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1.1 Introduction

It is a pleasure to contribute an article to this Festschrifionor of Mathukumalli
Vidyasagar on the occasion of his 60-th birthday. As theestlgf our article, we
have chosen the parametrization of stabilizing contrslfer linear systems. This
topic goes back to the pioneering contributions of Ku¢2tahd Youla-Bongiorgio-
Jabr [7], and is commonly known as the Kuc€era-Youla paramston of the set
of stabilizing controllers. This parametrization issue &me algebraic structure that
underpins its solution are main topics discussed in Vidgass book [4], one of
the few books in the field of Systems & Control that can trulytdrened ‘Algebraic
System Theory’. This book served as the inspiration for tiesent paper.

Our approach is somewhat different from the usual one inwleadlo not view a
linear system as defined by a transfer function. Rather, ew @i system in the be-
havioral sense, thatis, as a family of trajectories. Akbvaint system properties, such
as controllability, stabilizability, observability, anttectability, are defined in terms
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of the behavior. Control is viewed as restricting the plagtidvior by intersecting it
with the controller behavior.

The behavior of a linear time-invariant differential systés defined as the set
of solutions of a system of linear constant-coefficientatightial equations. How-
ever, these behaviors can be represented in many other feaysxample, as the
set of solutions of a system of equations involving a diffiied operator in a ma-
trix of rational functions, rather than in a matrix of polynals. The problem of
parametrizing the set of stabilizing controllers leadsh® question of determining
all controller behaviors which, when intersected with thesg plant behavior, yield
a stable system. The representation of behaviors in termetiohal symbols turns
out to be an effective representation that leads to a paremaigdn of the set of sta-
bilizing controllers.

In the classical approach [2, 7, 4], systems with the sammsfiea function are
identified. By taking a trajectory-based definition of a eystthe behavioral point
of view is able to carefully keep track of all trajectorielsaof the non-controllable
ones. Loosely speaking, the stable coprime factorizatadrthe transfer-function
based approach manage to avoid unstable pole-zero caiwedlaOur approach
avoids introducing, as well as cancelling, common poleszands. Since the whole
issue of coprime factorizations over the ring of proper lgtatational functions
started from a need to deal carefully with pole-zero caatielhs, we feel that our
trajectory-based mode of thinking offers a useful pointiefw

A few words about the notation and nomenclature used. Wetasdard symbols
for the setR,N,Z, andC. C, := {s€ C | Re(s) > 0} denotes the closed right-half
of the complex plane. We ude®, R**", etc. for vectors and matrices. When the
number of rows or columns is immaterial (but finite), we usenbtatior?, ***, etc.
Of course, when we then add, multiply, or equate vectors drices, we assume that
the dimensions are compatibi? (R, R*) denotes the set of infinitely differentiable
functions fromR to R®. The symboll denotes the identity matrix, and 0 the zero
matrix. When we want to emphasize the dimension, we vyited Q, »n,. A matrix
is said to be ofull row rankif its rank is equal to the number of rows. Full column
rank is defined analogously.

R [&] denotes the set of polynomials with real coefficients in tideterminate
&, andR (§) denotes the set of real rational functions in the indeteateié. R [£]
is a ring andR [é]" a finitely generated® [é]-module.R (&) is a field andR (&)"
is ann-dimensionaR (& )-vector space. The polynomiats, p, € R[&] are said to
be coprimeif they have no common zerop.€ R [£] is said to beHurwitz if it has
no zeros inC... Therelative degreef f € R(&), f = n/d, with n,d € R[£], is the
degree of the denominatdminus the degree of the numeratof € R () is said to
beproperif the relative degree i& 0, strictly properif the relative degree is- 0, and
biproperif the relative degree is equal to 0. The rational functionR (), f =n/d,
with n,d € R[&] coprime, is said to bstableif d is Hurwitz, andminiphasef nand
d are both Hurwitz.

We only discuss the main ideas. Details and proofs may bedfaui6]. The
results can easily be adapted to other stability domairtsiptthis article, we only
consider the Hurwitz domain for concreteness.
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1.2 Rational symbols

We consider behavior® C (R*)¥ that are the set of solutions of a system of linear-
constant coefficient differential equations. In other v&o# is the solution set of

R($)w=0, (%)

whereRe R [£]**°. We shall deal with infinitely differentiable solutions gnHence
(%) defines the dynamical systeln= (R,R*, %) with

#={we¢”(RR") |R($)w=0}.

We call this system (or its behavior)iaear time-invariant differential systenlote
that we may as well denote this behaviorZs= kernel(R(&) ), since is actu-
ally the kernel of the differential operator

R (%) 7 (R, Reolumn dimension(R)) @ (RJRrow dimension(R))'

We denote the set of linear time-invariant differentialtepss or their behaviors by
£* and by.Z" when the number of variablesis

We will extend the above definition of a behavior defined byfeedéntial equa-
tion involving a polynomial matrix to a ‘differential equan’ involving a matrix
of rational functions. In order to do so, we first recall thertmology of factoring
a matrix of rational functions in terms of polynomial magsc The painP,Q) is
said to be deft factorization oveiR [£] of M € R (&)™ ™2 if (i) P € R[&]™ ™™ and
Q€ R[&]™"™2, (ii) determinant(P) # 0, and (ii)M = P~1Q. (P,Q) is said to be
aleft-coprime factorization oveR [£] of M if, in addition, (iv) P andQ are left co-
prime overR [£]. Recall thatP andQ are said to béeft coprime overR [£] if for
every factorizationP Q] = F [P’ Q'] with F € R[E]"**™ F is R [£]-unimodular.
It is easy to see that a left-coprime factorization oRdg] of M € R (&)™ ™2 is
unique up to premultiplication d® andQ by anR[£]-unimodular polynomial ma-
trix U € R[&]m17m,

Consider the system of ‘differential equations’

G(d)w=0, @)

with G € R(&)***, called thesymbolof (¢). SinceG is a matrix of rational func-
tions, it is not clear whem : R — R*® is a solution of ). This is not a matter of
smoothness, but a matter of giving a meaning to the equaiitge G (%) is not a
differential operator, and not even a map.

We define solutions as follows. LéP, Q) be a left-coprime matrix factorization
overR [£] of G = P~1Q. Define

[w:R — R* is a solution of ¢)] :< [Q (&) w=0].

Hence ¢) defines the system
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S = (R,R',kernel (Q (%))) cZ".

It follows from this definition thatG (&) is nota map ong™ (R,R*). Rather,
w— G(&)w is the point-to-set map that associates withe ¢ (R,R*) the
setV +v, with v € € (R,R*) a particular solution oP ($)v = Q($)w and
v e ¢ (R,R*) any function that satisfieB (&) v = 0. This set ofv's is a finite-
dimensional linear subspace &f* (R,R*) of dimension equal to the degree of
determinant(P). Hence, ifP is not anR [£]-unimodular polynomial matrix, equiv-
alently, if G is not a polynomial matrix( (%) is not a point-to-point map. Viewing
G (%) as a point-to set map leads to the definition of its kernel as

kernel (G(&)) = {we ¢”(R,R*) |0 G($)w},
i.e.kernel (G (&)) consists of the set of solutions &f), and of its image as
image (G(&)) :={ve ¢* (R,R*) | ve G(&)wfor somew € €~ (R,R*)}.
Hence ¢) defines the system
S = (R,R",kernel (G(&))) := (R,R*,kernel (Q(%))) € -£".

Three main theorems in the theory of linear time-invariaffecential systems
are (i) the elimination theorem, (ii) the one-to-one r@atbetween annihilators and
submodules or subspaces, and (iii) the equivalence ofaitatiility and existence of
an image representation. Results involving (ii) and (ii@ discussed in later sections.

Theelimination theorenstates that i8 € #11¥2, then

P :={w € €% (R,R") | Iwp € €° (R,R*2) such that(wy,wy) € A}

belongs to.Z"1. In other words,Z* is closed under projection. The elimination
theorem implies that’® is closed under addition, intersection, projection, andieun
action and inverse action wifh (), whereF € R (§)*"°.

1.3 Input, output, and state cardinality

The integer invariant&, m, p,n are maps fromz’® to Z. that play an important role
in the theory of linear time-invariant differential systenintuitively,

w (%) equals the number of variablesda,

m (%) equals the number of input variablesif,

p (%) equals the number of output variableszh and
n () equals the number of state variableszn

The integer invariank is defined by[w (%) :=v] < [# € £"].

The other integer invariants are most easily captured byxsefrepresentations.
A behavior# € .£* admits arinput/output representation
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P(&)y=Q(&)u, w=n M (i/0)

7.

with P € R(E)P¥P?) | qeterminant(P) # 0, Q € R(&)P*™P) and 1 ¢
R™(#)*w(#) g permutation matrix. This input/output representationzbfefines
m (%) andp (%) uniquely. It follows from the conditions oR andQ thatu is free,
that is, that for any € ¥°(R,R™#)), there exists g € €= (R,RP*?)) such that
P(&)y=Q(%)u. The permutation matrikl shows how the input and output com-
ponents are chosen from the components,@nd results in an input/output partition
of w.

The matrixG = P~1Q € R (£)P#*™#) is called thetransfer functioncorre-
sponding to this input/output partition. In fact, it is pilds to choose this partition
such thatG is proper. It is worth mentioning that in geneR{$)y = Q($)uhas a
different behavior thag = P~1Q (%) u. The difference is due to the fact thatmay
not be controllable, as discussed in the next section.

A behavior# € .£* also admits an observalilgut/state/output representation

dx=Ax+Bu, y=Cx+Du, w=1T M , (i/slo)

with A € RM#)xn(#) B ¢ RNZ)xm(#) C ¢ Re(Z)xn(#) D ¢ RPF)*mF) ]
R™(#)*w(#) g permutation matrix, ang,C) an observable pair. By eliminating
the (u,y)-behavior defines an linear time-invariant differentiadteyn, with behavior
denoted by#'. This behavior is related t& by % = 1%'. It can be shown that this
input/state/output representation®f including the observability ofA,C), defines
m (%) ,p (), andn (%) uniquely.

1.4 Controllability, stabilizability, observability, an d detectability

The behaviorZ € .Z* is said to becontrollableif for all wy,w» € 4, there exists
T > 0andw e %, such thatv(t) =w; (t) fort <0, andw(t) =wq(t—T) fort >T. A
is said to bestabilizableif for all w € %, there existsv € £, such that (t) = w(t)
fort <0 andw/(t) — 0 ast — .

In words, controllability means that it is possible to switbetween any two
trajectories in the behavior, and stabilizability mearat thvery trajectory can be
steered to zero asymptotically.

Until now, we have dealt with representations involving tlagiablesw only.
However, many models, such as first principles models obtHlry interconnection
and state models, include auxiliary variables in additmthie variables the model
aims at. We call the lattenanifest variablesand the auxiliary variabldatent vari-
ables In the context of rational models, this leads to the moded|

R(&)w=m(&)¢ (LV)

with R M € R(&)*"*. By the elimination theorem, th@anifest behavioof (LV),
defined as
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{we ¢ (R,R*) | 3¢ € €* (R,R*)such that (LV) hold},

belongs taZ”.

The latent variable system (LV) is said to bleservabléf, whenever(w,¢;) and
(w, £>) satisfy (LV), thent, = ¢,. (LV) is said to bedetectablef, whenever(w, ¢1)
and(w, £2) satisfy (LV), then¢s(t) — ¢2(t) — O ast — oo.

In words, observability means that the latent variableetitgry can be deduced
from the manifest variable trajectory, and detectabiligams that the latent variable
trajectory can be deduced from the manifest variable trajg@symptotically. The
notions of observability and detectability apply to moregel situations, but here
we use them only in the context of latent variable systems.

It is easy to derive tests to verify these properties in teofrieernel representa-
tions and the zeros of the associated symbol. We first rdwalhotion of poles and
zeros of a matrix of rational functions.

M € R (&)™ can be brought into a simple canonical form, called $meith-
McMillan form by pre- and postmultiplication b [£]-unimodular polynomial ma-
trices. LetM € R (&)™, There exist) € R[&]""™ )V € R[&]"2*™ bothR [&]-
unimodular/T € R[]**™, andZ € R[&]**"2 such thaM = U 112V, with

1 =diagonal (14, 7D, - - a”iu) L= dlagongl(ﬁfza o) 0 OrX(nrr)
(n1—1)xr (n1—1)X(n2—1)

with {1,42,---, ¢z, T, T, - - , T, NON-zero monic elements &[], the pairs(, &
coprimefork=1,2,...,r, gz =1fork=r+1,r+2...,n1, and with{,_1 a factor

of {x andrg, a factor ofrg,_1, fork =2,--- | r. Of courser = rank(M). The roots of
therg’s (hence ofrm, disregarding multiplicity issues) are called h&esof M, and
those of they's (hence of¢,, disregarding multiplicity issues) are called theros

of M. WhenM € R[&]***, the.’s are absent (they are equal to 1). We then speak
of the Smith form

Proposition 1

1. (@) is controllable if and only ifG has no zeros.

2. (@) is stabilizable if and only ifs has no zeros it , .

3. (LV) is observable if and only i has full column rank and has no zeros.
4. (LV) is detectable if and only i has full column rank and has no zerosin.

n
Consider the following special case of (LV)
w=M(&)¢ (A)

with M € R (&)***. Note that, withM () viewed as a point-to-set map, the man-

ifest behavior of (#) is equal toimage (M (&)). (.#) is hence called aimage
representatiorof its manifest behavior. In the observable case, that M, i of full
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column rank and has no zerdg,has a polynomial left inverse, and henc#} de-
fines a differential operator mappingto ¢. In other words, in the observable case,
there exists aff € R[&]**® such that (#) has the representation

w=M (&), (=F(Hw

The well-known relation between controllability and imaggresentations for
polynomial symbols remains valid in the rational case.

Theorem 2 The following are equivalent fo# € .£°.

1. s controllable.
2. % admits an image representatios() with M € R (&)**°.
3. % admits an observable image representatiaf) (vith M € R (&)*°.

Let # € .£°. Thecontrollable partof % is defined as

PBeontrollable:= {W € % | Vio,th R, to <ty,
Jw € 2 with compact support such thaftt) = w'(t) forto <t <t;}.

In words, Zcontrollable CONSISts of the trajectories i that can be steered to zero in
finite time. It is easy to see th&onrolanie € -Z° and that it is controllable. In fact,
Beontrollableis the largest controllable behavior contained4n

The controllable part induces an equivalence relatior¥n calledcontrollabil-
ity equivalenceby setting

i/ /T . i/ /!
[[%7 Ncontrollability% ]] = [[%controllable: %controllablel]-

It is easy to prove tha®®’ ~controllableZ” if and only if ' and %" have the same
compact support trajectories, or, for that matter, the ssquoare integrable trajecto-
ries. Each equivalence class modulo controllability cmstexactly one controllable
behavior. This controllable behavior is contained in adl tither behaviors that be-
long to the equivalence class modulo controllability.

The systenG (&) w=0, whereG € R (§)***, andF ($) G (&) w= 0 are con-
trollability equivalent ifF € R (£)*** is square and nonsingular. In particular, two
input/output systems (i/o) have the same transfer fundfiamd only if they are
controllability equivalent.

If G1,G, € R(&)®® have full row rank, then the behavior defined@y(%) W=
0 is equal to the behavior defined By (§) w= 0 if there exists & [&]-unimodular
matrix U € R[&]**® such thatG, = UG;. On the other hand, the behavior de-
fined by G, (%)w = 0 has the same controllable part as the behavior defined by
Gz (&)w =0 if and only if there exists aff € R(&)"**, square and nonsingu-
lar, such thatG, = FG;. If G; andG; are full row rank polynomial matrices, then
equality of the behaviors holds if and only@, = U G;. This illustrates the subtle
distinction between equations that have the same behaeiays behaviors that are
controllability equivalent.
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1.5 Rational annihilators

Obviously, forn € R(&)* andw € €~ (R,R*), the statementﬂ(%)Tw =0, and,
hence, forZ € .£*, n (%)T% =0, meaningn (%)Tw= 0 for allw € 4, are well-
defined, since we have given a meaning49. (

Calln e R[£]* apolynomial annihilatorof % € .#* if n (%)T% =0, and call

ne R(&)*® arational annihilatorof 8 € .Z* if n (%)T%’ =0.

Denote the set of polynomial and of rational annihilatorsag .#* by % ®i
and %@, respectively. It is well known that foZ € £, %#& is anR[£]-
module, indeed, a finitely generated one, sinceRdf]-submodules oRR [£]" are
finitely generated. However %@ is also anR [£]-module, but a submodule of
R (&)" viewed as amR [£]-module (rather than as (& )-vector space). ThR [¢]-
submodules oR (£)" are not necessarily finitely generated.

The question occurs whe#® " is a vector space. This question has a nice
answer, given in the following theorem.

Theorem 3 Let#A € ¥~.

1. #®© is anR [&]-submodule oR ()",

2. #*®© is anR (&)-vector subspace @ ()" if and only if  is controllable.

3. Denote theR [é]-submodules oR [E]" by 9t¥. There is a bijective correspon-
dence betwee’" andt,, given by

B e LV BRE MY,

M € M - {we € (R,R*) [n(3) w=0VneM}.

4. Denote the lineaR (§)-subspaces dR ()" by £%. There is a bijective corre-
spondence betwee#, . iavie the controllable elements ¢, and £, given
by

B € Lontrollable™ B € £,
Le g —{wes™(RR) [n(d) w=0Vnel}.
| |

This theorem shows a precise sense in which a linear tirregianvt system can
be identified by a module, and a controllable linear timeaitant differential system
(an infinite dimensional subspace f° (R,R¥) wheneverZ # {0}) can be iden-
tified with afinite-dimensionalector space (of dimensign(%)). Indeed, through
the polynomial annihilatorsZ™ is in one-to-one correspondence with tRéZ]-
submodules oR [£]", and, through the rational annihilator®}? . /apieiS in ONe-to-
one correspondence with tig £ )-subspaces dk (£)".

Consider the system® € .#¥ and its rational annihilatorgg*#@ . In general,
this is anR [€]-submodule, but ndR (& )-vector subspace @& (&)". Its polynomial
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elementsZ i always form arR [£]-submodule oveR [£]", and this module de-
termines# uniquely. Therefore %@ also determinesZ uniquely. Moreover,
B forms anR (&)-vector space if and only iZ is controllable. More gener-

ally, theR (£)-span ofZ % is exactly%;ﬂf.fég”able Therefore th& (& )-span of the
rational annihilators of two systems are the same if and drihey have the same

controllable part. We state this formally.

Theorem 4 Let % be given by G(&)w =0 and %, by G (&)w = 0, with
G1,G2 € R(&)*™". The rows of Gand G span the samR [&]-submodule ofR (&)”

if and only if 1 = %,. The rows of @and G span the samR (& )-vector subspace
of R(&)" if and only if ; and %, have the same controllable part, that is, if and
only if 1 ~controllable %2 "

1.6 Left-prime representations

In order to express system properties and to parametrizeethef stabilizing con-
trollers effectively, we need to consider representatiwith matrices of rational
functions over certain special rings. We now introduce étevant subrings dR (& ).

R (&) itself, the rational functions,

R [&], the polynomials,

R (&) 5, the set elements & (&) that are proper,

R (&), the set elements & (&) that are stable,

R(&)ps =R(&)%NR(E) ., the proper stable rational functions.

agprwbDE

We can think of these subrings in terms of poles. Indeedgetlabrings are charac-
terized by, respectively, arbitrary poles, no finite polespoles af «}, no poles in
C., and no poles ifC, U {ow}. It is easy to identify the unimodular elements (that
is, the elements that have an inverse in the ring) of theggsrifihey consist of, re-
spectively, the non-zero elements, the non-zero consthetbiproper elements, the
miniphase elements, and the biproper miniphase eleme$&f

We also consider matrices over these rings. Call an elenfek{®)*** proper,
stable or proper stablef each of its entries is. The square matrices over thesering
are unimodular if and only if the determinant is unimodufarM € R (€)%, °, define
M® := limyer x— M(X). Call the matrixM € R (€)%,™ biproperif it has an inverse
inR ()%, thatis, ifdeterminant (M*) # 0, and callM € R (£)%;™ miniphassf
it has an inverse iR (£)%, ", that is, ifdeterminant (M®) # 0 is miniphase.

Let # denote any of the ringR (&), R[], R(&)5, R(§) o, R(E)py. M €
#1712 s said to beleft prime over Z if for every factorization ofM the form
M = FM’ with F € Z"1*™ andM’ € #£*1*"2, F is unimodular overZ. It is easy
to characterize the left-prime elementé.c R (£)"*"2 is the prime oveZ if and
only if

1. Mis of full row rank whenZ =R (&),
2. M e R[E]"™ ™ andM(A) is of full row rank for allA € C whenZ =R [&],
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3. M e R(&)% ™ andM® is of full row rank whenZ = R (£) ,,
4. M is of full row rank and has no poles and no zero€inwhenZ =R () .,

5. M € R(&)%"2, M> is of full row rank, andM has no poles and no zeros(h,
whenZ =R (&) 5.5

Controllability and stabilizability can be linked to theistence of left-prime
representations over these subring®R¢€ ).

1. # € ¥* admits a representatiog) with R of full row rank, and a representa-
tion (¢) with G of full row rank andG € R (§)%, 3, that is, with all its elements
proper and stable, meaning that they have no pol&s,in

2. % admits a representatiof with G left prime overR (§), that is, withG of
full row rank.

3. A is controllable if and only if it admits a representatiéfy) (with G left prime
overR (&), that is,G has full row rank and has no zeros.

4. 2 is controllable if and only if it admits a representatigd)(with R R [£]°**
left prime overR [€], that is, withR(A ) of full row rank for allA € C.

5. #is controllable if and only if it admits a representatiéf) (that is left prime
overR (&) », that is, all elements dB are proper an&™ of full row rank, and
G has no zeros.

6. % admits a representatio&] with G left prime overR (&), that is, all ele-
ments ofG are proper an&* has full row rank.

7. % is stabilizable if and only if it admits a representatief) (vith G € R (£)%,*
left prime overR (§) ., that is,G has full row rank and no poles and no zeros in
(C+.

8. Z s stabilizable if and only if it admits a representatiéf) (vith G e R (§)%, 5,
left prime overR (&) 5 ., that is,G* has full row rank ands has no poles and
no zeros inC,..

These results illustrate how system properties can belatedsnto properties of
rational symbols. Roughly speaking, eveg/c £ has a full row rank polynomial
and a full row rank proper and/or stable representationofg s we allow a non-
empty region where to put the poles, we can obtain a reprasemtvith a rational
symbol with poles confined to that region. The zeros of theasgntation are more
significant. No zeros correspond to controllability. No tadde zeros correspond to
stabilizability. In [6] an elementary proof is given thatefonot involve complicated
algebraic arguments of the characterization of stabilizalin terms of a represen-
tation that is left-prime over the ring of proper stablegatl functions. Analogous
results can also be obtained for image representations.

Note that a left-prime representation oW(¢ ) ,, . exists if and only if the be-
havior is stabilizable. This result can be compared withdlassical result obtained
by Vidyasagar in his book [4], where the aim is to obtain a pragiable left-prime
representation of a system that is given as a transfer famgti= F (%) u, where
F € R(&)P™. This system is a special case &f)(with G = [I, —F], and, since
it has no zerosy = F (%) u is controllable, and hence stabilizable. Therefore, a
system defined by a transfer function admits a represent@i¢ %)y = G ($)u



1 Behaviors Described by Rational Symbols 11

with G1,G; € R(£)%, 5, and [G1 G| left coprime overR (§) 5. This is an im-
portant, classical, result. However, in the controllaldse; we can obtain a repre-
sentation that is left prime ové& (&) 4, and such tha[Gl Gz] has no zeros at all.
The main difference of our result from the classical lefpigme factorization results
overR (&) 4. Is that we faithfully preserve the exact behavior and noy ¢imé con-
trollable part of a behavior, whereas in the classical apghall stabilizable systems
with the same transfer function are identified. We thus oles#rat the behavioral
viewpoint provides a more intrinsic approach for discugginle-zero cancellation.
Indeed, since the transfer function is a rational functmrles and zeros can — by
definition — be added and cancellad libitum Transfer functions do not provide
the correct framework in which to discuss pole-zero caatielhs. Behaviors defined
by rational functions do.

1.7 Control

We refer to [5, 1] for an extensive treatment of control in dd8oral setting. In
terms of the notions introduced in these references, wé Isbaloncerned with full
interconnection only, meaning that the controller has s&¢e all the system vari-
ables. We refer to [1] for a nice discussion of the conceptslugd.

In the behavioral approach, control is viewed as the intameation of a plant
and a controller. Let” (henceforthe .#¥) be called thelant, ¥ (henceforthe .£)
the controller, and their interconnectio®? N % (hence alsee .£"), the controlled
systemThis signifies that in the controlled system, the trajectehas to obey both
the laws of%? and¢’, which leads to the point of view that control means restrict
the plant behavior to a subset, the intersection of the pladtthe controller.

The controller? is said to be aegular controllerfor &7 if

P(ZNE)=p(P)+p(F).
andsuperregulaiif, in addition,
n(ZNE€)=n(L)+n(%).

The origin and the significance of these concepts is disduaséor example, [1,
section VII]. The classical input/state/output based senpsitput-to-actuator-input
controllers that dominate the field of control are superi@g€ontrollers that are
regular, but not superregular, are relevant in control, immore so than is appreci-
ated, for example as PID controllers, or as control devisasdo not act as sensor-
output-to-actuator-input feedback controllers.

Superregularity means that the interconnection of thetpidtt the controller
can take place at any moment in time. The contrcfee .£" is superregular for
2 € #¥ifand only if for allw; € 2 andw, € €, there exists & € (2 N¢)S0U"e
such thatv; andw, defined by

~Jwy(t) fort<oO
wa(t) = {w(t) fort >0’
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and

_Jwo(t) fort <0,
wa(t) = {W(t) fort >0

belongs toZ” and ¥, respectively. Hence, for a superregular interconnectoy
distinct past histories in?? and ¢ can be continued as one and the same future
trajectory inZ N . In [5] it has been shown that superregularity can also beede

as feedback.

The controller# is said to bestabilizingif 2N % is stable, thatis, iWve Z2N%
impliesw(t) — 0 ast — . Note that we consider stability as a property of an au-
tonomous behavior (a behavigf with m (%) = 0). In the input/output setting, as
in [4], the interconnection of” and% is defined to be stable if the system obtained
by injecting artificial arbitrary inputs at the intercontiea terminals is bounded-
input/bounded-outputstable. Our stability definitionuggs thatv(t) — 0 fort — oo
in ZN%. It turns out that bounded-input/bounded-output stabiktquires (i) our
stability, combined with (ii) superregularity. Intercagutions that are not superreg-
ular cannot be bounded-input/bounded-output stable. Mexvéor physical systems
these concepts (stability and superregularity) are quitelated. For example, the
harmonic oscillatoM é’—tzzwﬁ— Kw; = ws, with M,K > 0, is stabilized by the damper

Wy = —D%Wl if D > 0. In our opinion, it makes little sense to call this interoen-
tion unstable, just because the interconnection is notrsegaar.

Regularity and superregularity can be expressed in ternisfisprime kernel
representations with rational symbols.

Proposition 5 Consider the plant? € .£¥. Assume that” is stabilizable. Let%?
be described by P%)w = 0with P& R (&) left prime overR (&) ,,. By stabiliz-
ability of &2 such a representation exists.

1. ¥ € £ is aregular stabilizing controller if and only i& admits a representa-
tion C(&)w=0with Ce R (&)**" left prime oveiR (£) ,,, and such that

o

is square and () ,-unimodular, that is, withleterminant(G) miniphase.
2. € € £ is a superregular stabilizing controller if and only # admits a rep-
resentation G &) w = 0 with C e R(&)**" left prime overR (£) ,,,, and such

that
P
e-[¢]

is square andR (&) 4 .-unimodular, that is, withdeterminant(G) biproper
and miniphase.

The equivalence of the following statements can be shown:
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[ is stabilizablé < [3 a regular controlle®” that stabilizes?]
< [3 a superregular controlléf that stabilizes?].

Combining this with the previous theorem leads to the foll@result on matrices

of rational functions.

Corollary 6 1. Assume that @ R (&)™ is left prime oveiR () ,,. Then there
exists Fe R (§)%2 ™12 sych that

isR (&), -unimodular
2. Assume that @ R (&)%7)2 is left prime overR (£) 5, .. Then there exists E

R (&)%2,)""2 syuch that
Gl .
HE

R (&) 5. -unimodular

1.8 Parametrization of the set of regular stabilizing, supgegular
stabilizing, and dead-beat controllers

In this section, we parametrize the set of regular and sagelar controllers that
stabilize a given stabilizable plag? € ..

1.8.1 Regular stabilizing controllers

Step 1.The parametrization starts from a kernel representaﬂi()g[) w =0 of &,
with P € R (§)PP)() Jeft prime overR (£) .. By stabilizability of 22, such a
representation exists.

Step 2Construct ' € R (E)?}W)XW(W) such that

4

is R (£) ,-unimodular. By corollary 6, suchR exists.
Step 3The set of regular stabilizing controlletg € .#*(?) is given as the sys-
tems with kernel representati@ﬁ%)w: 0, where

C=FP+ szl,

with Fy € R ()77 "7 is free and, € R ()7 ™(?) is R (€) ,-unimodular,
that is, withdeterminant(F,) miniphase.
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Step 3'.This parametrization may be further simplified using colfetulity
equivalence, by identifying controllers that have the saoarollable part, that is,
by considering controllers up to controllability equivaée. The set of controllers
¢ € .2"?) with kernel representatiod($ )w = 0 andC of the form

C=FG+G,

with F € R(E)T}W)XPM) free, consists of regular stabilizing controllers, and-con
tains an element of the equivalence class modulo contititfabf each regular sta-
bilizing controller for 7.

1.8.2 Superregular stabilizing controllers

Step 1.The parametrization starts from a kernel represent:{ti@gt) w =0 of &2,
with P € R(E)pM)XW(‘% left prime overR (§) 5 ... By stabilizability of 22, such a
representation exists.

Step 2Construct @ € R (g)m(%m(%

N

isR (&) 5.o-unimodular. By corollary 6, such® exists. 7
Step 3The set of superregular stabilizing controllgfss .#*(¥) is given as the
systems with kernel representat'@h%)w =0, where

such that

C=FP+ FZPI,

with Fy € R(E)?}?Xp(‘@) free andF; € R(E);(ﬁ)m(‘@) R (&) 4 -unimodular,
that is, withdeterminant(F,) biproper and miniphase.

Step 3'.This parametrization may be further simplified using colfetulity
equivalence, by identifying controllers that have the samarollable part, that is,
by considering controllers up to controllability equivade. The set of controllers
¢ € 2"?) with kernel representatio®( 3 )w = 0 andC of the form

C=FG+G/

with F € R(E)"L;fz)x"(‘% free, consists of superregular stabilizing controllers] a
contains an element of the equivalence class modulo ctattiliy of each super-
regular stabilizing controller fog?.

Itis of interest to compare these parametrizations withotieobtained in [3]. We
now show a very simple example to illustrate the differeretjeen the parametriza-
tions obtained in step 3 and step 3'.

Example:Consider the plang = Ou, henceP = [1 0], and the superregular sta-
bilizing controlleru+ a%u =0, with a > 0. TakeP’ = [0 1] in the parametriza-
tions. The set of (super)regular stabilizing controllergiven byC (%) u= 0, with
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C € R(&) miniphase in the regular case, and miniphase and biprogéeisuper-
regular case. Taking(¢) = (14+aé)/(1+2aé), for example, yields the controller
u+ a%u = 0, with o > 0. The parametrization in step 3’ yields only the controller

u = 0, which is indeed the controllable partwf- a%u =0.

This example illustrates that the parametrization in stegp8s not yield all the
(super)regular stabilizing controllers, although it gielll the stabilizing controller
transfer functions. Note that the parametrization of stejo&s exclude the destabi-
lizing controlleru+ a $u= 0, with ar < 0.

The trajectory-based parametrization is not only more genbut it also give
sharper results. It yields all stabilizing controllersthvaiut having to resort to equiv-
alence modulo controllability.
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