relevant system properties, such
as controllability, stabilizability, observability, anddetectability, are defined in terms
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of the behavior. Control is viewed as restricting the plant behavior by intersecting it
with the controller behavior.

The behavior of a linear time-invariant differential system is defined as the set
of solutions of a system of linear constant-coefficient differential equations. How-
ever, these behaviors can be represented in many other ways,for example, as the
set of solutions of a system of equations involving a differential operator in a ma-
trix of rational functions, rather than in a matrix of polynomials. The problem of
parametrizing the set of stabilizing controllers leads to the question of determining
all controller behaviors which, when intersected with the given plant behavior, yield
a stable system. The representation of behaviors in terms ofrational symbols turns
out to be an effective representation that leads to a parametrization of the set of sta-
bilizing controllers.

In the classical approach [2, 7, 4], systems with the same transfer function are
identified. By taking a trajectory-based definition of a system, the behavioral point
of view is able to carefully keep track of all trajectories, also of the non-controllable
ones. Loosely speaking, the stable coprime factorizationsof the transfer-function
based approach manage to avoid unstable pole-zero cancellations. Our approach
avoids introducing, as well as cancelling, common poles andzeros. Since the whole
issue of coprime factorizations over the ring of proper stable rational functions
started from a need to deal carefully with pole-zero cancellations, we feel that our
trajectory-based mode of thinking offers a useful point of view.

A few words about the notation and nomenclature used. We use standard symbols
for the setsR,N,Z, andC. C+ :=

{

s∈ C
∣

∣ Re(s) ≥ 0
}

denotes the closed right-half
of the complex plane. We useRn, Rn×m, etc. for vectors and matrices. When the
number of rows or columns is immaterial (but finite), we use the notation•, •×•, etc.
Of course, when we then add, multiply, or equate vectors or matrices, we assume that
the dimensions are compatible.C ∞(R,Rn) denotes the set of infinitely differentiable
functions fromR to Rn. The symbolI denotes the identity matrix, and 0 the zero
matrix. When we want to emphasize the dimension, we writeIn and 0n1×n2. A matrix
is said to be offull row rank if its rank is equal to the number of rows. Full column
rank is defined analogously.

R [ξ ] denotes the set of polynomials with real coefficients in the indeterminate
ξ , andR(ξ ) denotes the set of real rational functions in the indeterminateξ . R [ξ ]
is a ring andR [ξ ]n a finitely generatedR [ξ ]-module.R(ξ ) is a field andR(ξ )n

is ann-dimensionalR(ξ )-vector space. The polynomialsp1, p2 ∈ R [ξ ] are said to
becoprimeif they have no common zeros.p∈ R [ξ ] is said to beHurwitz if it has
no zeros inC+. Therelative degreeof f ∈ R(ξ ) , f = n/d, with n,d ∈ R [ξ ], is the
degree of the denominatord minus the degree of the numeratorn; f ∈R(ξ ) is said to
beproperif the relative degree is≥ 0,strictly properif the relative degree is> 0, and
biproperif the relative degree is equal to 0. The rational functionf ∈R(ξ ), f = n/d,
with n,d ∈ R [ξ ] coprime, is said to bestableif d is Hurwitz, andminiphaseif n and
d are both Hurwitz.

We only discuss the main ideas. Details and proofs may be found in [6]. The
results can easily be adapted to other stability domains, but in this article, we only
consider the Hurwitz domain for concreteness.
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1.2 Rational symbols

We consider behaviorsB ⊆ (R•)R that are the set of solutions of a system of linear-
constant coefficient differential equations. In other words,B is the solution set of

R
(

d
dt

)

w = 0, (R)

whereR∈R [ξ ]•×•. We shall deal with infinitely differentiable solutions only. Hence
(R) defines the dynamical systemΣ = (R,R•,B) with

B =
{

w∈ C
∞ (R,R•)

∣

∣ R
(

d
dt

)

w = 0
}

.

We call this system (or its behavior) alinear time-invariant differential system. Note
that we may as well denote this behavior asB = kernel

(

R
(

d
dt

))

, sinceB is actu-
ally the kernel of the differential operator

R
(

d
dt

)

: C
∞(R,Rcolumn dimension(R)) → C

∞(R,Rrow dimension(R)).

We denote the set of linear time-invariant differential systems or their behaviors by
L • and byL w when the number of variables isw.

We will extend the above definition of a behavior defined by a differential equa-
tion involving a polynomial matrix to a ‘differential equation’ involving a matrix
of rational functions. In order to do so, we first recall the terminology of factoring
a matrix of rational functions in terms of polynomial matrices. The pair(P,Q) is
said to be aleft factorization overR [ξ ] of M ∈ R(ξ )n1×n2 if (i) P∈ R [ξ ]n1×n1 and
Q ∈ R [ξ ]n1×n2, (ii) determinant(P) 6= 0, and (iii) M = P−1Q. (P,Q) is said to be
a left-coprime factorization overR [ξ ] of M if, in addition, (iv) P andQ are left co-
prime overR [ξ ]. Recall thatP andQ are said to beleft coprime overR [ξ ] if for
every factorization

[

P Q
]

= F
[

P′ Q′
]

with F ∈ R [ξ ]n1×n1 ,F is R [ξ ]-unimodular.
It is easy to see that a left-coprime factorization overR [ξ ] of M ∈ R(ξ )n1×n2 is
unique up to premultiplication ofP andQ by anR [ξ ]-unimodular polynomial ma-
trix U ∈ R[ξ ]n1×n1.

Consider the system of ‘differential equations’

G
(

d
dt

)

w = 0, (G )

with G ∈ R(ξ )•×•, called thesymbolof (G ). SinceG is a matrix of rational func-
tions, it is not clear whenw : R → R• is a solution of (G ). This is not a matter of
smoothness, but a matter of giving a meaning to the equality,sinceG

(

d
dt

)

is not a
differential operator, and not even a map.

We define solutions as follows. Let(P,Q) be a left-coprime matrix factorization
overR [ξ ] of G = P−1Q. Define

[[w : R → R
• is a solution of (G ) ]] :⇔ [[Q

(

d
dt

)

w = 0]].

Hence (G ) defines the system
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Σ =
(

R,R•,kernel
(

Q
(

d
dt

)))

∈ L
•.

It follows from this definition thatG
(

d
dt

)

is not a map onC ∞ (R,R•). Rather,
w 7→ G

(

d
dt

)

w is the point-to-set map that associates withw ∈ C ∞ (R,R•) the
set v′ + v, with v′ ∈ C ∞ (R,R•) a particular solution ofP

(

d
dt

)

v′ = Q
(

d
dt

)

w and
v ∈ C ∞ (R,R•) any function that satisfiesP

(

d
dt

)

v = 0. This set ofv’s is a finite-
dimensional linear subspace ofC ∞ (R,R•) of dimension equal to the degree of
determinant(P). Hence, ifP is not anR [ξ ]-unimodular polynomial matrix, equiv-
alently, if G is not a polynomial matrix,G

(

d
dt

)

is not a point-to-point map. Viewing
G

(

d
dt

)

as a point-to set map leads to the definition of its kernel as

kernel
(

G
(

d
dt

))

:= {w∈ C
∞ (R,R•) | 0∈ G

(

d
dt

)

w},

i.e.kernel
(

G
(

d
dt

))

consists of the set of solutions of (G ), and of its image as

image
(

G
(

d
dt

))

:= {v∈ C
∞ (R,R•) | v∈ G

(

d
dt

)

w for somew∈ C
∞ (R,R•)}.

Hence (G ) defines the system

Σ =
(

R,R•,kernel
(

G
(

d
dt

)))

:=
(

R,R•,kernel
(

Q
(

d
dt

)))

∈ L
•.

Three main theorems in the theory of linear time-invariant differential systems
are (i) the elimination theorem, (ii) the one-to-one relation between annihilators and
submodules or subspaces, and (iii) the equivalence of controllability and existence of
an image representation. Results involving (ii) and (iii) are discussed in later sections.

Theelimination theoremstates that ifB ∈ L w1+w2, then

B1 := {w1 ∈ C
∞ (R,Rw1) | ∃w2 ∈ C

∞ (R,Rw2) such that(w1,w2) ∈ B}

belongs toL w1. In other words,L • is closed under projection. The elimination
theorem implies thatL • is closed under addition, intersection, projection, and under
action and inverse action withF

(

d
dt

)

, whereF ∈ R(ξ )•×•.

1.3 Input, output, and state cardinality

The integer invariantsw,m,p,n are maps fromL • to Z+ that play an important role
in the theory of linear time-invariant differential systems. Intuitively,

w (B) equals the number of variables inB,
m(B) equals the number of input variables inB,
p(B) equals the number of output variables inB, and
n(B) equals the number of state variables inB.

The integer invariantw is defined by[[w (B) := w]] ⇐⇒ [[B ∈ L w ]].
The other integer invariants are most easily captured by means of representations.

A behaviorB ∈ L • admits aninput/output representation
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P
(

d
dt

)

y = Q
(

d
dt

)

u, w = Π
[

u
y

]

(i/o)

with P ∈ R(ξ )p(B)×p(B), determinant(P) 6= 0, Q ∈ R(ξ )p(B)×m(B), and Π ∈
Rw(B)×w(B) a permutation matrix. This input/output representation ofB defines
m(B) andp(B) uniquely. It follows from the conditions onP andQ thatu is free,
that is, that for anyu ∈ C ∞(R,Rm(B)), there exists ay ∈ C ∞(R,Rp(B)) such that
P

(

d
dt

)

y= Q
(

d
dt

)

u. The permutation matrixΠ shows how the input and output com-
ponents are chosen from the components ofw, and results in an input/output partition
of w.

The matrixG = P−1Q ∈ R(ξ )p(B)×m(B) is called thetransfer functioncorre-
sponding to this input/output partition. In fact, it is possible to choose this partition
such thatG is proper. It is worth mentioning that in generalP

(

d
dt

)

y = Q
(

d
dt

)

u has a
different behavior thany= P−1Q

(

d
dt

)

u. The difference is due to the fact thatB may
not be controllable, as discussed in the next section.

A behaviorB ∈ L • also admits an observableinput/state/output representation

d
dt x = Ax+Bu, y = Cx+Du, w = Π

[

u
y

]

, (i/s/o)

with A ∈ Rn(B)×n(B), B ∈ Rn(B)×m(B), C ∈ Rp(B)×n(B), D ∈ Rp(B)×m(B), Π ∈
Rw(B)×w(B) a permutation matrix, and(A,C) an observable pair. By eliminatingx,
the(u,y)-behavior defines an linear time-invariant differential system, with behavior
denoted byB′. This behavior is related toB by B = ΠB′. It can be shown that this
input/state/output representation ofB, including the observability of(A,C), defines
m(B) ,p(B) , andn(B) uniquely.

1.4 Controllability, stabilizability, observability, an d detectability

The behaviorB ∈ L • is said to becontrollableif for all w1,w2 ∈ B, there exists
T ≥ 0 andw∈B, such thatw(t) = w1(t) for t < 0, andw(t) = w2(t−T) for t ≥T. B
is said to bestabilizableif for all w∈ B, there existsw′ ∈ B, such thatw′(t) = w(t)
for t < 0 andw′(t) → 0 ast → ∞.

In words, controllability means that it is possible to switch between any two
trajectories in the behavior, and stabilizability means that every trajectory can be
steered to zero asymptotically.

Until now, we have dealt with representations involving thevariablesw only.
However, many models, such as first principles models obtained by interconnection
and state models, include auxiliary variables in addition to the variables the model
aims at. We call the lattermanifest variables, and the auxiliary variableslatent vari-
ables. In the context of rational models, this leads to the model class

R
(

d
dt

)

w = M
(

d
dt

)

ℓ (LV)

with R,M ∈ R(ξ )•×•. By the elimination theorem, themanifest behaviorof (LV),
defined as
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{w∈ C
∞ (R,R•)

∣

∣ ∃ℓ ∈ C
∞ (R,R•)such that (LV) holds},

belongs toL •.
The latent variable system (LV) is said to beobservableif, whenever(w, ℓ1) and

(w, ℓ2) satisfy (LV), thenℓ1 = ℓ2. (LV) is said to bedetectableif, whenever(w, ℓ1)
and(w, ℓ2) satisfy (LV), thenℓ1(t)− ℓ2(t) → 0 ast → ∞.

In words, observability means that the latent variable trajectory can be deduced
from the manifest variable trajectory, and detectability means that the latent variable
trajectory can be deduced from the manifest variable trajectory asymptotically. The
notions of observability and detectability apply to more general situations, but here
we use them only in the context of latent variable systems.

It is easy to derive tests to verify these properties in termsof kernel representa-
tions and the zeros of the associated symbol. We first recall the notion of poles and
zeros of a matrix of rational functions.

M ∈ R(ξ )n1×n2 can be brought into a simple canonical form, called theSmith-
McMillan form by pre- and postmultiplication byR [ξ ]-unimodular polynomial ma-
trices. LetM ∈ R(ξ )n1×n2. There existU ∈ R [ξ ]n1×n1 ,V ∈ R [ξ ]n2×n2 , bothR [ξ ]-
unimodular,Π ∈ R [ξ ]n1×n1, andZ ∈ R [ξ ]n1×n2 such thatM = UΠ−1ZV, with

Π = diagonal(π1,π2, · · · ,πn1) ,Z =

[

diagonal(ζ1,ζ2, · · · ,ζr) 0r×(n2−r)

0(n1−r)×r 0(n1−r)×(n2−r)

]

with ζ1,ζ2, · · · ,ζr,π1,π2, · · · ,πn1 non-zero monic elements ofR [ξ ], the pairsζk,πk

coprime fork= 1,2, . . . ,r, πk = 1 for k= r+1,r+2. . . ,n1, and withζk−1 a factor
of ζk andπk a factor ofπk−1, for k= 2, · · · ,r. Of course,r= rank(M). The roots of
theπk’s (hence ofπ1, disregarding multiplicity issues) are called thepolesof M, and
those of theζk’s (hence ofζr, disregarding multiplicity issues) are called thezeros
of M. WhenM ∈ R [ξ ]•×•, theπk’s are absent (they are equal to 1). We then speak
of theSmith form.

Proposition 1

1. (G ) is controllable if and only ifG has no zeros.
2. (G ) is stabilizable if and only ifG has no zeros inC+.
3. (LV) is observable if and only ifM has full column rank and has no zeros.
4. (LV) is detectable if and only ifM has full column rank and has no zeros inC+.

�

Consider the following special case of (LV)

w = M
(

d
dt

)

ℓ (M )

with M ∈ R(ξ )•×•. Note that, withM
(

d
dt

)

viewed as a point-to-set map, the man-
ifest behavior of (M ) is equal toimage

(

M
(

d
dt

))

. (M ) is hence called animage
representationof its manifest behavior. In the observable case, that is, ifM is of full
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column rank and has no zeros,M has a polynomial left inverse, and hence (M ) de-
fines a differential operator mappingw to ℓ. In other words, in the observable case,
there exists anF ∈ R [ξ ]•×• such that (M ) has the representation

w = M
(

d
dt

)

ℓ, ℓ = F
(

d
dt

)

w.

The well-known relation between controllability and imagerepresentations for
polynomial symbols remains valid in the rational case.

Theorem 2 The following are equivalent forB ∈ L •.

1. B is controllable.
2. B admits an image representation (M ) with M ∈ R(ξ )•×•.
3. B admits an observable image representation (M ) with M ∈ R(ξ )•×•.

�

Let B ∈ L •. Thecontrollable partof B is defined as

Bcontrollable:= {w∈ B
∣

∣ ∀ t0,t1 ∈ R, t0 ≤ t1,

∃w′ ∈ B with compact support such thatw(t) = w′(t) for t0 ≤ t ≤ t1}.

In words,Bcontrollableconsists of the trajectories inB that can be steered to zero in
finite time. It is easy to see thatBcontrollable∈ L • and that it is controllable. In fact,
Bcontrollableis the largest controllable behavior contained inB.

The controllable part induces an equivalence relation onL •, calledcontrollabil-
ity equivalence, by setting

[[B′ ∼controllability B
′′]] :⇔ [[B′

controllable= B
′′
controllable]].

It is easy to prove thatB′ ∼controllableB′′ if and only if B′ andB′′ have the same
compact support trajectories, or, for that matter, the samesquare integrable trajecto-
ries. Each equivalence class modulo controllability contains exactly one controllable
behavior. This controllable behavior is contained in all the other behaviors that be-
long to the equivalence class modulo controllability.

The systemG
(

d
dt

)

w = 0, whereG∈ R(ξ )•×•, andF
(

d
dt

)

G
(

d
dt

)

w = 0 are con-
trollability equivalent ifF ∈ R(ξ )•×• is square and nonsingular. In particular, two
input/output systems (i/o) have the same transfer functionif and only if they are
controllability equivalent.

If G1,G2 ∈R(ξ )•×• have full row rank, then the behavior defined byG1
(

d
dt

)

w=

0 is equal to the behavior defined byG2
(

d
dt

)

w= 0 if there exists aR [ξ ]-unimodular
matrix U ∈ R [ξ ]•×• such thatG2 = UG1. On the other hand, the behavior de-
fined by G1

(

d
dt

)

w = 0 has the same controllable part as the behavior defined by
G2

(

d
dt

)

w = 0 if and only if there exists anF ∈ R(ξ )•×•, square and nonsingu-
lar, such thatG2 = FG1. If G1 andG2 are full row rank polynomial matrices, then
equality of the behaviors holds if and only ifG2 = UG1. This illustrates the subtle
distinction between equations that have the same behavior,versus behaviors that are
controllability equivalent.
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1.5 Rational annihilators

Obviously, forn ∈ R(ξ )• andw ∈ C ∞ (R,R•), the statementsn
(

d
dt

)⊤
w = 0, and,

hence, forB ∈ L •, n
(

d
dt

)⊤
B = 0, meaningn

(

d
dt

)⊤
w = 0 for all w∈ B, are well-

defined, since we have given a meaning to (G ).

Call n∈ R [ξ ]• a polynomial annihilatorof B ∈ L • if n
(

d
dt

)⊤
B = 0, and call

n∈ R(ξ )• a rational annihilatorof B ∈ L • if n
(

d
dt

)⊤
B = 0.

Denote the set of polynomial and of rational annihilators ofB ∈ L • by B
⊥R[ξ ]

and B
⊥R(ξ ) , respectively. It is well known that forB ∈ L w, B

⊥R[ξ ] is an R [ξ ]-
module, indeed, a finitely generated one, since allR [ξ ]-submodules ofR [ξ ]w are
finitely generated. However,B⊥R(ξ ) is also anR [ξ ]-module, but a submodule of
R(ξ )w viewed as anR [ξ ]-module (rather than as anR(ξ )-vector space). TheR [ξ ]-
submodules ofR(ξ )w are not necessarily finitely generated.

The question occurs whenB⊥R(ξ ) is a vector space. This question has a nice
answer, given in the following theorem.

Theorem 3 LetB ∈ L w.

1. B
⊥R(ξ ) is anR [ξ ]-submodule ofR(ξ )w.

2. B
⊥R(ξ ) is anR(ξ )-vector subspace ofR(ξ )w if and only ifB is controllable.

3. Denote theR [ξ ]-submodules ofR [ξ ]w by M
w. There is a bijective correspon-

dence betweenL w andMw, given by

B ∈ L
w 7→ B

⊥R[ξ ] ∈ M
w,

M ∈ M
w 7→ {w∈ C

∞ (R,Rw)
∣

∣ n
(

d
dt

)⊤
w = 0 ∀n∈ M}.

4. Denote the linearR(ξ )-subspaces ofR(ξ )w by L
w. There is a bijective corre-

spondence betweenL w
controllable, the controllable elements ofL w, andLw given

by
B ∈ L

w
controllable 7→ B

⊥R(ξ ) ∈ L
w,

L ∈ L
w 7→ {w∈ C

∞ (R,Rw)
∣

∣ n
(

d
dt

)⊤
w = 0 ∀n∈ L}.

�

This theorem shows a precise sense in which a linear time-invariant system can
be identified by a module, and a controllable linear time-invariant differential system
(an infinite dimensional subspace ofC ∞ (R,Rw) wheneverB 6= {0}) can be iden-
tified with afinite-dimensionalvector space (of dimensionp(B)). Indeed, through
the polynomial annihilators,L w is in one-to-one correspondence with theR [ξ ]-
submodules ofR [ξ ]w, and, through the rational annihilators,L w

controllableis in one-to-
one correspondence with theR(ξ )-subspaces ofR(ξ )w.

Consider the systemB ∈ L w and its rational annihilatorsB⊥R(ξ ) . In general,
this is anR [ξ ]-submodule, but notR(ξ )-vector subspace ofR(ξ )w. Its polynomial
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elements,B⊥R[ξ ] always form anR [ξ ]-submodule overR [ξ ]w, and this module de-
terminesB uniquely. Therefore,B⊥R(ξ ) also determinesB uniquely. Moreover,
B

⊥R(ξ ) forms anR(ξ )-vector space if and only ifB is controllable. More gener-

ally, theR(ξ )-span ofB⊥R(ξ ) is exactlyB
⊥R(ξ )

controllable. Therefore theR(ξ )-span of the
rational annihilators of two systems are the same if and onlyif they have the same
controllable part. We state this formally.

Theorem 4 Let B1 be given by G1
(

d
dt

)

w = 0 and B2 by G2
(

d
dt

)

w = 0, with
G1,G2 ∈R(ξ )•×w. The rows of G1 and G2 span the sameR [ξ ]-submodule ofR(ξ )w

if and only ifB1 = B2. The rows of G1 and G2 span the sameR(ξ )-vector subspace
of R(ξ )w if and only ifB1 andB2 have the same controllable part, that is, if and
only if B1 ∼controllableB2. �

1.6 Left-prime representations

In order to express system properties and to parametrize theset of stabilizing con-
trollers effectively, we need to consider representationswith matrices of rational
functions over certain special rings. We now introduce the relevant subrings ofR(ξ ).

1. R(ξ ) itself, the rational functions,
2. R [ξ ], the polynomials,
3. R(ξ )

P
, the set elements ofR(ξ ) that are proper,

4. R(ξ )
S

, the set elements ofR(ξ ) that are stable,
5. R(ξ )PS = R(ξ )P ∩R(ξ )S , the proper stable rational functions.

We can think of these subrings in terms of poles. Indeed, these subrings are charac-
terized by, respectively, arbitrary poles, no finite poles,no poles at{∞}, no poles in
C+, and no poles inC+ ∪{∞}. It is easy to identify the unimodular elements (that
is, the elements that have an inverse in the ring) of these rings. They consist of, re-
spectively, the non-zero elements, the non-zero constants, the biproper elements, the
miniphase elements, and the biproper miniphase elements ofR(ξ ).

We also consider matrices over these rings. Call an element of R(ξ )•×• proper,
stable, or proper stableif each of its entries is. The square matrices over these rings
are unimodular if and only if the determinant is unimodular.ForM ∈R(ξ )•×•

P
, define

M∞ := limx∈R,x→∞ M(x). Call the matrixM ∈ R(ξ )n×n

P
biproper if it has an inverse

in R(ξ )n×n

P
, that is, ifdeterminant(M∞) 6= 0, and callM ∈ R(ξ )n×n

S
miniphaseif

it has an inverse inR(ξ )n×n

S , that is, ifdeterminant(M∞) 6= 0 is miniphase.
Let R denote any of the ringsR(ξ ), R [ξ ], R(ξ )

P
, R(ξ )

S
, R(ξ )

PS
. M ∈

Rn1×n2 is said to beleft prime over R if for every factorization ofM the form
M = FM′ with F ∈ Rn1×n1 andM′ ∈ Rn1×n2, F is unimodular overR. It is easy
to characterize the left-prime elements.M ∈ R(ξ )n1×n2 is the prime overR if and
only if

1. M is of full row rank whenR = R(ξ ),
2. M ∈ R [ξ ]n1×n2 andM(λ ) is of full row rank for allλ ∈ C whenR = R [ξ ],
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3. M ∈ R(ξ )n1×n2
P

andM∞ is of full row rank whenR = R(ξ )
P

,
4. M is of full row rank and has no poles and no zeros inC+ whenR = R(ξ )

S
,

5. M ∈ R(ξ )n1×n2
P

, M∞ is of full row rank, andM has no poles and no zeros inC+,
whenR = R(ξ )

PS
.

Controllability and stabilizability can be linked to the existence of left-prime
representations over these subrings ofR(ξ ).

1. B ∈ L • admits a representation (R) with R of full row rank, and a representa-
tion (G ) with G of full row rank andG∈ R(ξ )•×•

PS
, that is, with all its elements

proper and stable, meaning that they have no poles inC+.
2. B admits a representation (G ) with G left prime overR(ξ ), that is, withG of

full row rank.
3. B is controllable if and only if it admits a representation (G ) with G left prime

overR(ξ ), that is,G has full row rank and has no zeros.
4. B is controllable if and only if it admits a representation (R) with R∈ R [ξ ]•×•

left prime overR [ξ ], that is, withR(λ ) of full row rank for all λ ∈ C.
5. B is controllable if and only if it admits a representation (G ) that is left prime

overR(ξ )
P

, that is, all elements ofG are proper andG∞ of full row rank, and
G has no zeros.

6. B admits a representation (G ) with G left prime overR(ξ )
P

, that is, all ele-
ments ofG are proper andG∞ has full row rank.

7. B is stabilizable if and only if it admits a representation (G ) with G∈ R(ξ )•×•
S

left prime overR(ξ )
S

, that is,G has full row rank and no poles and no zeros in
C+.

8. B is stabilizable if and only if it admits a representation (G ) with G∈ R(ξ )•×•
PS

left prime overR(ξ )
PS

, that is,G∞ has full row rank andG has no poles and
no zeros inC+.

These results illustrate how system properties can be translated into properties of
rational symbols. Roughly speaking, everyB ∈ L • has a full row rank polynomial
and a full row rank proper and/or stable representation. As long as we allow a non-
empty region where to put the poles, we can obtain a representation with a rational
symbol with poles confined to that region. The zeros of the representation are more
significant. No zeros correspond to controllability. No unstable zeros correspond to
stabilizability. In [6] an elementary proof is given that does not involve complicated
algebraic arguments of the characterization of stabilizability in terms of a represen-
tation that is left-prime over the ring of proper stable rational functions. Analogous
results can also be obtained for image representations.

Note that a left-prime representation overR(ξ )
PS

exists if and only if the be-
havior is stabilizable. This result can be compared with theclassical result obtained
by Vidyasagar in his book [4], where the aim is to obtain a proper stable left-prime
representation of a system that is given as a transfer function, y = F

(

d
dt

)

u, where
F ∈ R(ξ )p×m. This system is a special case of (G ) with G =

[

Ip −F
]

, and, since
it has no zeros,y = F

(

d
dt

)

u is controllable, and hence stabilizable. Therefore, a
system defined by a transfer function admits a representation G1

(

d
dt

)

y = G2
(

d
dt

)

u
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with G1,G2 ∈ R(ξ )•×•
PS

, and
[

G1 G2
]

left coprime overR(ξ )
PS

. This is an im-
portant, classical, result. However, in the controllable case, we can obtain a repre-
sentation that is left prime overR(ξ )P , and such that

[

G1 G2
]

has no zeros at all.
The main difference of our result from the classical left-coprime factorization results
overR(ξ )

PS
is that we faithfully preserve the exact behavior and not only the con-

trollable part of a behavior, whereas in the classical approach all stabilizable systems
with the same transfer function are identified. We thus observe that the behavioral
viewpoint provides a more intrinsic approach for discussing pole-zero cancellation.
Indeed, since the transfer function is a rational function,poles and zeros can — by
definition — be added and cancelledad libitum. Transfer functions do not provide
the correct framework in which to discuss pole-zero cancellations. Behaviors defined
by rational functions do.

1.7 Control

We refer to [5, 1] for an extensive treatment of control in a behavioral setting. In
terms of the notions introduced in these references, we shall be concerned with full
interconnection only, meaning that the controller has access to all the system vari-
ables. We refer to [1] for a nice discussion of the concepts involved.

In the behavioral approach, control is viewed as the interconnection of a plant
and a controller. LetP (henceforth∈L w) be called theplant, C (henceforth∈L w)
the controller, and their interconnectionP ∩C (hence also∈ L w), thecontrolled
system. This signifies that in the controlled system, the trajectory w has to obey both
the laws ofP andC , which leads to the point of view that control means restricting
the plant behavior to a subset, the intersection of the plantand the controller.

The controllerC is said to be aregular controllerfor P if

p(P ∩C ) = p(P)+p(C ) .

andsuperregularif, in addition,

n(P ∩C ) = n(P)+n(C ) .

The origin and the significance of these concepts is discussed in, for example, [1,
section VII]. The classical input/state/output based sensor-output-to-actuator-input
controllers that dominate the field of control are superregular. Controllers that are
regular, but not superregular, are relevant in control, much more so than is appreci-
ated, for example as PID controllers, or as control devices that do not act as sensor-
output-to-actuator-input feedback controllers.

Superregularity means that the interconnection of the plant with the controller
can take place at any moment in time. The controllerC ∈ L w is superregular for
P ∈ L w if and only if for all w1 ∈ P andw2 ∈ C , there exists aw∈ (P ∩C )closure

such thatw′
1 andw′

2 defined by

w′
1(t) =

{

w1(t) for t ≤ 0

w(t) for t > 0
,
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and

w′
2(t) =

{

w2(t) for t ≤ 0,

w(t) for t > 0

belongs toP andC , respectively. Hence, for a superregular interconnection, any
distinct past histories inP and C can be continued as one and the same future
trajectory inP∩C . In [5] it has been shown that superregularity can also be viewed
as feedback.

The controllerC is said to bestabilizingif P∩C is stable, that is, ifw∈P∩C

impliesw(t) → 0 ast → ∞. Note that we consider stability as a property of an au-
tonomous behavior (a behaviorB with m(B) = 0). In the input/output setting, as
in [4], the interconnection ofP andC is defined to be stable if the system obtained
by injecting artificial arbitrary inputs at the interconnection terminals is bounded-
input/bounded-outputstable. Our stability definition requires thatw(t)→ 0 for t →∞
in P ∩C . It turns out that bounded-input/bounded-output stability requires (i) our
stability, combined with (ii) superregularity. Interconnections that are not superreg-
ular cannot be bounded-input/bounded-output stable. However, for physical systems
these concepts (stability and superregularity) are quite unrelated. For example, the
harmonic oscillatorM d2

dt2
w1+Kw1 = w2, with M,K > 0, is stabilized by the damper

w2 = −D d
dt w1 if D > 0. In our opinion, it makes little sense to call this interconnec-

tion unstable, just because the interconnection is not superregular.
Regularity and superregularity can be expressed in terms ofleft-prime kernel

representations with rational symbols.

Proposition 5 Consider the plantP ∈ L w. Assume thatP is stabilizable. LetP
be described by P

(

d
dt

)

w = 0 with P∈ R(ξ )•×w left prime overR(ξ )
S

. By stabiliz-
ability of P such a representation exists.

1. C ∈ L w is a regular stabilizing controller if and only ifC admits a representa-
tion C

(

d
dt

)

w = 0 with C∈ R(ξ )•×w left prime overR(ξ )
S

, and such that

G =

[

P
C

]

is square andR(ξ )
S

-unimodular, that is, withdeterminant(G) miniphase.
2. C ∈ L w is a superregular stabilizing controller if and only ifC admits a rep-

resentation C
(

d
dt

)

w = 0 with C∈ R(ξ )•×w left prime overR(ξ )
PS

, and such
that

G =

[

P
C

]

is square andR(ξ )PS -unimodular, that is, withdeterminant(G) biproper
and miniphase.

�

The equivalence of the following statements can be shown:
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[[P is stabilizable]] ⇔ [[∃ a regular controllerC that stabilizesP]]

⇔ [[∃ a superregular controllerC that stabilizesP]].

Combining this with the previous theorem leads to the following result on matrices
of rational functions.

Corollary 6 1. Assume that G∈ R(ξ )n1×n2
S

is left prime overR(ξ )
S

. Then there

exists F∈ R(ξ )
(n2−n1)×n2
S

such that

[

G
F

]

is R(ξ )S -unimodular.
2. Assume that G∈ R(ξ )n1×n2

PS
is left prime overR(ξ )

PS
. Then there exists F∈

R(ξ )
(n2−n1)×n2
PS

such that
[

G
F

]

is

R(ξ )PS -unimodular.

1.8 Parametrization of the set of regular stabilizing, superregular
stabilizing, and dead-beat controllers

In this section, we parametrize the set of regular and superregular controllers that
stabilize a given stabilizable plantP ∈ L •.

1.8.1 Regular stabilizing controllers

Step 1.The parametrization starts from a kernel representationP
(

d
dt

)

w = 0 of P,

with P ∈ R(ξ )p(P)×w(P) left prime overR(ξ )
S

. By stabilizability ofP, such a
representation exists.

Step 2.Construct aP′ ∈ R(ξ )
m(P)×w(P)
S

such that

[

P
P′

]

is R(ξ )S -unimodular. By corollary 6, such aP′ exists.
Step 3.The set of regular stabilizing controllersC ∈ L w(P) is given as the sys-

tems with kernel representationC( d
dt )w = 0, where

C = F1P+F2P
′,

with F1 ∈ R(ξ )
m(P)×p(P)
S

is free andF2 ∈ R(ξ )
m(P)×m(P)
S

is R(ξ )
S

-unimodular,
that is, withdeterminant(F2) miniphase.



14 Jan C. Willems and Yutaka Yamamoto

Step 3’.This parametrization may be further simplified using controllability
equivalence, by identifying controllers that have the samecontrollable part, that is,
by considering controllers up to controllability equivalence. The set of controllers
C ∈ L w(P) with kernel representationC( d

dt )w = 0 andC of the form

C = FG+G′,

with F ∈ R(ξ )
m(P)×p(P)
S

free, consists of regular stabilizing controllers, and con-
tains an element of the equivalence class modulo controllability of each regular sta-
bilizing controller forP.

1.8.2 Superregular stabilizing controllers

Step 1.The parametrization starts from a kernel representationP
(

d
dt

)

w = 0 of P,

with P∈ R(ξ )p(P)×w(P) left prime overR(ξ )
PS

. By stabilizability ofP, such a
representation exists.

Step 2.Construct aP′ ∈ R(ξ )
m(P)×w(P)
S

such that

[

P
P′

]

is R(ξ )PS -unimodular. By corollary 6, such aP′ exists.
Step 3.The set of superregular stabilizing controllersC ∈ L w(P) is given as the

systems with kernel representationC( d
dt )w = 0, where

C = F1P+F2P
′,

with F1 ∈ R(ξ )
m(P)×p(P)
PS

free andF2 ∈ R(ξ )
m(P)×m(P)
PS

R(ξ )
PS

-unimodular,
that is, withdeterminant(F2) biproper and miniphase.

Step 3’.This parametrization may be further simplified using controllability
equivalence, by identifying controllers that have the samecontrollable part, that is,
by considering controllers up to controllability equivalence. The set of controllers
C ∈ L w(P) with kernel representationC( d

dt )w = 0 andC of the form

C = FG+G,′

with F ∈ R(ξ )
m(P)×p(P)
PS

free, consists of superregular stabilizing controllers, and
contains an element of the equivalence class modulo controllability of each super-
regular stabilizing controller forP.

It is of interest to compare these parametrizations with theone obtained in [3]. We
now show a very simple example to illustrate the difference between the parametriza-
tions obtained in step 3 and step 3’.

Example:Consider the planty = 0u, henceP =
[

1 0
]

, and the superregular sta-
bilizing controlleru+ α d

dt u = 0, with α ≥ 0. TakeP′ =
[

0 1
]

in the parametriza-
tions. The set of (super)regular stabilizing controllers is given byC

(

d
dt

)

u = 0, with
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C ∈ R(ξ ) miniphase in the regular case, and miniphase and biproper inthe super-
regular case. TakingF2(ξ ) = (1+αξ )/(1+2αξ ), for example, yields the controller
u+ α d

dt u = 0, with α ≥ 0. The parametrization in step 3’ yields only the controller
u = 0, which is indeed the controllable part ofu+ α d

dt u = 0.
This example illustrates that the parametrization in step 3’ does not yield all the

(super)regular stabilizing controllers, although it yields all the stabilizing controller
transfer functions. Note that the parametrization of step 3does exclude the destabi-
lizing controlleru+ α d

dt u = 0, with α < 0.
The trajectory-based parametrization is not only more general, but it also give

sharper results. It yields all stabilizing controllers, without having to resort to equiv-
alence modulo controllability.
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