
Recursive Computation of the MPUM

Jan C. Willems

ESAT-SISTA, K.U. Leuven, B-3001 Leuven, Belgium
Jan.Willems@esat.kuleuven.be
www.esat.kuleuven.be/∼jwillems

Summary. An algorithm is presented for the computation of the most powerful unfalsified
model associated with an observed vector time series in the class of dynamical systems de-
scribed by linear constant coefficient difference equations. This algorithm computes a module
basis of the left kernel the Hankel matrix of the data, and is recursive in the elements of the
basis. It is readily combined with subspace identification ideas, in which a state trajectory is
computed first, directly from the data, and the parameters ofthe identified model are derived
from the state trajectory.

1 Introduction

It is a true pleasure to contribute an article to this Festschrift in honor of Giorgio Picci
on the occasion of his 65-th birthday. In the 35 years since our original acquaintance,
I have learned to appreciate Giorgio as a deep thinker and a kind friend. As the topic
of this paper, I chose a subject that has dominated Giorgio’sresearch throughout his
scientific career:system identification.

My paper is purely deterministic in nature, whereas the usual approach to system
identification (SYSID) is stochastic. It has always baffled me that so many subjects
in systems and control — and in other scientific endeavors as well — immediately
pass to a stochastic setting. Motivated by the thought that in the end uncertainty will
have to be dealt with, a stochastic framework is adoptedab initio, and the question
of how the problem would look in a deterministic setting is not even addressed.
Moreover, it is considered evident that uncertainty leads to stochasticity. My belief is
that from a methodological point of view, it is more reasonable to travel from exact
deterministic, to approximate deterministic, to stochastic, and end with approximate
stochastic SYSID. See [14] for a more elaborate explanationof my misgivings for
using stochastics as basis for SYSID.

This brings up the question what we should mean by ‘the’ exactdeterministic
model identified by an observed vector time series. The concept that fits this aim
is themost powerful unfalsified model(MPUM), the model in the model class that
explains the observations, but as little else as possible. The purpose of this article is

2 Jan C. Willems

to develop an algorithm to pass from an observed vector time series to the MPUM in
the familiar model class of systems described by linear constant coefficient difference
equations.

We start the development with the well-known state construction based on the
intersection of the row spaces of a past/future partition ofthe Hankel matrix of the
data. By scrutinizing this algorithm, using the Hankel structure, we deduce that this
state construction can be done without the past/future partition, and requires only the
computation of the left kernel of the Hankel matrix itself. However, this left kernel is
infinite dimensional, but it has the structure of a finitely generated module, and the
state construction can be done using a module basis. It therefore suffices to compute
a finite number of elements of the left kernel.

This computation can be done recursively, as follows. Truncate the Hankel ma-
trix at consecutive rows, until an element in the left kernelof the Hankel matrix is
found. Next, consider the system defined by this element, andconstruct a direct com-
plement of it. Subsequently, compute the error defined by a kernel representation of
this complement, applied to the original time series. This error has lower dimension
than the original one. This is recursively repeated until the error is persistently ex-
citing. This leads to an algorithm that computes the MPUM. Itreadily also gives the
state trajectory corresponding to the observed trajectory. The algorithm is therefore
very adapted to be used in concordance with subspace identification, in which also a
state model of the MPUM is computed, with all the advantages thereof, for example
for model reduction.

We present only the ideas underlying this algorithm. Proofsand simulations will
appear elsewhere.

A couple of words about the notation used.N denotes the set of natural numbers,
andR the reals.R [ξ] denotes, as usual, the ring of polynomials with real coefficients,
andR(ξ) the field of real rational functions, withξ the indeterminate. Occasionally,
we use the notationR [ξ]•×w for polynomial matrices withw columns but an unspec-
ified (finite) number of rows. The backwards shift is denote byσ , and defined, for
f : N → F, by

σ f : N → F, σ f (t) := f (t +1).

2 Problem statement

The problem discussed in this paper may be compactly formulated as follows.

Given an observed vector time series

w̃ = (w̃(1),w̃(2), . . . ,w̃(t), . . .)

with w̃(t) ∈ R
w and t ∈ N, find the most powerful unfalsified

model associated with̃w in the model class of dynamical systems
consisting of the set of solutions of linear constant coefficient dif-
ference equations.

Recursive Computation of the MPUM 3

In section 8 we discuss how the ideas can be adapted to deal with more realistic
situations: finite time series, missing data (due to erasures or censoring), multiple
time series, approximate modeling, etc. In the present section, the terminology used
in the problem statement is explained.

We consider discrete time systems with time setN and with signal space a finite
dimensional real vector space, sayR

w. With a dynamical model, we mean a family
of trajectories fromN to R

w, abehaviorB ⊆ (Rw)N. B is

[[unfalsifiedby w̃]] :⇔ [[w̃∈ B]].

Let B1,B2 ⊆ (Rw)N. Call

[[B1 more powerfulthanB2]] :⇔ [[B1 ⊂ B2]].

Modeling is prohibition, and the more a model forbids, the better it is. A model class
is a set of behaviors. Themost powerful unfalsified model(MPUM) associated with
w̃ in a model class is a behavior that is unfalsified by ˜w and more powerful than any
other unfalsified model in this model class. In other words, the MPUM explains the
dataw̃, but as little else as possible. Obviously, for a general model class, the MPUM
may not exist. We now describe a model class for which the MPUMdoes exist.

This model class is a very familiar one. It consists of the behaviors that are the
set of solutions of linear constant coefficient difference equations. Explicitly, each
behaviorB in this model class is defined by a real polynomial matrixR∈ R [ξ]•×w

as
B = {w : N → R

w | R(σ)w = 0}.

SinceB = kernel(R(σ)), with R(σ) viewed as a map from(Rw)N to (Rrowdim(R))N,
we call

R(σ)w = 0 (K)

a kernel representationof the corresponding behavior.
We denote this model class byL w. The many ways of arriving at it, and various

equivalent representations of its elements are described,for example, in [14, section
3]. Perhaps the simplest, ‘representation free’, way of characterizingL w is as fol-
lows.B ⊆ (Rw)N belongs toL w if and only if it has the following three properties:

(i) B is linear,
(ii) shift-invariant(σB ⊆ B), and
(iii) closed in the topology of point-wise convergence.

ConsiderR [ξ]w. Obviously it is a module overR [ξ]. Let M w denote the set of
R [ξ]-submodules ofR [ξ]w. It is well known that each element ofM w is finitely
generated, meaning that for eachM ∈ M w, there existg1,g2, . . . ,gp such that

M = {r ∈ R [ξ]w |∃α1,α2, . . . ,αp ∈ R [ξ] such thatr = α1g1 + α2g2 + · · ·+ αpgp}.

There exists a 1↔ 1 relation betweenL w andM w. This may be seen as follows.
Call

4 Jan C. Willems

[[r ∈ R [ξ]w anannihilator for B]] :⇔ [[r⊤(σ)B = 0]].

Denote the set of annihilators ofB by B⊥. ClearlyB⊥ ∈ M w. This identifies the
mapB ∈ L w 7→ B⊥ ∈ M w. It can be shown that this map is surjective (not totally
trivial, but true). WhenB has kernel representation (K), thenB⊥ is the R [ξ]-
module generated by the transposes of the rows ofR. To travel the reverse route and
associate an elementB ∈ L w with a moduleM ∈ M w, take the behavior of the
system with kernel representation (K) generated by the polynomial matrixR with
as rows the transposes of a set of generators ofM.

The module of annihilators is a more appropriate way of thinking about an el-
ementB ∈ L w than the specific, but less intrinsic, difference equation (K) which
one happens to have chosen to defineB.

The special case of (K) given by the overly familiar

P(σ)y = Q(σ)u, w = (u,y) (i/o)

with P∈ R [ξ]p×p ,Q∈ R [ξ]p×m ,det(P) 6= 0, and with proper transfer functionG =
P−1Q∈ R(ξ)p×m , is called aninput/output(i/o) system, withu : N → R

m the input
andy : N → R

p the output. The conditions imposed onP,Q ensure thatu is free,
and thaty does not anticipateu, the usual requirements on an input/output system.
Clearly (i/o) defines an element ofL m+p. Conversely, for everyB ∈L w, there exists
a system (i/o) withm+ p = w, that has, up to a mere reordering of the components,
behaviorB. With this reordering, we mean that there exists a permutation matrix
Π ∈ R

w×w (depending onB, of course), such that (i/o) has behaviorΠB. In the se-
quel, we often silently assume that the permutation that makes the inputs the leading,
and the outputs the trailing components ofw has been carried out already.

As in all of system theory, controllability plays an important role also in the
theory surrounding the MPUM. We recall the behavioral definition of controllability.

[[B ∈ L
w is controllable]]

:⇔ [[∀ w1,w2 ∈ B andt1 ∈ N,∃ w∈ B andt2 ∈ N,t2 ≥ t1, such that

w(t) = w1(t) for 1≤ t ≤ t1, andw(t) = w2(t − t1− t2) for t > t1 + t2]].

Various characterizations of controllability may be found, for example, in [14, sec-
tion 5].

It is easy to see that there exists an MPUM inL w associated with ˜w. Denote it
by B̃. The most convincing proof that this MPUM exists, is by showing what it is:

B̃ = linear span({w̃,σw̃, . . . ,σ tw̃, . . .}),

where the right hand side means the closure in the topology ofpoint-wise conver-
gence of the linear span of the elements in the set. Obviously, this linear span is
linear, it is shift invariant since it is constructed from ˜w and its shifts, and after taking
the closure, it is closed in the topology of point-wise convergence. Consequently it
belongs toL w. It is also unfalsified, since ˜w∈ B̃, and clearly any unfalsified element
in L w must contain all theσ tw̃’s and hence their linear span, and be closed in the

Recursive Computation of the MPUM 5

topology of point-wise convergence. This proves thatB̃ is indeed the MPUM inL w

associated with ˜w.
(K) is unfalsified by ˜w iff R(σ)w̃ = 0. It follows that among all polynomial

matricesR∈ R [ξ]•×w such thatR(σ)w̃ = 0, there is one whose behavior is more
powerful than any other. And, of course, this MPUM allows an i/o representation.
Our aim are algorithms to go from the observed time series ˜w to a representation of its
associated MPUM inL w. The most direct way to go about this is to compute, from
w̃, a polynomial matrixR such that (K) is a kernel representation of this MPUM.
Equivalently, to compute a set of generators forB⊥. In [11] several such algorithms
are described.

The ‘consistency’ problem consists of finding conditions sothat the system that
has generated the data is indeed the one that is identified by the system identification
algorithm. In our deterministic setting this comes down to checking when the system
that has generated ˜w is actually the MPUM inL w associated with ˜w. Persistency of
excitation, but also controllability, are the key conditions leading to consistency. The
vector time seriesf : N → R

k is

[[persistently exciting]] :⇔ [[the MPUM inL
k associated withf equals

(

R
k
)N

]].

ConsiderB ∈ L w, with i/o partitionw = (u,y). Assume that ˜w = (ũ, ỹ) is parti-
tioned accordingly. ThenB is the MPUM inL w associated with ˜w if

1. w̃∈ B,
2. ũ is persistently exciting,
3. B is controllable.

In [13] a more general version of this consistency result is proven. Note that the first
two conditions are clearly also necessary for consistency.

This result provides additional motivation for making the MPUM the aim of
deterministic system identification.

3 Subspace identification

In addition to looking for a kernel representation of this MPUM, we are even more
interested in obtaining a state space representation of it.We first explain what we
mean by this.

Letm,p,n be nonnegative integers,A∈R
n×n,B∈R

n×m,C∈R
p×n,D∈R

p×m, and
consider the ubiquitous system

σx = Ax+Bu, y = Cx+Du, w = (u,y). (S)

In this equation,u : N → R
m is theinput, y : N → R

p theoutput, andx : N → R
n the

statetrajectory. The behavior

{(u,y) : N → R
m×R

p | ∃x : N → R
n such that (S) holds}

6 Jan C. Willems

is called theexternal behaviorof (S). It can be shown that this external behavior
belongs toL m+p. The (u,y,x)-behavior is obviously an element ofL m+p+n. This
implies that the(u,y)-behavior, what we call the external behavior, is an elementof
L m+p. This is due to the fact than the projection onto a subset of the components of
a linear shift-invariant closed subspace of(Rw)N is again linear, shift-invariant, and
closed. This result is called the ‘elimination theorem’, and is an important element
in the behavioral theory of systems. It implies, for example, thatL w is closed under
addition.

So, the external behavior of (S) belongs of toL m+p. Conversely, for everyB ∈
L w, there exists a system (S), with m+p = w, that has, up to a mere reordering of
the components(u,y), external behaviorB. With this reordering, we mean that there
exists a permutation matrixΠ ∈ R

w×w such that (S) has external behaviorΠB.
In the sequel, we again often silently assume that the permutation that makes the
inputs the leading, and the outputs the trailing componentsof w has been carried out
already.

(S) is called aninput/state/output(i/s/o) representation of its external behavior.
(S) is calledminimal if its state has minimal dimension among all i/s/o systems
with the same external behavior. It can be shown that minimalis equivalent to state
observable, meaning that if(u,y,x′) and(u,y,x′′) both satisfy (S), thenx′ = x′′. In
other words, observability means that the state trajectoryx can be deduced from the
input and output trajectories(u,y) jointly. As is very well-known, observability holds
iff the (np×n) matrix col

(

C,CA, · · · ,CAn−1
)

has rankn. Minimality does not imply
controllability. But a minimal i/s/o representation is state controllable iff its external
behavior is controllable, in the sense we have defined controllability of behaviors.

As explained in the previous section, we are looking for algorithms that pass
from the observed time series ˜w to its MPUM in L w, for example, by computing
a kernel representation (K) of this MPUM. There is, however, another way to go
about this, by first computing the state trajectory corresponding tow̃ in the MPUM,
and subsequently the system parameters(A,B,C,D) corresponding to an i/s/o repre-
sentation. Explicitly, assume that we had somehow found theMPUM. We could then
compute a minimal i/s/o representation for it, and obtain the (unique) state trajectory
x̃ corresponding to ˜w. Of course, for everyT ∈ N, there holds (assuming that the
reordering of the components discussed before such that ˜w = (ũ, ỹ) has been carried
out)

[

x̃(2) x̃(3) · · · x̃(t +1) · · ·
ỹ(1) ỹ(2) · · · ỹ(t) · · ·

]

=

[

A B
C D

][

x̃(1) x̃(2) · · · x̃(t) · · ·
ũ(1) ũ(2) · · · ũ(t) · · ·

]

. ($)

So, if
[

x̃(1) x̃(2) · · · x̃(T)
ũ(1) ũ(2) · · · ũ(T)

]

is of full row rank, ($), truncated at columnT, provides an equation for computing
A,B,C,D, and yields an i/s/o representation of the MPUM.

As we explained it, this approach appears to be a vicious circle. For in order to
compute ˜x, we seem to need the MPUM to start with. But, if we could somehow

Recursive Computation of the MPUM 7

compute ˜x, directly from the data ˜w, withoutderiving it from the MPUM, then ($)
gives a viable and (see section 8) attractive way to compute an i/s/o representation of
the MPUM. In section 8 we shall explain that even when we deduce x̃ from a kernel
representation of the MPUM, it is advantageous to return to ($) for the purpose of
system identification because of its built-in model reduction.

The SYSID methods that first compute the state trajectory from the data, and then
derive the system model from the state trajectory have become known assubspace
identificationalgorithms. Before the emergence of these methods, state space repre-
sentations played a somewhat secondary role in system identification. The purpose
of this paper is to take a closer look at (the deterministic version of) these algorithms.

4 State construction by past/future partition

The question is:

How can we compute the state trajectoryx̃
directly fromw̃, without first computing the MPUM̃B?

The doubly infinite matrix

H :=

















w̃(1) w̃(2) · · · w̃(t) · · ·
w̃(2) w̃(3) · · · w̃(t +1) · · ·

...
...

...
...
...

...
...
...
...

w̃(t ′) w̃(t ′ +1) · · · w̃(t + t ′−1) · · ·
...

...
...
...
...

...
...
...
...

















(H)

is called theHankel matrixof the data ˜w. It holds the key to the state construction.
The earliest subspace algorithms are based on the intersection of the span of the

rows of a past/future partition of this Hankel matrix, and deduce the state trajectory as
the common linear combinations of the past and the future. This proceeds as follows.
Partition a row truncation ofH as

[

Hp

H f

]

=

































w̃(1) w̃(2) · · · w̃(t) · · ·
w̃(2) w̃(3) · · · w̃(t +1) · · ·

...
...

...
...
...

...
...
...
...

w̃(Tp) w̃(Tp +1) · · · w̃(Tp + t−1) · · ·

w̃(Tp +1) w̃(Tp +2) · · · w̃(Tp + t) · · ·
...

...
...
...
...

...
...
...
...

w̃(Tp+Tf−1) w̃(Tp +Tf) · · · w̃(Tp+Tf +t−2) · · ·
w̃(Tp +Tf) w̃(Tp+Tf +1) · · · w̃(Tf +Tp+t−1) · · ·

































(Hp/H f)

and refer toHp as the ‘past’, and toH f as the ‘future’ of the Hankel matrix.Tp and
Tf are sufficiently large nonnegative integers. Actually, it is possible to proceed after

8 Jan C. Willems

truncating these Hankel matrices also column-wise at a sufficiently large columnT.
We do not enter into details about what ‘sufficiently large’ exactly means in these
statements — those issues are glossed over here.

Consider the intersection of the linear space spanned by therows ofHp and the
linear space spanned by the rows ofH f . Let n be the dimension of this intersection.
This means that there aren linearly independent linear combinations of the rows of
Hp that are equal to linear combinations of the rows ofH f . These linear combina-
tions can be stacked into a matrix withn rows,

X̃ =
[

x̃(Tp +1) x̃(Tp +2) · · · x̃(Tp + t) · · ·
]

It turns out that, under suitable conditions which are spelled out in [11], the dimen-
sion of this intersection equals the dimension of the state space of a minimal i/s/o
representation of the MPUM inL w associated with ˜w. Moreover, as the notation sug-
gests, the columns of̃X form the state trajectory corresponding to ˜w in the MPUM
B̃ (more precisely, corresponding to a minimal i/s/o representation ofB̃). This then
leads, by equation ($), to an algorithm to compute the matricesA,B,C,D and to an
identification procedure for the MPUM.

In [11] this intersection algorithm is applied to a variety of situations, including
classical realization theory. These algorithms have been given good numerical linear
algebra based implementations in [8].

In thepurely deterministiccase the state trajectory can be obtained, as we have
just seen, as theintersectionof the linear span of the rows of the past with the linear
span of the rows of the future of the Hankel matrix of the data.This is, in a sense,
analogous to the fact that in thepurely stochasticcase the state trajectory can be ob-
tained as theorthogonal projectionof the linear span of the rows of the past onto the
linear span of the rows of the future of the Hankel matrix of the data, as noted in [1].
This idea was used in [6] for the purposes of stochastic SYSID. The resulting sub-
space methods in the context of the purely stochastic case have been followed up by
many authors, see, in particular, [5] and [4]. The combined deterministic/stochastic
case is a significant generalization of the purely deterministic case and the purely
stochastic case individually. It has been studied in [7, 8].Similar algorithms have
been developed in [10]. In the mean time, many articles dealing with subspace algo-
rithms for the combined case have appeared, for instance [2,3].

5 The Hankel structure and the past/future partition

Let us now take a closer look at the intersection of the spacesspanned by the rows
of Hp and by the rows ofH f . How can we obtain this intersection?Consider this
question first for a general partitioned matrix

M =

[

M′

M′′

]

.

The common linear combinations of the row span ofM′ and the row span ofM′′ can
be computed from the left kernel ofM. Indeed,

Recursive Computation of the MPUM 9

[[kM = 0↔
[

k′ k′′
]

[

M′

M′′

]

= 0]] ⇔ [[k′M′ = −k′′M′′]],

and hence the common linear combinations of the span of the rows of M′ andM′′

follow immediately from a set of vectors that span the left kernel ofM, by truncating
these vectors conformably with the partition of the matrixM, to k′, and multiply-
ing by M′. This can be applied to the partitioned Hankel matrix (Hp/H f), and we
observe that the state construction amounts to computing the left kernel of the parti-
tioned matrix (Hp/H f).

We shall now argue that,because of the Hankel structure, the left kernel of
(Hp/H f) can be deduced from the left kernel ofHp all by itself, and so, there
is no need to use the past/future partitioning in order to construct the left kernel and
the state. To see this, assume that

[

k1 k2 · · · kTp

]

is in the left kernel ofHp, i.e. kHp = 0. Notice that, because of the Hankel structure
of H , the vectors

[

0 · · · 0 k1 k2 · · · kTp 0 · · · 0
]

,

obtained by putting in totalTf zeros in front and in back of
[

k1 k2 · · · kTp

]

, are
all contained in the left kernel of (Hp/H f). It can be shown that, providedTp is
sufficiently large (but it need not be larger that what was required to validate the
intersection argument of the row spans ofHp andH f of the previous section), we
obtain this way, from a set of vectors that span the left kernel of Hp, a set of vectors
that span the whole left kernel of (Hp/H f). After truncation to its firstTp elements,

[

0 · · · 0 k1 k2 · · · kL
]

,

this leads to a set of vectors that, when multiplied from the right with Hp, span the
intersection of the spaces spanned by the rows ofHp and the rows ofH f . Note that
this truncation results from applying repeatedly the shift-and-cut operator to the row
vector

[

k1 k2 · · · kTp

]

, i.e. putting a zero in the first element and deleting the last
element of this row vector, so as to obtain a vector of lengthTp. In other words, from
the vector

[

k1 k2 · · · kTp

]

in the left kernel ofHp, we obtain the vectors

[0 k1 k2 · · · kTp−2 kTp−1]

[0 0 k1 · · · kTp−3 kTp−2]
...

[0 0 0 · · · k1 k2]
[0 0 0 · · · 0 k1]

that are truncations of elements from the left kernel of

[

H f

Hp

]

10 Jan C. Willems

Using the ideas explained in the previous section, this leads to the construction
of the state trajectory associated with ˜w in the MPUM, by computing a basis of the
left kernel ofHp, stacking these vectors as the rows of the matrix

[

K1 K2 · · · KTp−1 KTp

]

,

and repeatedly applying the shift-and-cut operator to obtain the state trajectory

[

x̃(Tp +1) x̃(Tp +2) · · · x̃(Tp + t) · · ·
]

=















0 K1 K2 · · · KTp−2 KTp−1

0 0 K1 · · · KTp−3 KTp−2
...

...
...

...
...
...

...
...

0 0 0 · · · K1 K2

0 0 0 · · · 0 K1

































w̃(1) w̃(2) · · · w̃(t) · · ·
w̃(2) w̃(3) · · · w̃(t +1) · · ·
w̃(3) w̃(4) · · · w̃(t +2) · · ·

...
...

...
...
...

...
...
...
...

w̃(Tp−1) w̃(Tp) · · · w̃(Tp + t −2) · · ·
w̃(Tp) w̃(Tp +1) · · · w̃(Tp + t −3) · · ·



















.

Actually, it turns out that we can also apply the shift-and-cut backwards, leading to

[

x̃(1) x̃(2) · · · x̃(t) · · ·
]

=














K2 K3 · · · KTp−1 KTp

K3 K4 · · · KTp 0
...

...
...
...
...

...
...

KTp−1 KTp · · · 0 0
KTp 0 · · · 0 0





























w̃(1) w̃(2) · · · w̃(t) · · ·
w̃(2) w̃(3) · · · w̃(t +1) · · ·

...
...

...
...
...

...
...
...
...

w̃(Tp−2) w̃(Tp−1) · · · w̃(Tp + t −3) · · ·
w̃(Tp−1) w̃(Tp) · · · w̃(Tp + t −2) · · ·















.

This then yields the desired state trajectory to which the subspace algorithm ($) can
be applied in order to obtain an i/s/o representation of the MPUM.

6 The left kernel of a Hankel matrix

In the previous section, we have seen the relevance to the problem at hand of com-
puting the left kernel of the doubly infinite Hankel matrixH . We are interested in
characterizing the infinite vectors in its left kernel that have ‘compact support’, i.e.
the infinite vectors of the form

k =
[

k1 k2 · · · kt · · · 0 · · · 0 · · ·
]

, kt ∈ R
1×w,t ∈ N,

with kH = 0. Denote the set of compact support elements in the left kernel byN .
For simplicity, we callN the left kernel ofH .

In general,N is infinite dimensional. In fact,N equals{0}, or it is infinite
dimensional. However, we shall now argue that by considering the left kernel ofH
as a module,N is effectively finite dimensional, of dimension≤ w. Observe that
N is closed under addition (obvious), scalar multiplication(obvious), and under the
right shift (also obvious, using the Hankel structure):

Recursive Computation of the MPUM 11

[[
[

k1 k2 · · · kt 0 0 · · · 0 · · ·
]

∈ N]] ⇒ [[
[

0 k1 · · · kt−1 kt 0 · · · 0 · · ·
]

∈ N]].

This implies (identify elementsk ∈ N with polynomial vectorsk1 + k2ξ + · · ·+
Ktξ t−1 + · · · ∈ R [ξ]1×w, and the right shift with multiplication byξ) thatN has the
structure of a module (a submodule ofR [ξ]1×w, viewed as anR [ξ]-module). This
submodule is finitely generated (allR [ξ]-submodules ofR [ξ]1×w are finitely gener-
ated, with at mostw generators). This means that there exist elementsn1,n2, . . . ,np ∈
N , with p ≤ w, such that all other elements ofN can be obtained as linear combi-
nations of these elements and their repeated right shifts.

It turns out thatfor the construction of the state trajectory, we need only these
generators. In other words, rather that compute the whole left kernel ofHp, it suf-
fices to obtain a set of generators of the left kernel ofH in the left kernel ofHp.
We assume thatLp is sufficiently large, so that the left kernel ofHp contains a set of
generators of the left kernel ofH .

This leads to the following state construction algorithm. Let n1,n2, · · · ,np of N

be a set of generators of the left kernel ofH . Truncate these vectors at their last
non-zero element:

ni
∼=

[

ni,1 ni,2 · · · ni,Li

]

, ni,t ∈ R
1×w.

Now apply the shift-and-cut to thei-th generator. This leads to the ‘partial’ state
trajectory

[

x̃i(1) x̃i(2) · · · x̃i(t) · · ·
]

=














ni,2 ni,3 · · · ni,Li−1 ni,Li

ni,3 ni,4 · · · ni,Li 0
...

...
...
...
...

...
...

ni,Li−1 ni,Li · · · 0 0
ni,Li 0 · · · 0 0





























w̃(1) w̃(2) · · · w̃(t) · · ·
w̃(2) w̃(3) · · · w̃(t +1) · · ·

...
...

...
...
...

...
...
...
...

w̃(Li −2) w̃(Li −1) · · · w̃(Li + t −3) · · ·
w̃(Li −1) w̃(Li) · · · w̃(Li + t −2) · · ·















.

Now, stack the ˜xi ’s. This leads to the state trajectory










x̃1(1)
x̃2(1)

...
x̃p(1)











,











x̃1(2)
x̃2(2)

...
x̃p(2)











, · · · ,











x̃1(t)
x̃2(t)

...
x̃p(t)











, · · ·

to which the subspace algorithm ($) can be applied.
In conclusion, from a set of generators ofN viewed as a module, we obtain, by

repeatedly using the shift-and-cut, and matrix which multiplied by the Hankel matrix
of the data, yields the state trajectory ˜x. In the next section, we provide a recursive
way of computing a set of generators.

12 Jan C. Willems

7 Recursive computation of a module basis

Consider the left kernelN of H . Call a minimal set of elementsn1,n2, . . . ,np ∈ N

that generate all ofN , through linear combinations of these elements and their re-
peated right shifts, amodule basisof N . In the present section, we set up a recursive
algorithm to compute a module basis ofN from w̃.

Assume henceforth that the MPUM inL w associated with ˜w is controllable.
This assumption is made for reasons of exposition. The algorithm can be generalized
without this assumption, but it becomes considerably more involved to explain.

We start with a brief digression about controllability. Thefollowing basic prop-
erty characterizes controllable behaviors inL w:

[[B ∈ L
w is controllable]] ⇔ [[∃B

′ ∈ L
w such thatB⊕B

′ = (Rw)N]].

Evidently,B′ is also controllable. In other words, a behavior has a directcomplement
iff it is controllable. This property of controllable behaviors can be translated in terms
of a kernel representation (K) of B, with Rof full row rank (everyB ∈ L w allows
such a full row rank representation). It states that

[[kernel(R(σ)) ∈ L
w is controllable]]

⇔ [[∃R′ ∈ R [ξ]•×w such that

[

R

R′

]

is unimodular]].

In fact,R′(σ)w = 0 is a kernel representation of the direct complementB′.
We now return to the construction of the MPUM. Start with the dataw̃. Consider

the associated Hankel matrixH , and its consecutive truncations
[

w̃(1) w̃(2) · · · w̃(t) · · ·
]

,

[

w̃(1) w̃(2) · · · w̃(t) · · ·
w̃(2) w̃(3) · · · w̃(t +1) · · ·

]

,

...










w̃(1) w̃(2) · · · w̃(t) · · ·
w̃(2) w̃(3) · · · w̃(t +1) · · ·

...
...

...
...
...

...
...
...
...

w̃(L) w̃(L+1) · · · w̃(t +L−1) · · ·











,

until a vector in the left kernel is obtained. Denote this element by
[

k1 k2 · · · kL
]

∈ R
1×wL.

Now consider the corresponding vector polynomial

n(ξ) = k1 +k2ξ + · · ·+kLξ L−1 ∈ R [ξ]1×w .

Recursive Computation of the MPUM 13

It can be shown that, because of the assumed controllabilityof the MPUM, the sys-
tem with kernel representationn(σ)w = 0 is also controllable. Consequently, there
existsN ∈ R [ξ](w−1)×w such that the polynomial matrix

[

n

N

]

is unimodular. The system described byn(σ)w= 0 is unfalsified by ˜w, but, of course,
N(σ)w = 0 need not be. Compute the ‘error’ vector time series

ẽ= N(σ)w̃ = (ẽ(1), ẽ(2), . . . , ẽ(t), . . .) ,

Now apply the above algorithm again, with ˜w replaced by ˜e, and proceed recursively.
Note thatẽ(t) ∈ R

w−1: the dimension of the time series that needs to be examined
goes down by one at each step.

Recursively this leads to the algorithm

w̃ 7→ n1 7→ N1 7→ ẽ1 7→ n2 7→ N2 7→ ẽ2 7→ · · · 7→ ẽp−2 7→ np−1 7→ Np−1 7→ ẽp−1 7→ np.

This algorithm terminates when there are no more vectors in the left kernel of the
associated Hankel matrix, i.e. when the error ˜e is persistently exciting. If we assume
that the MPUM hasm input andp output components, then ˜ep will be the first persis-
tently exciting error time series obtained.

Now consider the polynomial vectors

r1 = n1, r2 = n2N1, r3 = n3N2N1, · · · , rp = npNp−1Np−2 · · ·N2N1.

Define

R̃=











r1

r2
...
rp











.

It can be shown that
R̃(σ)w = 0

is a kernel representation of̃B, the MPUM in L w associated with ˜w. The inter-
mediate calculations ofr1, r2, . . . , rp lead to the state trajectory in a similar way as
explained in section 6. Let

r i(ξ) = r i,1 + r i,2ξ + · · ·+ r i,Li ξ
L1−1 ∈ R [ξ]1×w .

Form the vector
r i
∼=

[

r i,1 r i,2 · · · r i,Li

]

, r i,t ∈ R
1×w.

Now apply the shift-and-cut. This leads to the ‘partial’ state trajectory

14 Jan C. Willems

[

x̃i(1) x̃i(2) · · · x̃i(t) · · ·
]

=














r i,2 r i,3 · · · r i,Li−1 r i,Li

r i,3 r i,4 · · · r i,Li 0
...

...
...
...
...

...
...

r i,Li−1 r i,Li · · · 0 0
r i,Li 0 · · · 0 0





























w̃(1) w̃(2) · · · w̃(t) · · ·
w̃(2) w̃(3) · · · w̃(t +1) · · ·

...
...

...
...
...

...
...
...
...

w̃(Li −2) w̃(Li −1) · · · w̃(Li + t −3) · · ·
w̃(Li −1) w̃(Li) · · · w̃(Li + t −2) · · ·















.

Now, stack the ˜xi ’s, and obtain the state trajectory










x̃1(1)
x̃2(1)

...
x̃p(1)











,











x̃1(2)
x̃2(2)

...
x̃p(2)











, · · · ,











x̃1(t)
x̃2(t)

...
x̃p(t)











, · · ·

to which the subspace algorithm ($) can be applied.

8 Concluding remarks

8.1 Subspace ID

Solving equation ($) as the basis for system identification has many appealing fea-
tures. We can begin by reducing the number of rows of

X̃ =
[

x̃(1) x̃(2) · · · x̃(t) · · ·
]

by numerically approximating this matrix by one with fewer rows. This leads to a
reduction of the state dimension and hence of the model complexity. Of course, ($)
will then no longer be exactly solvable, even when the observed data is noise free, but
since this equation is linear in the unknown matricesA,B,C,D, it is very amenable
to a least-squares (LS) solution. Introducing the state in asense linearizes the SYSID
problem. Solving equation ($) using (LS) also accommodatesfor noisy data and for
numerical errors in the intermediate calculations.

Missing data can be dealt with by deleting columns in the equation ($). If multiple
time series are observed (this is the case in classical realization theory), then equation
($) can readily be extended with the vectors ˜u, ỹ, x̃ replaced by matrices.

8.2 State construction by shift-and-cut

The state construction that permeates sections 5, 6, and 7 isactually well-known, and
our presentation of it via the past/future partition and theleft kernel of the Hankel
matrixH to some extent hides the simplicity and generality of the ideas behind it.

Indeed, in [9], a state construction algorithm based on the shift-and-cut operator
has been presented as a very direct and general method for constructing state repre-
sentations, starting from a variety of other system representations. Letp∈ R [ξ] and
define theshift-and-cutoperatorσ∗ : R [ξ] → R [ξ] by

Recursive Computation of the MPUM 15

σ∗ : p0 + p1ξ + · · ·+ pLξ L 7→ p1 + p2ξ + · · ·+ pLξ L−1.

By applying the operatorσ∗ element-wise, it is readily extended to polynomial vec-
tors and matrices.

We now explain how this state construction works, starting with a kernel repre-
sentation (K). Associate with

R(ξ) = R0 +R1ξ + · · ·+RLξ L

the stacked polynomial matrix

X(ξ) =





σ∗R
σ∗2R...



(ξ) =















R1 +R2ξ +R3ξ 3+ · · ·+RL−1ξ L−2 +RLξ L−1

R2 +R3ξ + · · ·+RL−1ξ L−3 +RLξ L−2

...
RL−1 +RLξ

RL















(ξ),

obtained by repeatedly applyingσ∗ to Runtil we get the zero matrix. It can be shown
thatX(σ) is astate map: it associates tow∈ kernel(R(σ)) the corresponding state
trajectoryx = X(σ)w of a (in general non-minimal) state representation of (K). In
other words, as soon as we have a kernel representation of theMPUM, the shift-and-
cut operator gives us the underlying state.

This shift-and-cut state construction is precisely what isdone in sections 5, 6,
and 7. Starting from the MPUM as

B̃ = linear span({w̃,σw̃, . . . ,σ tw̃, . . .}),

we construct annihilators for̃B. These annihilators are, of course, exactly the el-
ements of the left kernel of the Hankel matrixH . By subsequently applying the
shift-and-cut operator, we obtain the state trajectory ˜x corresponding to ˜w.

8.3 Return to the data

One of the attractive features of subspace methods, is that after construction of ˜x,
the model is obtained using equation ($) which involves ˜w and x̃. In other words,
it allows to return to the original observed time series ˜w in order to fit the final
parameter estimates of the identified system to the data.

The shift-and-cut state construction shows how to obtain a state trajectory from
any kernel representation of the MPUM. We originally posed the question of how
to construct the state trajectory by avoiding the intermediate computation of a kernel
representation of the MPUM. But, we have come full circle on this. We demonstrated
that the state construction based on the intersection of therow spans ofHp andH f

actually amounts to finding a module basis of a kernel representation of the MPUM.
It is an interesting matter to investigate to what extent these insights can also be used
in the purely stochastic or in the mixed deterministic/stochastic case.

16 Jan C. Willems

8.4 Approximation and balanced reduction

The algorithm proposed in section 7 lends itself very well for approximate imple-
mentation. Checking whether the consecutive truncations of the Hankel matrix have,
up to reasonable level of approximation, a non-trivial element in the left kernel, and
finding the optimal element in the left kernel, are typical decisions that can be made
using SVD based numerical linear algebra computations.

It is of interest to combine our recursive algorithms with model reduction. In par-
ticular, it ought to be possible to replace the state construction based on the shift-and-
cut operator applied to an annihilator by an alternative setof low order polynomial
vectors that lead to a balanced state model. Some ideas in this direction have been
given in [12].

8.5 The complementary system

The most original feature of this article is the recursive computation of a basis of the
module of annihilators of a given behavior in section 7. In the controllable case, this
may be done by complementing a kernel representation to a unimodular polynomial
matrix. It is of interest to explore if the recursive computation of the module basis
explained in section 7, combined with the shift-and-cut map, can also be used in the
general constructions of a state map, starting from a kernel, an image, or a latent
variable representation of a behavior.

The finer features and numerical aspects of this recursive computation and ex-
tension of a polynomial matrix to a unimodular one is a matterof future research.
In particular, one is led to wonder if theℓ2 (N,Rw)-orthogonal complement of
B∩ ℓ2 (N,Rw) can play a role in obtaining a complement of aB. Or if the singular
value decomposition of the truncated Hankel matrix











w̃(1) w̃(2) · · · w̃(t) · · ·
w̃(2) w̃(3) · · · w̃(t +1) · · ·

...
...

...
...
...

...
...
...
...

w̃(L) w̃(L+1) · · · w̃(t +L−1) · · ·











can be used for complementingn with N to obtain a unimodular polynomial matrix.
The left singular vector corresponding to the smallest singular value should serve to
identify the elementn in the left kernel, and the others somehow to find the comple-
mentN.

Acknowledgments

This research is supported by the Research Council KUL project CoE EF/05/006 (OPTEC),
Optimization in Engineering, and by the Belgian Federal Science Policy Office: IUAP P6/04
(Dynamical systems, Control and Optimization, 2007-2011).

Recursive Computation of the MPUM 17

References

1. H. Akaike, Markovian representation of stochastic processes by canonical variables,
SIAM Journal on Control, volume 13, pages 162–173, 1975.

2. A. Chiuso and G. Picci, Asymptotic variance of subspace estimates,Journal of Econo-
metrics, volume 118, pages 257–291, 2004.

3. A. Chiuso and G. Picci, Consistency analysis of certain closed-loop subspace identifica-
tion methods,Automatica, volume 41, pages 377–391, 2005.

4. D. Bauer, Comparing the CCA subspace method to pseudo maximum likelihood methods
in the case of no exogenous inputs,Journal of Time Series Analysis, volume 26, pages
631–668, 2005.

5. M. Deistler, K. Peternell, and W. Scherrer, Consistency and relative efficiency of subspace
methods,Automatica, volume 31, pages 185–1875, 1995.

6. W.E. Larimore, System identification, reduced order filters and modeling via canonical
variate analysis,Proceedings of the American Control Conference, pages 445-451, 1983.

7. P. Van Overschee and B. L. M. De Moor, N4SID: Subspace algorithms for the identifica-
tion of combined deterministic-stochastic systems,Automatica, volume 30, pages 75-93,
1994.

8. P. Van Overschee and B. L. M. De Moor,Subspace Identification for Linear Systems:
Theory, Implementation, Applications, Kluwer Academic Press, 1996.

9. P. Rapisarda and J.C. Willems, State maps for linear systems,SIAM Journal on Control
and Optimization, volume 35, pages 1053-1091, 1997.

10. M. Verhaegen, Identification of the deterministic part of MIMO state space models given
in innovations form from input-output data,Automatica, volume 30, pages 61–74, 1994.

11. J. C. Willems, From time series to linear system, Part I. Finite dimensional linear time
invariant systems, Part II. Exact modelling, Part III. Approximate modelling,Automatica,
volume 22, pages 561-580 and 675-694, 1986, volume 23, pages87-115, 1987.

12. J.C. Willems and P. Rapisarda, Balanced state representations with polynomial algebra, in
Directions in Mathematical Systems Theory and Optimization, (edited by A. Rantzer and
C.I. Byrnes), Springer Lecture Notes in Control and Information Sciences, volume 286,
pages 345-357, 2002.

13. J.C. Willems, P. Rapisarda, I. Markovsky, and B. De Moor,A note on persistency of
excitation,Systems & Control Letters, volume 54, pages 325-329, 2005.

14. J.C. Willems, Thoughts on system identification, inControl of Uncertain Systems: Mod-
elling, Approximation and Design(edited by B.A. Francis, M.C. Smith, and J.C.
Willems), Springer Verlag Lecture Notes on Control and Information Systems, vol-
ume 329, pages 389–416, 2006.

