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Summary. An algorithm is presented for the computation of the most gréw unfalsified
model associated with an observed vector time series inl#ss of dynamical systems de-
scribed by linear constant coefficient difference equatidinis algorithm computes a module
basis of the left kernel the Hankel matrix of the data, ancécursive in the elements of the
basis. It is readily combined with subspace identificatieas, in which a state trajectory is
computed first, directly from the data, and the parametetseoidentified model are derived
from the state trajectory.

1 Introduction

Itis atrue pleasure to contribute an article to this Fest&dh honor of Giorgio Picci
on the occasion of his 65-th birthday. In the 35 years sine®dginal acquaintance,
I have learned to appreciate Giorgio as a deep thinker anaidsfiend. As the topic
of this paper, | chose a subject that has dominated Giorggsisarch throughout his
scientific careersystem identificatian

My paper is purely deterministic in hature, whereas the kegoaroach to system
identification (SYSID) is stochastic. It has always baffled that so many subjects
in systems and control — and in other scientific endeavorsedis-w immediately
pass to a stochastic setting. Motivated by the thought thidits end uncertainty will
have to be dealt with, a stochastic framework is adoptechitio, and the question
of how the problem would look in a deterministic setting i ewen addressed.
Moreover, it is considered evident that uncertainty leadgdchasticity. My belief is
that from a methodological point of view, it is more reasdedb travel from exact
deterministic, to approximate deterministic, to stocitasind end with approximate
stochastic SYSID. See [14] for a more elaborate explanatfony misgivings for
using stochastics as basis for SYSID.

This brings up the question what we should mean by ‘the’ edatgérministic
model identified by an observed vector time series. The qarbat fits this aim
is themost powerful unfalsified mod@VIPUM), the model in the model class that
explains the observations, but as little else as possilhle plrpose of this article is
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to develop an algorithm to pass from an observed vector teriesto the MPUM in
the familiar model class of systems described by lineartemnisoefficient difference
equations.

We start the development with the well-known state consizndased on the
intersection of the row spaces of a past/future partitiothefHankel matrix of the
data. By scrutinizing this algorithm, using the Hankel stave, we deduce that this
state construction can be done without the past/futuréipartand requires only the
computation of the left kernel of the Hankel matrix itselbwiever, this left kernel is
infinite dimensional, but it has the structure of a finitelyngeated module, and the
state construction can be done using a module basis. Iftimersuffices to compute
a finite number of elements of the left kernel.

This computation can be done recursively, as follows. Tatmthe Hankel ma-
trix at consecutive rows, until an element in the left kerolethe Hankel matrix is
found. Next, consider the system defined by this element¢anstruct a direct com-
plement of it. Subsequently, compute the error defined byrraekeepresentation of
this complement, applied to the original time series. Thisrehas lower dimension
than the original one. This is recursively repeated ungél éror is persistently ex-
citing. This leads to an algorithm that computes the MPUNe#dily also gives the
state trajectory corresponding to the observed trajecidrg algorithm is therefore
very adapted to be used in concordance with subspace idatitfi, in which also a
state model of the MPUM is computed, with all the advantajessiof, for example
for model reduction.

We present only the ideas underlying this algorithm. Praof$ simulations will
appear elsewhere.

A couple of words about the notation us@ddenotes the set of natural numbers,
andR the realsR [¢] denotes, as usual, the ring of polynomials with real coeffits,
andR (&) the field of real rational functions, with the indeterminate. Occasionally,
we use the notatioR [£]**" for polynomial matrices withy columns but an unspec-
ified (finite) number of rows. The backwards shift is denotedhyand defined, for
f:N—T, by

of :N—>TF, of(t):=f(t+1).

2 Problem statement
The problem discussed in this paper may be compactly foedizs follows.

Given an observed vector time series
W= (W(1),W(2),...,W(t),...)

with W(t) € R¥ and t€ N, find the most powerful unfalsified
model associated with in the model class of dynamical systems
consisting of the set of solutions of linear constant caefiidif-
ference equations.
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In section 8 we discuss how the ideas can be adapted to déamwite realistic
situations: finite time series, missing data (due to erasarecensoring), multiple
time series, approximate modeling, etc. In the presentmsedhe terminology used
in the problem statement is explained.

We consider discrete time systems with timeSetnd with signal space a finite
dimensional real vector space, dRy. With a dynamical model, we mean a family
of trajectories fronN to R¥, abehaviorZ C (R*)". Z is

[unfalsifiedby W] 1= [W € B].
Let %1,%, C (R")Y. Call
[ %1 more powerfuthan %, ] :< [ %1 C B-].

Modeling is prohibition, and the more a model forbids, thtdydt is. A model class
is a set of behaviors. Thaost powerful unfalsified modéMPUM) associated with
W in a model class is a behavior that is unfalsifieddsnd more powerful than any
other unfalsified model in this model class. In other worlle, MPUM explains the
dataw], but as little else as possible. Obviously, for a generaleholdss, the MPUM
may not exist. We now describe a model class for which the MRidkk exist.

This model class is a very familiar one. It consists of theavédrs that are the
set of solutions of linear constant coefficient differengeaions. Explicitly, each
behaviorZ in this model class is defined by a real polynomial maRig R [§]**"
as

#={w:N—>R" | R(lo)w=0}.

SinceZ = kernel(R(0)), with R(o) viewed as a map frorR¥)" to (ROWdimR)N|
we call
R(o)w=0 ()

akernel representationf the corresponding behavior.

We denote this model class ¥. The many ways of arriving at it, and various
equivalent representations of its elements are describedxample, in [14, section
3]. Perhaps the simplest, ‘representation free’, way ofattarizing.Z" is as fol-
lows. % C (IE&")N belongs taZ* if and only if it has the following three properties:

(i) Aislinear,
(i) shift-invariant(c# C %), and
(iii) closedin the topology of point-wise convergence.
ConsiderR [£]". Obviously it is a module oveR []. Let.#" denote the set of

R [€]-submodules oR [£]”. It is well known that each element o#* is finitely
generated, meaning that for eddhe .#", there exishy, g, .., gy such that

M={reR[&]"|Ta1,az,...,0, € R[E] suchthat = 0101+ a202 + - + A0 }-

There exists a - 1 relation betweer?’” and.#¥. This may be seen as follows.
Call
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[r € R[E]" anannihilatorfor B] :< [r' (0)% = 0].

Denote the set of annihilators & by %*. Clearly %+ ¢ .#". This identifies the
map% € £¥ — A+ c .#". It can be shown that this map is surjective (not totally
trivial, but true). When% has kernel representation#(), then %= is the R[&]-
module generated by the transposes of the row& @b travel the reverse route and
associate an eleme# € ¥ with a moduleM € .#¥, take the behavior of the
system with kernel representatiart() generated by the polynomial matikwith
as rows the transposes of a set of generatoi4.of

The module of annihilators is a more appropriate way of tiniglabout an el-
ement# € £ than the specific, but less intrinsic, difference equati#h) (which
one happens to have chosen to defifie

The special case off") given by the overly familiar

P(o)y=Q(0o)u, w= (u,y) (i/o)

with Pe R[E]P*?,Q e R[E]""",detP) # 0, and with proper transfer functid® =
P1Q e R(&)?*™, is called arinput/output(i/o) system, withu : N — R™ theinput
andy: N — RP the output The conditions imposed oR Q ensure that is free,
and thaty does not anticipata, the usual requirements on an input/output system.
Clearly (i/0) defines an element &f**?. Conversely, for everyg ¢ .£¥, there exists
a system (i/o) withn 4+ p = w, that has, up to a mere reordering of the components,
behavior#. With this reordering, we mean that there exists a permaratiatrix
1 € R"™¥ (depending o, of course), such that (i/0) has behavieg. In the se-
quel, we often silently assume that the permutation thales#ie inputs the leading,
and the outputs the trailing componentswatias been carried out already.

As in all of system theory, controllability plays an impartaole also in the
theory surrounding the MPUM. We recall the behavioral d&éiniof controllability.

[# € £ is controllable]
& [Vwi,we € Z andty € N,Jw e & andty € N, tp > t3, such that
w(t) =wy(t) for 1 <t <tg, andw(t) =wy(t —t; —tp) fort >ty +t2].

Various characterizations of controllability may be foufat example, in [14, sec-
tion 5].

It is easy to see that there exists an MPUM4ft associated withv."Denote it
by %. The most convincing proof that this MPUM exists, is by shagwvhat it is:

% = linear span({W, ow, ...,0W,...}),

where the right hand side means the closure in the topologpiit-wise conver-
gence of the linear span of the elements in the set. Obvipthstylinear span is
linear, it is shift invariant since it is constructed frawafid its shifts, and after taking
the closure, it is closed in the topology of point-wise cageace. Consequently it
belongs taZ™. Itis also unfalsified, sincer € £, and clearly any unfalsified element
in ¥ must contain all thes!W's and hence their linear span, and be closed in the
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topology of point-wise convergence. This proves theis indeed the MPUM ing™
associated withwv.”

(%) is unfalsified byw'iff R(g)w = 0. It follows that among all polynomial
matricesR € R[&]*"" such thatR(o)W = 0, there is one whose behavior is more
powerful than any other. And, of course, this MPUM allows anrepresentation.
Our aim are algorithms to go from the observed time seviEsarepresentation of its
associated MPUM inZ". The most direct way to go about this is to compute, from
W, a polynomial matrixR such that #") is a kernel representation of this MPUM.
Equivalently, to compute a set of generatorsdt. In [11] several such algorithms
are described.

The ‘consistency’ problem consists of finding conditiongtsat the system that
has generated the data is indeed the one that is identifidtelsystem identification
algorithm. In our deterministic setting this comes downheaking when the system
that has generateai$ actually the MPUM inZ¥ associated withv."Persistency of
excitation, but also controllability, are the key conditddeading to consistency. The
vector time serie$ : N — R¥ is

[ persistently excitinf:< [the MPUM in #* associated wittf equals(Rk)N]].

Consider# € ¥, with ilo partitionw = (u,y). Assume thaw= ({,¥) is parti-
tioned accordingly. Thes is the MPUM in.£" associated withv if

1. We %,
2. Uis persistently exciting,
3. A is controllable.

In [13] a more general version of this consistency resultaven. Note that the first
two conditions are clearly also necessary for consistency.

This result provides additional motivation for making thé®MM the aim of
deterministic system identification.

3 Subspace identification

In addition to looking for a kernel representation of this WV, we are even more
interested in obtaining a state space representation Bfdtfirst explain what we
mean by this.

Letm, p,n be nonnegative integes e R*** B € R**™ C € RP** D € RP*™, and
consider the ubiquitous system

ox = Ax+ Bu, y = Cx+ Du, w= (u,y). (")

In this equationu: N — R" is theinput y : N — RP theoutput andx: N — R* the
statetrajectory. The behavior

{(uy): N—=R"xRP | 3x: N — R* such that{”) holds}



6 Jan C. Willems

is called theexternal behavioof (.%¥). It can be shown that this external behavior
belongs to.#™*?. The (u,y,X)-behavior is obviously an element f**P=, This
implies that the(u, y)-behavior, what we call the external behavior, is an elernént
=P This is due to the fact than the projection onto a subsetettmponents of
a linear shift-invariant closed subspace(Bf)" is again linear, shift-invariant, and
closed. This result is called the ‘elimination theorem’das an important element
in the behavioral theory of systems. It implies, for examfiat.#" is closed under
addition.

So, the external behavior af{) belongs of taZ™t?. Conversely, for everyg
£, there exists a systen(), with m 4+ p = w, that has, up to a mere reordering of
the componentay, y), external behavio#. With this reordering, we mean that there
exists a permutation matrikl € R**¥ such that ) has external behavidn #.

In the sequel, we again often silently assume that the patioatthat makes the
inputs the leading, and the outputs the trailing componghnishas been carried out
already.

() is called annput/state/outpufi/s/o) representation of its external behavior.
() is calledminimal if its state has minimal dimension among all i/s/o systems
with the same external behavior. It can be shown that minisneguivalent to state
observable, meaning that (i, y,x) and(u,y,x”) both satisfy ), thenx' = x". In
other words, observability means that the state trajectaan be deduced from the
input and output trajectorids, y) jointly. As is very well-known, observability holds
iff the (np x n) matrix col(C,CA,--- ,CA*~1) has ranka. Minimality does not imply
controllability. But a minimal i/s/o representation iststaontrollable iff its external
behavior is controllable, in the sense we have defined ciettitity of behaviors.

As explained in the previous section, we are looking for athms that pass
from the observed time serigstd its MPUM in Z¥, for example, by computing
a kernel representation) of this MPUM. There is, however, another way to go
about this, by first computing the state trajectory corresitg tow in the MPUM,
and subsequently the system parameigyB,C, D) corresponding to an i/s/o repre-
sentation. Explicitly, assume that we had somehow foun&ReJM. We could then
compute a minimal i/s/o representation for it, and obtai(tinique) state trajectory
X corresponding tav.”Of course, for everyl € N, there holds (assuming that the
reordering of the components discussed before suclwthat(;y) has been carried
out)

(3) -~ Xt+1)--- } - [A B] {)“((1) X(2) .-+ X(t) --- %)
| T lCcD| | deR) -t - |
So, if
X(1) X(2) -+ X(T)
{0(1) G(2) - lJ(T)}

is of full row rank, ($), truncated at colunih, provides an equation for computing
A,B,C,D, and yields an i/s/o representation of the MPUM.

As we explained it, this approach appears to be a viciouteciFor in order to
computex; we seem to need the MPUM to start with. But, if we could someho
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computex; directly from the datav,”withoutderiving it from the MPUM, then ($)
gives a viable and (see section 8) attractive way to compuiis/ representation of
the MPUM. In section 8 we shall explain that even when we dedimom a kernel
representation of the MPUM, it is advantageous to returr$yddr the purpose of
system identification because of its built-in model redurtti

The SYSID methods that first compute the state trajectom tiee data, and then
derive the system model from the state trajectory have bedorown assubspace
identificationalgorithms. Before the emergence of these methods, state sppre-
sentations played a somewhat secondary role in systenifidation. The purpose
of this paper is to take a closer look at (the deterministisiom of) these algorithms.

4 State construction by past/future partition

The question is:

How can we compute the state trajectéry
directly fromw, without first computing the MPUNB?

The doubly infinite matrix

W W

W(2) W(3) - W(t+1)

Ho=| S : i ()
W(t") Wt'+1) - Wt+t'—1) ---

is called theHankel matrixof the dataw’ It holds the key to the state construction.
The earliest subspace algorithms are based on the intersefthe span of the

rows of a past/future partition of this Hankel matrix, anddee the state trajectory as

the common linear combinations of the past and the futuris.oceeds as follows.

Partition a row truncation of# as

W(1) W(2) o W(t) 1
W(2) WE) e Wi+1)
4 WTp)  W(Tp+1) o W(Tptt—1)
l_] _ () 7)
I W(Tp+1)  W(Tp+2) - W(Tp+t)
W(TotTr=1) W(TotT) - Tyt Tyt—=2) ...
| W(To+Tr) W(Tpt Trl) - W(Tg4Tprt—1) - |

and refer ta7;, as the ‘past’, and to7t as the ‘future’ of the Hankel matriX;, and
T; are sufficiently large nonnegative integers. Actuallys ipossible to proceed after
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truncating these Hankel matrices also column-wise at acgerfitly large columiT .
We do not enter into details about what ‘sufficiently largeaetly means in these
statements — those issues are glossed over here.

Consider the intersection of the linear space spanned bypiheof./#, and the
linear space spanned by the rows/f. Letn be the dimension of this intersection.
This means that there andinearly independent linear combinations of the rows of
¢ that are equal to linear combinations of the rows’f. These linear combina-
tions can be stacked into a matrix withrows,

X=[%Tp+1) X(Tp+2) - X(Tp+t) --- ]

It turns out that, under suitable conditions which are ggedut in [11], the dimen-
sion of this intersection equals the dimension of the stpéees of a minimal i/s/o
representation of the MPUM i&¥" associated witkv."Moreover, as the notation sug-
gests, the columns of form the state trajectory correspondingvian’the MPUM
B (more precisely, corresponding to a minimal i/s/o represén of%) This then
leads, by equation ($), to an algorithm to compute the nmegécB,C,D and to an
identification procedure for the MPUM.

In [11] this intersection algorithm is applied to a variefysguations, including
classical realization theory. These algorithms have baemgood numerical linear
algebra based implementations in [8].

In the purely deterministicase the state trajectory can be obtained, as we have
just seen, as thiatersectionof the linear span of the rows of the past with the linear
span of the rows of the future of the Hankel matrix of the datas is, in a sense,
analogous to the fact that in tipeirely stochasticase the state trajectory can be ob-
tained as therthogonal projectiorof the linear span of the rows of the past onto the
linear span of the rows of the future of the Hankel matrix &f ttata, as noted in [1].
This idea was used in [6] for the purposes of stochastic SY$H2 resulting sub-
space methods in the context of the purely stochastic cagetiegen followed up by
many authors, see, in particular, [5] and [4]. The combinet@ieministic/stochastic
case is a significant generalization of the purely detestimcase and the purely
stochastic case individually. It has been studied in [7,S3ilar algorithms have
been developed in [10]. In the mean time, many articles dgalith subspace algo-
rithms for the combined case have appeared, for instan&.[2,

5 The Hankel structure and the past/future partition

Let us now take a closer look at the intersection of the spsjgasned by the rows
of J#, and by the rows of#%. How can we obtain this intersectionConsider this
question first for a general partitioned matrix

M/
M = [ w } .
The common linear combinations of the row spatdfand the row span d¥1” can
be computed from the left kernel df. Indeed,
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/

[[kM:OH [k/ | k//} L\I\A/l//

} =0] & [KM =—-K'M"],

and hence the common linear combinations of the span of the oM’ andM”

follow immediately from a set of vectors that span the lefiia of M, by truncating
these vectors conformably with the partition of the matvixto k', and multiply-
ing by M’. This can be applied to the partitioned Hankel mate,(/.7#7), and we
observe that the state construction amounts to computegthkernel of the parti-
tioned matrix (#p/ %).

We shall now argue thahecause of the Hankel structurthe left kernel of
(#4p/ ) can be deduced from the left kernel &} all by itself, and so, there
is no need to use the past/future partitioning in order testrot the left kernel and
the state. To see this, assume that

(ko by

is inthe left kernel of’%, i.e. k2%, = 0. Notice that, because of the Hankel structure
of s7, the vectors

[0 Okikp - kr, 0+ O]

3

obtained by putting in totalt zeros in front and in back ofky kz --- kr, |, are
all contained in the left kernel of#}/.#3). It can be shown that, provider, is
sufficiently large (but it need not be larger that what wasunexgl to validate the
intersection argument of the row spansJf, and.”#; of the previous section), we
obtain this way, from a set of vectors that span the left Kevhe?;, a set of vectors
that span the whole left kernel of4p /.7#1). After truncation to its firsT, elements,

[0... Okyky--- kL}’

this leads to a set of vectors that, when multiplied from ibatrwith 7%, span the
intersection of the spaces spanned by the ron#paind the rows of#%. Note that
this truncation results from applying repeatedly the shiifti-cut operator to the row
vector [ ki ka2 -+ kr, |, i.e. putting a zero in the first element and deleting the last
element of this row vector, so as to obtain a vector of lefgthn other words, from
the vector

[kyko -+ k|

in the left kernel ot#,, we obtain the vectors

[ Okykp -k, kr ;|
[0 0Ky kr, 5 kr, , |

[000-- ki ko
[000--- 0 ki |
. i
that are truncations of elements from the left kerne|] ef—
p



10 Jan C. Willems

Using the ideas explained in the previous section, thisdéadhe construction
of the state trajectory associated wittin'the MPUM, by computing a basis of the
left kernel of 7%}, stacking these vectors as the rows of the matrix

[KiKz - Ky, Kr, ],

and repeatedly applying the shift-and-cut operator toinlitee state trajectory

[K(Tp+1) X(Tp+2) - K(Tp+t) -+ | =

0Ky Ky -+ Kyy—2 Ky,-1 _ Vy(l) VY(Z) NW(t)

b p W(2) W(3) - W(t+1)
ST S S I
000 0 K ] v”v(pr) W(Tpil) W(Tz+t—3> o

Actually, it turns out that we can also apply the shift-and{zackwards, leading to

[ %(1) %2) - %) -] =

Ko Kz --- KTp,1 KTp W(l) W(Z) e W(t)

K K- Kp 0 W2 W) - Wt+1)
KTp—l KTp -« 0 0 W(Tp—Z) W(Tp—l) W(Tp-‘rt—?:)

KTp o --- 0 0 W(Tp—l) W(Tp) W(Tp-‘rt—Z)

This then yields the desired state trajectory to which thmspace algorithm ($) can
be applied in order to obtain an i/s/o representation of tirM.

6 The left kernel of a Hankel matrix

In the previous section, we have seen the relevance to thepncat hand of com-
puting the left kernel of the doubly infinite Hankel matri€’. We are interested in
characterizing the infinite vectors in its left kernel that/é ‘compact support’, i.e.
the infinite vectors of the form

k:[klkz'-- ki ---0--- 0..,}7 ktERlxw,tEN,

with k.2# = 0. Denote the set of compact support elements in the lefekésn s
For simplicity, we calL#” the left kernel of>7.

In general,.#" is infinite dimensional. In fact,#” equals{0}, or it is infinite
dimensional. However, we shall now argue that by considgtie left kernel of7#
as a module,/” is effectively finite dimensional, of dimension w. Observe that
A is closed under addition (obvious), scalar multiplicatjobvious), and under the
right shift (also obvious, using the Hankel structure):
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[[[klkz--- k00---0--- } e(/;/]]é[[[()kl... ki1 kO - 0---}6/1/]].

This implies (identify elementk € .4~ with polynomial vectorsk; + k& +--- +
Kl e R[E]lx", and the right shift with multiplication by{) that.4" has the
structure of a module (a submodule®f&]***, viewed as arR [€]-module). This
submodule is finitely generated (&£ ]-submodules oR [E]lXw are finitely gener-
ated, with at most generators). This means that there exist elemants, ..., n, €
A7, with p < w, such that all other elements of can be obtained as linear combi-
nations of these elements and their repeated right shifts.

It turns out thatfor the construction of the state trajectory, we need ongsth
generatorsIn other words, rather that compute the whole left kernef#f it suf-
fices to obtain a set of generators of the left kerneb&fin the left kernel ofJz,.
We assume thait, is sufficiently large, so that the left kernel g€, contains a set of
generators of the left kernel o#.

This leads to the following state construction algorithratiy, n, - -+, n, of A
be a set of generators of the left kernel#f. Truncate these vectors at their last
non-zero element:

~ 1
e moniz- My, mgeRY

Now apply the shift-and-cut to thieth generator. This leads to the ‘partial’ state
trajectory

[ %(1) %(2) - %(t) - ] =

N2 Nig - Nig-1Niy w(l)  W(2) W(t)

Nz Nia - Ny 0 W(Z) W(3) W(t + 1)
ML inie - 0 0 | | W(Li—2) WLi—1) - WLtt—3) -

N 0 -~ 0 0 Wki—1) W) - W(Li+t—2) -

Now, stack theq™s. This leads to the state trajectory

()| [X(2) X (t)
2] %) %)
%] %@ (%o

to which the subspace algorithm ($) can be applied.

In conclusion, from a set of generators.df viewed as a module, we obtain, by
repeatedly using the shift-and-cut, and matrix which rpli#d by the Hankel matrix
of the data, yields the state trajectotyiri the next section, we provide a recursive
way of computing a set of generators.



12 Jan C. Willems

7 Recursive computation of a module basis

Consider the left kernel” of s#. Call a minimal set of elementsg,ny,...,n, € A

that generate all of/”, through linear combinations of these elements and their re
peated right shifts, module basisf .4 In the present section, we set up a recursive
algorithm to compute a module basis.gf from .

Assume henceforth that the MPUM i&¥ associated wittwis controllable.
This assumption is made for reasons of exposition. The ifgoican be generalized
without this assumption, but it becomes considerably morelved to explain.

We start with a brief digression about controllability. Tlelowing basic prop-

erty characterizes controllable behaviors#f:
[# € &7 is controllablg < [3.%' € ¥ such thatZ & #' = (R¥)V].

Evidently,%' is also controllable. In other words, a behavior has a d@ectplement
iff itis controllable. This property of controllable behavs can be translated in terms
of a kernel representationd) of 4, with R of full row rank (every% € £ allows
such a full row rank representation). It states that

[kernelR(o)) € £ is controllabld

& [3R e R[E]*™" such that[g} is unimodulag.

In fact,R(o)w = 0 is a kernel representation of the direct complenight
We now return to the construction of the MPUM. Start with tlagadV. Consider

the associated Hankel matti¥’, and its consecutive truncations

[W(1) W(2) W(t) 1,
W(l) W(2) Wi(t)

W(2) W(3) W(t+ 1) ’
W(1)  W(2) W(t)

W(2) W(3) W(t+1)

W(L) W(L+1) - Wt +L—1) -
until a vector in the left kernel is obtained. Denote thiswdat by
[kikp - ke | e RV
Now consider the corresponding vector polynomial

(&) =Ky +ko& + -+ k &V L e R[E]™.
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It can be shown that, because of the assumed controllabilitye MPUM, the sys-
tem with kernel representatiorfo)w = 0 is also controllable. Consequently, there

existsN € R [£]"~Y*¥ sych that the polynomial matrix

n

N
is unimodular. The system describedrfy )w = 0 is unfalsified byw; but, of course,
N(o)w = 0 need not be. Compute the ‘error’ vector time series

&=N(oW=(&1),82),....&t),...),

Now apply the above algorithm again, withréplaced by, "and proceed recursively.
Note thate{t) € R*~1: the dimension of the time series that needs to be examined
goes down by one at each step.

Recursively this leads to the algorithm

vT/»—>n1|—>Nl.—>é1»—>n2.—>N2.—>é2.—>---»—>ép,2»—>np,ln—>Np,l»—>ép,l»—>np.

This algorithm terminates when there are no more vectorberldft kernel of the
associated Hankel matrix, i.e. when the ee® fersistently exciting. If we assume
that the MPUM has: input andp output components, thes Will be the first persis-
tently exciting error time series obtained.

Now consider the polynomial vectors

r1=ng,r2="naNg,r3 =ngNaNg, -, rp = NN, 1Ny _2--- NoNj.

Define
r
o r2
R=|.
Ip
It can be shown that 3
R(o)w=0

is a kernel representation oF, the MPUM in ¥ associated witlw."The inter-
mediate calculations af,r»,...,r, lead to the state trajectory in a similar way as
explained in section 6. Let

M(E) =rig+ri2&+-+r 9t eR[EPY.

Form the vector
~ 1
e rigriz - rig ], rig € R

Now apply the shift-and-cut. This leads to the ‘partial'tetirajectory
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[ %(1) %(2) - %(t) - ] =

iz rig - Tig-1"iL W(1) w2 - W(t)

rs riga--- ry O W(2) W(3) - W(t+1)
fiLifin - 0 0 | | W(Li—2) WLi—1) - WLitt—3)
gy 0 -+ 0 O Wki—1) W) - W(Li+t—2) -

Now, stack the’s, and obtain the state trajectory

(1] [%(2) X (t)
1)) %) %)
wo) 5@ B

to which the subspace algorithm ($) can be applied.

8 Concluding remarks

8.1 Subspace ID

Solving equation ($) as the basis for system identificatias fmany appealing fea-
tures. We can begin by reducing the number of rows of

X=[%(1)%(2) - K(t) - |

by numerically approximating this matrix by one with fewerus. This leads to a
reduction of the state dimension and hence of the model aiitypl Of course, ($)
will then no longer be exactly solvable, even when the olextdata is noise free, but
since this equation is linear in the unknown matriéeB,C, D, it is very amenable
to a least-squares (LS) solution. Introducing the statesieree linearizes the SYSID
problem. Solving equation ($) using (LS) also accommod@atesoisy data and for
numerical errors in the intermediate calculations.

Missing data can be dealt with by deleting columns in the 8qoé$). If multiple
time series are observed (this is the case in classicatagialn theory), then equation
(%) can readily be extended with the vectarg, X replaced by matrices.

8.2 State construction by shift-and-cut

The state construction that permeates sections 5, 6, aratfuially well-known, and
our presentation of it via the past/future partition and léfekernel of the Hankel
matrix ¢ to some extent hides the simplicity and generality of thasdeehind it.

Indeed, in [9], a state construction algorithm based on liife-and-cut operator
has been presented as a very direct and general method firuacting state repre-
sentations, starting from a variety of other system remtasiens. Letp € R [£] and
define theshift-and-cubperatoro™ : R [£] — R [&] by
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0" Pot+pr&+- A+ pEl o prtpoé o+ puEh

By applying the operatar™ element-wise, it is readily extended to polynomial vec-
tors and matrices.

We now explain how this state construction works, startiritty & kernel repre-
sentation (). Associate with

R(E)=Ro+Ru&+-- +RE"
the stacked polynomial matrix

Rl—l-RZE+R3E3+..._|_RL715L72+RLE|_,1
o*R R2+R35+...+RL715L73+RLE|_,2
X(&)=|0""R| (&)= 5 ().
: RL1+R&
R

obtained by repeatedly applyimy to R until we get the zero matrix. It can be shown
thatX(o) is astate mapit associates tov € kerne(R(o)) the corresponding state
trajectoryx = X(o)w of a (in general non-minimal) state representationsf)( In
other words, as soon as we have a kernel representation gk, the shift-and-
cut operator gives us the underlying state.

This shift-and-cut state construction is precisely whalase in sections 5, 6,
and 7. Starting from the MPUM as

% = linear span({W, oW, ...,0W,...}),

we construct annihilators fo¥2. These annihilators are, of course, exactly the el-
ements of the left kernel of the Hankel matrig’. By subsequently applying the
shift-and-cut operator, we obtain the state trajectorgrfesponding tev.”

8.3 Return to the data

One of the attractive features of subspace methods, is ftemtanstruction ok,
the model is obtained using equation ($) which involweandx. In other words,
it allows to return to the original observed time seriesn order to fit the final
parameter estimates of the identified system to the data.

The shift-and-cut state construction shows how to obtaitat $rajectory from
any kernel representation of the MPUM. We originally podeel question of how
to construct the state trajectory by avoiding the interrmtdtomputation of a kernel
representation of the MPUM. But, we have come full circlelun.tWe demonstrated
that the state construction based on the intersection abiespans otz and.J#;
actually amounts to finding a module basis of a kernel reptaien of the MPUM.
Itis an interesting matter to investigate to what extens¢hiesights can also be used
in the purely stochastic or in the mixed deterministic/kestic case.
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8.4 Approximation and balanced reduction

The algorithm proposed in section 7 lends itself very wetldpproximate imple-
mentation. Checking whether the consecutive truncatibtiteedHankel matrix have,
up to reasonable level of approximation, a non-trivial edetrin the left kernel, and
finding the optimal element in the left kernel, are typicatid®ons that can be made
using SVD based numerical linear algebra computations.

Itis of interest to combine our recursive algorithms withdebreduction. In par-
ticular, it ought to be possible to replace the state constm based on the shift-and-
cut operator applied to an annihilator by an alternativeo$éw order polynomial
vectors that lead to a balanced state model. Some ideassiditkction have been
givenin [12].

8.5 The complementary system

The most original feature of this article is the recursivmpaitation of a basis of the
module of annihilators of a given behavior in section 7. la ¢ontrollable case, this
may be done by complementing a kernel representation toraaghilar polynomial
matrix. It is of interest to explore if the recursive comgida of the module basis
explained in section 7, combined with the shift-and-cut ntam also be used in the
general constructions of a state map, starting from a keamelmage, or a latent
variable representation of a behavior.

The finer features and numerical aspects of this recursisgatation and ex-
tension of a polynomial matrix to a unimodular one is a matfefuture research.
In particular, one is led to wonder if th& (N,R")-orthogonal complement of
PNty (N,RY) can play a role in obtaining a complement of4 Or if the singular
value decomposition of the truncated Hankel matrix

W) W2 o W(t)
W(2) W(3) - W(t+1)

W(L) W(L+1) - Wt +L—1) ---

can be used for complementingvith N to obtain a unimodular polynomial matrix.
The left singular vector corresponding to the smallestidigsigvalue should serve to
identify the element in the left kernel, and the others somehow to find the comple-
mentN.
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