


DISSIPATIVE DISTRIBUTED SYSTEMS
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Abstract

A controllable distributed dynamical system described by a system of linear
constant-coefficient partial differential equations is said to be conservative if
for compact support trajectories the integral of the supply rate is zero. It is
said to be dissipative if this integral is non-negative. The question that we
consider is whether these global versions of conservation and dissipativeness
are equivalent to local versions, involving a storage function and a dissipation
rate. It is shown that this is indeed the case, provided we consider latent
variable representations.
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1 Introduction

It is a pleasure to contribute an article to this Festschrift dedicated to Sanjoy
Mitter on the occasion of his 65-th birthday, as an expression of thanks for his
warm friendship and collegiality. His advice and opinion always meant a great deal
to me, as a source of sound judgment and perspective in a field that is continuously
torn by forces coming from mathematical virtuosity and technological euphoria. I
first interacted with Sanjoy during his sabbatical leave at MIT in 1969-70. At that
occasion he gave a course on distributed parameter systems. The breadth in scope
and the mathematical sophistication of these lectures left a lasting impression.
My article also deals with distributed systems, as a tribute to Sanjoy’s scientific
influence on me.

This paper reports on research done in collaboration with dr. Harish Pillai. It
is preliminary in nature. It builds on his earlier results that appeared in [6]. An
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extensive version containing proofs of the results reported here will be submitted
elsewhere.

A word about notation. The dimension of a vector space is usually denoted
by the same symbol as a generic element of that vector space, say w € R¥, and
analogously for function spaces. If the dimension is unimportant (but, of course,
finite), we denote it as *. We often assume without explicit mention that in vector
and matrix multiplication, the vectors and matrices have suitable dimensions.

A 1-D dynamical system X is a triple ¥ = (T, W,B) with T C R the time-
set, W the signal space, and B C W' the behavior. The intuition behind this
definition is that T is the set of relevant time-instances; W is the set in which
the signals, whose dynamic relation > models, take on their values; the behavior
B specifies which signals w : T — W obey the laws of the system. The time-set
T equals for example R or R, in continuous-time, and Z or Z, in discrete-time
systems. There is much interest in generalization from a time-set that is a subset
of R to domains with more independent variables (e.g., time and space). These
‘dynamical’ systems have T C R", and are referred to as n-D systems. This
paper deals with such systems, more specifically with systems described by linear
constant-coefficient partial differential equations.

Define a distributed differential system as an n-D system ¥ = (R, R, B),
with behavior B consisting of the solution set of a system of partial differential
equations

0 0

Oxy’' 7 Oxy

R Jw =0 (1)

viewed as an equation in the functions
(1, y2y) =2 €ER = (wi(x), ... ,we(x)) = w(x) € R.

Here, R € R**¥[&, ... ,&,] is a matrix of polynomials in Ry, ... ,&,]. The behav-
ior of this system of partial differential equations is defined as

B ={w e C°R",R") | (1) is satisfied}.

Important properties of these systems are their linearity (meaning that 9B is a
linear subspace of (R*)*"), and shift-invariance (meaning 0®B = B for all x €
R™, where o” denotes the x—shift, defined by (o”f)(z") = f(z' + z)). The €>-
assumption in the definition of 8 is made for convenience only, and there is much
to be said for using distributions instead. We denote the behavior of (1) as defined
above by ker(R(a%l, cee %)), and the set of distributed differential systems thus
obtained by £7. Note that we may as well write B € £7 instead of X € £7 since
the set of independent variables (R™) and the signal space (R¥) are evident from
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this notation. Whence ¥ = (R",R",B) € £ means that there exists a matrix of
polynomials R € R**¥[£y, ..., &,] such that B = ker(R(32- =y Bon 9_)). We call (1)
a kernel representation of E (R™, R¥, ker(R(axl, . ai))) We will meet other
representations later.

A typical example of a distributed dynamical system is given by Maxwell’s
equatlons which describe the possible realizations of the fields E:RxR —
R, B:RxR R, 7:RxR - R and p: R x R — R. Maxwell’s equations

_ 1
V-F = — P
€0
— a—»
VxE = ——B
g ot
V-B = 0,
2 7
VxB = —j+—
¢ % 60]+8t ’

with £y the dielectric constant of the medium and ¢? the speed of light in the
medium, define a distributed differential system

o 0 0 0

Y = (R, R ker(R(—, —, —, —
(R, R, ker( (at’ax’ay’az

) € &1,

with the matrix of polynomials R € R¥*10[&, &, &, &y] easily deduced from the
above equations. This defines the system (R x R*, R? x R? x R® x R,®B), with B

the set of all (E, B,7, p) that satisfy Maxwell’s equations.

Let B € £i. Hence, by definition, there exists a matrix of polynomials

R € R*™[¢y, ... , &) such that B = ker(R(am yeen ,%)). However, while R thus
defines ‘B uniquely, the converse is not true, because, for example,
0 0 0 0
ker(R(=—,...,=—)) = ker((UR —
er( (aflfl, Y al‘n)) er(( )(aflfl al‘n))
for any suitably sized matrix U of polynomials in R[&;, &, . . ., &,] that is unimodu-
lar (unimodular means that det(U) is a non-zero element of R[{1,. .. ,&,] of degree

zero, whence that U has an inverse that is also a matrix of polynomials). This
situation calls for a more intrinsic definition of 8. This can be done by considering
the annihilators.

Let B € £F. A vector of polynomials n € R¥[;, ... ,&,] is said to be an anni-
hilator for B if n (3x e ,%)% = 0. Denote by Ny C R¥[&, ..., &,] the set of
annihilators of 9B. It is easy to see that Ng defines a submodule of R¥[&;, ... , &,]
viewed as a module over the ring R[¢,...,&,]. Consequently, since every sub-

module of R¥[{y,...,&,] is finitely generated, there is a one-to-one relationship
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between £ and the set of submodules of R¥[{y, ... ,&,]. This situation has led
some authors to define dynamical systems as submodules, a practice that we find
a bit unfortunate, the definition in which a system is viewed as a subset of (R*)*"
being a much more intrinsic one. The issue of how to define a behavior B and
its annihilators, such that, in situations other than in the linear shift-invariant
case, there is a one-to-one relation between a system and its annihilators, has been
pursued in [4, 3].

Consider a system B € £7 and let {1',... ,w'} be a subset of {1,...,w}.
We call the variables (wy/,... ,wy) free in B if for any w' € €°(R*,R") there
exists a w € B which has v’ as its (1',... ,w')-th components. Denote by m(B)
the maximal number of free variables that may be obtained this way by selecting
the subset {1’,... ,w'}; m(*B) is called the input cardinality of B. In the 1-D
case, it can be shown that B admits a kernel representation ker(R(%)) such that
m(B) = w — rowdim(R). However, in the 7-D case, this may not be possible. For
example for the behavior described by Maxwell’s equations, m(8) = 3 and w = 10,

but the minimal rowdim(R) equals 8, as is the case in Maxwell’s equations.

More background on behavioral systems can be found in [10, 11, 7]. A very
nice recent paper that treats systems defined by (1) from a behavioral perspective
is [6]. Other authors who have discussed systems from related perspectives are
Fliess [1, 2], Oberst [4, 3], and Pommaret [8, 9], and their co-workers.

2 Elimination

Mathematical models of complex systems are usually obtained by viewing the sys-
tem (often in a hierarchical fashion) as an interconnection of subsystems. This
principle of tearing and zooming, combined with modularity, lies at the basis of
what is called object-oriented modeling, a very effective computer-assisted way
of model building used in many engineering domains. An important aspect of
these object-oriented modeling procedures is that they lead to models that relate
the variables whose dynamic relation one wants to model (we call these mani-
fest variables) to auxiliary variables (we call these latent variables) that have been
introduced in the modeling process, for example as variables that specify the inter-
connection constraints. For distributed differential systems this leads to equations
of the form

0 0 0 0
R(—,...,—w= — ., — 2
(8361’ ’axn)“’ (8361’ ’axn) ’ )
with R and M matrices of polynomials in R[{y,. .. ,&,]. This equation relates the

(vector of) manifest variables w to the (vector of) latent variables ¢. Define the



full behavior of this system as
B = {(w, £) € E°(R", R¥) x €*(R*, RI™) | (2) holds}
and the manifest behavior as
B = {we R, RY) | 3£ e ¢°(R*, RI™O) such that (2) holds}

We call (2) a latent variable representation of 8. The question occurs whether 8B
is in £;. This is the case indeed.

Theorem 1 (Elimination theorem) : For any real matrices of polynomials
(R, M) in R[&,&, ..., &) with rowdim(R) = rowdim(M), there exists a matriz
of polynomials R' in R[&1, &, ... & such that the manifest behavior of (2) has
kernel representation R’(a%l, cee %)w =0.

The theoretical basis that underlies this elimination theorem is the funda-
mental principle. This gives necessary and sufficient conditions for solvability
for the unknown z € €*(R",R*) in the equation F(a%l, - ,%)x = g, with
F e R***[&,...,&] and y € €°(R R*) given. Define the annihilators of F as
Kp = {n € RovdimB ¢, ]| n"F = 0}. The fundamental principle states
that F(32-,..., 32 )z = y is solvable if and only if n” (;%, ..., 52 )y = 0 for all
n € Kp. Obviously, Kp is a submodule of Rovdm(F) e, - ¢ 1 and hence there
exists a matrix of polynomials N € Rrewdim(F)xe¢, ¢ 1 such that n € K if and
only if n = Nd for some d € R4™M[¢, ¢ 1. Whence, nT(aixl, e %)y =0

for all n € K if and only if NT(:2-,..., %)y = 0. This immediately yields the

3_117 ) E
elimination theorem. Indeed, let N be such that its columns are a set of generators

of Ky, and define R' = NTR.

The above theorem implies that a distributed differential system B € £ ad-
mits not only many kernel, but also many latent variable representations. Latent
variable representations are very useful. Not only because first principles mod-
els usually come in this form, but also because latent variables routinely enter in
representation questions. As we shall see in this paper, they allow to express con-
servation and dissipation laws in terms of local storage functions and dissipation
rates.

As an illustration of the elimination theorem, consider the elimination of B
and p from Maxwell’s equations. The following equations describe the possible
realizations of the fields F and j:

a — —
€Oatv +V ] ;
2

0° - - 0 -
6gﬁE+5002V x VxFE + aj =0.



3 Controllability and observability

An important property in the analysis and synthesis of dynamical systems is con-
trollability. Controllability refers to be ability of transferring a system from one
mode of operation to another. It has been discussed for many classes of systems.
We now explain the generalization to linear constant-coefficient partial differential
equations. A system B € £7 is said to be controllable if for all wy, w, € B and for
all bounded open subsets O, Oy of R with disjoint closure, there exists w € B
such that w|p, = wilo, and w|p, = ws|o,- We denote the set of controllable
elements of £7 by £

n,cont "

Note that it follows from the elimination theorem that the manifest behavior
of a system in image representation, i.e., a latent variable system of the special
form

0 0
=M(—,...,— ) 3
v (le’ ’&rn) (3)
belongs to £f. Whence, for any matrix of polynomials M € R***[&;, ..., &,
(R”,R“’,im(M(a%l, . ,%))) e £, with M(a%l, - ,%) viewed as an operator

from €*(R?, RIM©) to €°(R*,R*). In other words, every image of a constant
coefficient linear partial differential operator is the kernel of a constant coefficient
linear partial differential operator. However, not every kernel of a constant coeffi-
cient linear partial differential operator is the image of a constant coefficient linear
partial differential operator. The following theorem, obtained in [6], shows that it
are precisely the controllable systems that admit an image representation.

Theorem 2 (Controllability) : The following statements are equivalent for B €
£r:

1. *B defines a controllable system,

2. B admits an image representation,

3. The trajectories of compact support are dense in B.

It is a simple consequence of this theorem that a scalar partial differential equation
in one function only (i.e., with rowdim(R) = coldim(R) = 1) with R # 0 cannot
be controllable. It can be shown, on the other hand, that Maxwell’s equations
define a controllable distributed differential system.

Note that an image representation corresponds to what in mathematical physics
is called a potential function with ¢ the potential and M(%, cee ai) the partial
. . -1 xn .
differential operator that generates elements of the behavior from the potential.
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An interesting aspect of the above theorem therefore is the fact that it identifies
the existence of a potential function with the system theoretic property of control-
lability and concatenability of trajectories in the behavior. In the case of Maxwell’s
equations, an image representation is given by

9 -

E = ——A-V
at d)7
B = fof,
K 0* » 272 4
j = 80@14—800 V<A,
o 82 2
p = 292 —&0V79,

where ¢ : R x R3 — R is a scalar, and 4 : R x R® — R a vector potential.
Note that Maxwell’s equations consist of 8 equations in 10 variables. As already
mentioned, the number of free variables is 3. In the above image representation
there are 4 free latent variables. This can actually be reduced to 3, say by putting
one component of A to zero. A more elegant way of reducing the freedom in the
latent variables is by imposing a gauge, for example, restricting A and ¢ to satisfy
AV - A+ %qﬁ = 0. Imposing this gauge retains the symmetry, but the resulting
set. of equations yields a latent variable representation of the behavior, not an
image representation. The representation of systems in image representation is
being pursued very vigorously, using the terminology flatness, by Fliess [2] and
co-workers.

The notion of observability was introduced hand in hand with controllability.
In the context of the input/state/output systems, it refers to the possibility of
deducing, using the laws of the system, the state from observation of the input
and the output. The definition that is used in the behavioral context is more
universal in that the variables that are observed and the variables that need to
be deduced are kept general. In the context of distributed differential systems the
notion of observability is as follows.

Let ¥ = (R*",R" x R, B) € £t We call wy observable from w; in B if
(wy, w)), (wy,wh) € B implies w) = w}.

The theory of observability runs parallel to that of controllability. We mention
only the result that for distributed differential systems, w; is observable from w,
if and only if there exists a set of annihilators of the behavior of the following

form that puts observability into evidence: w; = R’Q(a%l, . ,%)w% with R;, €
RAim(w)xdim(w2)re, © ¢ 1 In this paper, we will only pursue observability for latent

variable systems (2). We call this latent variable representation of the manifest
behavior observable if ¢ is observable from w in its full behavior. We call it weakly
observable, if to every w € B of compact support, there corresponds a unique /¢



that is also of compact support.

For 1-D systems it is easy to show that every controllable B € £ admits an
observable image representation. This, however, does not hold for n-D systems,
and hence the representation of controllable systems in image representation (i.e.,
with potential functions) may require the introduction of latent variables that are

‘hidden’, in the sense that M(a%l, o ,%)E = 0 has solutions £ # 0. This means
that however one represents B € £F as w = M(a%l, . ,%)E, there may
not exist an N € R"**[&,...,&,] such that w = M(a%l,... ,%)E implies ¢ =
N(a%l, ..., 5-)w. The latent variables do not be recoverable from the manifest

ones by a ‘local’” differential operator. However, it is always possible to represent
B e L by an image representation that has dim(¢) = m(8). These image

n,cont
representations are weakly observable.

For example, the image representation of the behavior defined by Maxwell’s
equations in terms of the vector potential A and the scalar potential ¢, is not
observable (neither is the latent variable representation obtained after imposing the
gauge, but then the resulting latent variable representation is weakly observable).
In fact, Maxwell’s equations are an example of a controllable system that does not
allow an observable image representation.

4 An example: heat diffusion

Although in this paper we are mainly interested in the construction of storage func-
tions for conservative and dissipative distributed differential systems and quadratic
supply rates, we start with an example that does not fall into this category, in order
to illustrate the nature of the problems that we have in mind. Consider the dif-
fusion equation that describes, in suitable units, the evolution of the temperature
profile along a uniform heat conducting bar:

0 0?
—T1T =—-T T
ot 0x? T >0,

where T'(x,t) € R denotes the absolute temperature at time ¢ € R and position
x € R, and ¢(x,t) € R denotes the rate of heat supplied to the bar at time ¢t € R
and position z € R.

Two thermodynamic laws govern this system: the first law, conservation of
energy, and the second law, which implies irreversibility: heat cannot be freely
transported from cold to hot areas. In order to express these laws, consider for
every Ty > 0, the behavior B, consisting of all (T, q) € €>°(R?, R) that satisfy the
diffusion equation and such that T'(t,z) = Ty for all (¢, z) outside a compact subset



of R?. The first and second laws require that for all T, and for all (T, q) € Br,,
we must have:

/ q(t,z) dx dt =0,
R?

/ IGEI R <0.
R2 T(l',t)

We interpret the first law as stating that the diffusion equation defines a system
that is conservative with respect to the supply rate ¢, and the second law as stating
that it is dissipative with respect to the supply rate —Z. The question is if these
‘global” versions of the first and second law can be expressed as ‘local’ laws. This
is the case indeed. Define the following latent variables:

E : R?> - R, the stored energy density,
Frp : R?® 5 R, the energy flux,
S : R?® = R, the entropy density,
Fs : R?® - R, the entropy flux, and,
Dg : R?® > R, the rate of entropy production.

Relate these to T as follows:

E =T
Fo = —a%T,
S = In(7),
Fy = —%%T,
Ds = (%%T)Z.

The first and second laws can be deduced from the following local versions:

0 0
aE‘F%FE = q,

0 0 _q
ES—F%FS = T+DS

This example shows that for the one-dimensional diffusion equation, it is possible
to express the first and second law in terms of equations that are local in time
and space. Note that in this case, the stored energy density, E, and the entropy
density, S, are given as differential operators on the manifest variables (T, ¢). This
is, as we shall see, not possible in general.
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5 Conservative and dissipative systems

We are interested in this paper in distributed dynamical systems that are conser-
vative or dissipative with respect to a supply rate that is a quadratic function of
the manifest variables and their partial derivatives. These are defined by matrices
Doy kit € Rk o0 ky by, ..., 0, € Zy, with all but a finite number
of these matrices equal to zero. We call the map from €*(R",R") to €*°(R", R)
defined by

w € C°(R",RY) —~

( ok Okn )Tq) ( o4 ot )
g w Eiyeooskn 1y b oW
k1 kn 1seeesFBn €1, 580 01 ln

Fvm b, OT1 Oz, Oy Oz,

a quadratic differential form on €*°(R" R¥). Note that a quadratic differential
form is completely specified by the (w X w)-matrix ® of 2n-variable polynomials in

R[Ciy-v 3 Gy - -, 1], defined by

k kn £ V4
(P(Clv"' 7Cnv771v"' 777n) = Z @kly---yknlh---lnCll "'Cn"7711 Tl
Kty skor ol yeee ol

We denote the quadratic differential form that corresponds to the matrix of poly-
nomials ® by QQ¢. Define ®*, the matrix of 2n—variable polynomials, by

(I)*(Cla"' 7<n77717"' 777n):(DT(7717"' 777n7C17"' 7<n)

If ® = ®* we call ® symmetric. We may (and will) assume, since obviously Q¢ =
Qo = Q%(qﬂr@), that in a quadratic differential form the matrix of polynomials ®
is symmetric.

Let B € £7 .,; and € R”Y[(y, ..., (u 1, - . , ). Define B to be conservative
with respect to the supply rate Qg if

Q@ (U)) =0
Rn™
for all w € B of compact support, and dissipative if
Qo(w) >0
Rn

for all w € B of compact support.
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6 Local version of a conservation law

The following result shows in what sense a conservation law can be expressed as a
local law.

Theorem 3 (Local version of a conservation law) : Consider the controllable
n-D distributed dynamical system B € £ .. and the supply rate defined by the
quadratic differential form Qe. Let w = M(a%l,... ,%)E be an image rep-
resentation of B. Then B is conservative with respect to Qo if and only if
there exist an n—vector of quadratic differential forms Qv = (Qu,,...,Qw,) on

(R, R¥+4m©)) - called the flux density, such that

V- Qu(w,l) = Qo(w)
for all (w,€) € By, the full behavior of w = M (52>, ..., 2-)L.

When the first independent variable is time, and the others are space variables,
then the local version of the conservation law can be expressed a bit more in-
tuitively in terms of a quadratic differential form QQg, the storage density, and a
3-vector of quadratic differential forms Qr, the spatial flux density, as

%Qs(w,é) £V Qr(w,£) = Qolw)

for all (w, ) € By, the full behavior of w = M(%, 3%, a%’ a%)ﬁ, an image repre-
sentation of £j ..

In the 1-D case, the introduction of latent variables is unnecessary, and we can
simply claim the existence of a quadratic differential form Qg on €*°(R, R¥), such
that £Qu(w) = Qe (w) for all w € B. However, in the n-D case, the introduction
of latent variables cannot be avoided, because not every controllable distributed
parameter system B € £7 admits an observable image representation.

The idea behind the proof of the above theorem is as follows. Using a weakly

observable image representation for 6 € £7 ., shows that is suffices to prove the

result for the case B = € (R", R¥). Next, observe that €*°(R", R") is conservative
with respect to Qg if and only if 9(®) = 0. This in turn is easily seen to be
equivalent to the solvability of the equation

(I)(Cla"' 7Cn77717"' 77771) = (C1+771)\IJI(C17"' 7Cn77717"' 777n)
++(Cn+77n)\11n(<177Cn77717777n) (4)
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for (¥q,...,¥,). Note that in the n-D case, contrary to the 1-D case, the solution
(¥y,...,¥,) to this equation is not unique, and hence the flux density is in general
not uniquely specified by the dynamics and the supply rate.

As an illustration of the above theorem, consider Maxwell’s equations. This
defines a conservative distributed dynamical system with respect to the supply
rate —F - f, the rate of electric energy supplied to the electro-magnetic field. In
other words, for all (E, ) : Rx R® — R3 x R? of compact support that satisfy the
partial differential equations equations obtained from Maxwell’s equations after
elimination of the fields B and p, there holds [y, [y, E - j dadydz dt = 0. A local
version of the law of conservation of energy is provided by introducing the stored
energy density, S, and the energy flow (the flux density), ﬁ, the Poynting vector.
These are related to E and B by

S(E,B) = Z—UE-EjL%E-E,
F(E,B) = &’E x B.
As is well-known, there holds,
a — - e 4 g — —
aS(E,B)jLV-F(E,B)—l—E-j:O (5)

along the behavior defined by Maxwell’s equations. Note that the local version
of conservation of energy involves B in addition to E and f, the variables that
define the rate of energy supplied. Whence B plays the role of a latent variable,
and it is not possible to express conservation of energy in terms of E,f, and
their partial derivatives. A more subtle issue is the uniqueness of the energy
density and the energy flow. As we have seen above, in a conservative distributed
dynamical system, the storage density and the flux density need not be uniquely
specified by the behavior and the supply rate. This non-uniqueness is not purely
a mathematical issue. It is also the case for conservation of energy in Maxwell’s
equations. In fact, it is not known how much energy is stored in an electro-
magnetic field, and %E - E+ %E . E, is only one of many possible choices. As
long as the stored energy density only needs to satisfy the local version of the law
of conservation of energy for some energy flow, there are many possible choices.

7 Local version of a dissipation law

We now discuss dissipative dynamical systems. A quadratic differential form Qa
on €°(R" R") is said to be non-negative, denoted Qa > 0, if Qa(w) > 0 for all
w € €°(R",R"). The following theorem gives the local version of dissipativeness
for distributed differential systems.
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Theorem 4 (Local version of a dissipation law) : Consider the controllable
n-D distributed dynamical system B € £ .. and the supply rate defined by the

quadratic differential form Q. Then B is dissipative with respect to Qe if and
only if there exist:

1. a latent variable representation

0 0 0 0
— e, — )W =M(=—,..., —
(8:51’ ’ axn) (8:51’ "0z, ) (6)
of B,
2. an n—uvector of quadratic differential forms Qu = (Qu,, ... ,Qv,) on

(R, R¥+dim(©) - called the flux density,

3. a non-negative quadratic differential Qa on € (R™, Rv+dim(@)
called the dissipation rate,

such that

for all (w, ) € B, the full behavior of (6).

When the first independent variable is time, and the others are space variables,
then the local version of the dissipation law can be expressed a bit more intu-
itively in terms of a quadratic differential form (g, the storage density, a 3-vector
of quadratic differential forms @, the spatial flur density, and the quadratic dif-
ferential form QA > 0, the dissipation rate, such that

%st,@ + V- Qr(w,f) = Qa(w) + Qa(w, 1)

for all (w, ¢) € By, the full behavior of a suitable latent variable representation
of B € £

4,cont*

In the 1-D case, the introduction of latent variable is once again unnecessary,
and we can simply claim the existence of quadratic differential forms (Qy, @A) on

¢*(R,R"), with Q@ > 0, such that £Qq(w) = Qa(w) + Qa(w) for all w € B.

In order to see where the introduction of latent variables enters in the n-D
case, we will briefly sketch the proof of the above theorem in the 1-D case (see
[12] for details) . It is easy to see, using an observable image representation, that
it suffices to consider the case B = €°(R,R"). Next, use Fourier transforms to
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prove that the integral fj;o Qo(w) dt is non-negative for all w € €*(R,R¥) of
compact support if and only if the hermitian matrix ®(iw, —iw) € C**¥ is non-
negative definite for all w € R. This in turn implies that the matrix of polynomials
(&, —£) € R™¥[¢] be factored as ®(&, —&) = DT(=£)D(€) with D(€) € R**¥[{] a
matrix of polynomials. The result then follows by taking

W(C,n) = @(C,n)—DT(C)D(n), and

C+m
A(¢,n) = DT(C)D(n).

For dissipative systems the storage function )y, and hence the dissipation rate,

@A, are, in general, not unique, not even in the 7-D case, since the factorization
(¢, —&) = DT(=€)D(€) is not unique.

The generalization of this proof to the n-D case fails on two accounts. Firstly,
because there may not exist an observable image representation for 8. Secondly,
because the polynomial matrix factorization

(I)(gl,... ,gn,—gl,... 7_§n) - DT(—gl,... ,—gn)D(gl, 7§n) (7)

with D € R**¥[£y, ... ,&,] may not be possible, whereas we still have that dissi-
pativeness of B with respect to the supply rate Q¢ is equivalent to non-negative
definiteness of the hermitian matrix ®(iws, ... ,iw,, —iwy,...,—iw,) € C*¥ for
all wy,...,w, € R However, it turns out that a factorization as (7), with
D € R (&, ... ,&) a matrix of rational functions in the variables &, ... &,
does exist. This accounts for the need to introduce a latent variable (and not just
an image) representation of B in the above theorem.

Let us examine this factorization question in a bit more detail. Let I' be a

(w x w)-matrix of n—variable polynomials in R[{;,...,&,]. The problem is to
factor I" as

F(gla s 7§n) - FT(_fla R _gn)F(gla s 7§n) (8)
Both factorizations with F' a matrix of polynomials in R[{y, ... ,&,], and with F a
matrix of rational functions in R(&;, ... ,&,) are of interest. Two obvious necessary

conditions for factorizability are:

(Z) F(gl, 7§n) == PT(—gl,... 7_§n);

(7) the hermitian matrix I'(iwy, ... ,iw,) € C**¥ is non-negative definite for all
Wiy ..., wy € R

The question is whether conditions (i) and (i7) are also sufficient for factorizability.
In order to grasp the difficulties involved, consider the following four cases:
n=lw=Ln=1Lw>1n>l,w=1;andn>1,w> 1.
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1. In the case n = 1,w = 1, it is a trivial matter to see that (i) and (i)
are necessary and sufﬁcient for factorizability of T'(§) = F(—¢&)F(£) with
F € R[¢] a real polynomial.

2. In the case n = 1,w > 1, it is well-known that (i) and (i) are necessary
and sufficient for factorizability of I'(¢) = FT(—£)F(€) with F' a polynomial
matrix, F' € R**¥[¢]. This result, polynomial matrix factorization, is not at
all simple to prove. In the case that F'is allowed to be a matrix of rational
functions, F' € R(§), (even when I' is a matrix of polynomials), it is much
easier to prove factorizability, and in this situation factorizability becomes
in fact a simple consequence of factorizability in the case n =1,w = 1.

3. The case n > 1,w = 1 is especially interesting from the mathematical point
of view. In this case, the factorization of T', assuming that (i) holds, can
be brought back to the following question about real polynomials in many
variables. Assume that p € R[{y,... ,&,] satisfies p > 0, i.e., p(z1,... ,2,) >
0 for all zy,...,x, € R Does this imply that there exist polynomials
pi,---,pN € R&,...,&,] such that p = p? + ... + p3? Hilbert proved
in 1888 that this is not the case, although it took until 1966 until Motzkin
displayed a concrete example, 1 + z2x3 + xiz2 — 32223, where this factor-
ization is impossible. The problem of factoring p > 0 as p = p? + ... + p4,
with py,...,pn € R(&, ... ,&,) rational functions is the subject of Hilbert’s
17-th problem announced at the International Congress of Mathematicians
in 1900. Hilbert himself had proven this factorizability for the case n = 2 in
1893. In 1926, E. Artin proved the result for general n. Factorizability with
N = 2" was proven by Pfister in 1967. See [5] for an account of Hilbert’s
17-th problem.

4. In the case n > 1,w > 1, the factorization (8) with F' a matrix of rational
functions, F € R**¥[¢,...,&,], becomes again a consequence of factoriz-
abilty in the case n > 1,w = 1.

Summarizing, the construction of a dissipation rate for a system B € £7 ¢ that is
dissipative with respect to the supply rate Q¢ reduces to the factorization problem
(7). In the case n > 1, this factorization reduces to Hilbert’s 17-th problem and
yields factorizability with a matrix of rational functions. By considering a suitable
representation of 8 and constructing the flux density by an equation as (4) yields
a local version of the dissipation law.

8 Conclusions

In this paper, we studied conservative and dissipative systems in the context of
distributed dynamical systems described by constant-coefficient partial differential
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equations. For such systems, it is possible to express a global conservation or
dissipation law as a local one, involving the flux density and the dissipation rate.
There are two interesting aspects of the construction of the flux density and the
dissipation rate. The first one is the relation with Hilbert’s 17-th problem on the
factorization of real non-negative rational functions in many variables as a sum
of squares of real rational functions. The second interesting aspect is that local
conservation or dissipation laws necessarily involve ‘hidden’ latent variables.
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