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1 Abstract

Algorithms are derived that pass directly from the differential equation describing
the behavior of a finite-dimensional linear system to a balanced state representa-
tion.
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2 Introduction

The algorithms for model reduction are among the most useful achievements of
linear system theory. A low order model that incorporates the important fea-
tures of a high order one offers many advantages: it reduces the computational
complexity, it filters out irrelevant details, it smooths the data, etc. Two main
classes of algorithms for model reduction have been developed: (i) model reduc-
tion by balancing, and (ii) model reduction in the Hankel norm (usually called
AAK model reduction). The implementation of these algorithms typically starts
from the finite-dimensional state space system

d
—x = Ax + Bu,y = Cx + Du,

dt
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commonly denoted as




In the context of model reduction, it is usually assumed that this system is minimal
(i.e., controllable and observable) and stable (i.e., the matrix A is assumed to be
Hurwitz, meaning that all its eigenvalues have negative real part).

However, a state space system is seldom the end product of a first principles
modeling procedure. Typically one obtains models involving a combination of
(many) algebraic equations, (high order) differential equations, transfer functions,
auxiliary variables, etc. Since model reduction procedures aim at systems of high
dynamic complexity, it may not be an easy matter to transform the first principles
model to state form. It is therefore important to develop algorithms that pass
directly from model classes different from state space models to reduced models,
without passing through a state representation.

There are, in fact, some interesting subtle algorithms that do exactly this for
AAK model reduction in Fuhrmann’s book [1]. These algorithms form the original
motivation and inspiration for the present article. Its purpose is to present an
algorithm for the construction of a balanced state representation directly from
the differential equation (or the transfer function) that governs the system. For
simplicity of exposition, we restrict attention in this paper to single-input/single-
output systems.

A few words about the notation. We use the standard notation R, R*, R* *"2
for the reals, the set of n-dimensional real vectors, the set of n; xn,-dimensional real
matrices. M = [m(i, j)]IZ;775%, denotes the n; x ny-matrix whose (i,j)—th ele-
ment is m(i, j), with an analogous notation [m(j)]3="" for row and [m(i)]iz1, . a
for column vectors. The ring of real one-variable polynomials in the indeterminate
¢ is denoted by R[¢], and the set of real two-variable polynomials in the inde-
terminates (, 7 is denoted by R[(,n]. R,[{] denotes the (n + 1)-dimensional real
vector space consisting of the real polynomials of degree less that or equal to n.
£9¢(R,R) denotes the set of maps f : R — R that are locally square integrable,
i.e., such that f ()| dt < oo for all t;,ty € R; Lo(A,R) denotes the set of
maps f: A — R such that [|f|[Z, 4z = [4 [f (D) dt <oo. €°(R,R) denotes the
set of infinitely differentiable maps from R to R, ¢"(R,R) := {w € €*°(R,R) |
W) (—o0,0] has compact support}, and D(R,R) denotes the set of real distributions
on R. Analogous notation is used for R replaced by the field of complex num-
bers C. * denotes complex conjugation for elements of C, Hermitian conjugate
(conjugate transpose) for complex matrices, or, more generally, ‘dual’.

3 The system equations

Our starting point is the continuous-time single-input /single-output finite-dimensional
linear time-invariant system described by the differential equation

Py = o )



relating the input u : R — R to the output y : R — R. The polynomials p, ¢ € R[¢]
parametrize the system behavior, formally defined as

Bpg) = {(1,y) € L°(RR) x & (R R)
| (2) holds in the sense of distributions}.

In the sequel, we will identify the system (2) with its behavior B, .

The system B, 4 is said to be controllable if for all (ui,y1), (u2,y2) € Bpg)
there exists 7" > 0 and (u,y) € By, such that (uy,y1)(t) = (u,y)(t) for £ < 0 and
that (ug,y2)(t) = (u,y)(t+T') for t > 0. It is well-known (see [5]) that the system
B (p,q) is controllable if and only if the polynomials p and ¢ are co-prime (i.e., they
have no common roots). It turns out that controllability is also equivalent to the
existence of an image representation for B, ,), meaning that the manifest behavior
of the latent variable system

byq

w=p(5)y = (), 3)

formally defined as

Img = {(u,y) € LR, R) x LY°(R,R) | there exists £ € D(R,R)
such that (3) holds in the sense of distributions}

is ezactly equal to B, ). In (3), we refer to £ as the latent variable.

We assume throughout that p, ¢ € R[¢] are co-prime polynomials, with degree(q)
< degree(p) =: n. Co-primeness of p and ¢ ensures, in addition to controllability
of B, q), observability of the image representation Jm, 4, meaning that, for every
(u,y) € Tmpy = By, the £ € D(R,R) such that u = p(£)l,y = q(L)L, is
unique.

In addition to expressing controllability, image representations are also useful
for state construction (see [6] for an in-depth discussion). For the case at hand, it
turns out that any set of polynomials {z1, xs, ..., 2y} that span R,_;[¢] defines a
state representation of B, ,) with state

d d d
v = (@1(5)6 22l - w1 ()0),
i.e., the manifest behavior of
d d d d d
w=p(Dy = a2 w = colln ()LD aa ()0 (@)

satisfies the axiom of state (see [6] for a formal definition of the axiom of state).

. : . . . |A B
The associated system matrices (1) are then obtained as a solution matrix [ C D]



of the following system of linear equations in R, []:

] e

D= {é g] S (5)
an’ (g) T/ (g)
| 9 | | p(¢) |

This state representation is minimal if and only if n’ = n and hence the polynomials
x1,T2,...,T, form a basis for R, ;[¢]. Henceforth, we will concentrate on the
minimal case, and put n = n’. Note that in this case the solution of (5) is unique.

The n-th order system (1), assumed minimal (i.e., controllable and observable)
and stable, is called balanced if there exist real numbers

o1 2> 09 2>+ 2> 0y >0,
called the Hankel singular values, such that, with

¥ = diag(o1,09,...,04),
there holds

A + Y AT + BBT =
AT+ YA+ CTC =

o O

Of course, in the context of the state construction through an image representa-
tion as explained above, being balanced becomes a property of the polynomials
T1,To,...,2Ty. The central problem of this paper is:

Choose the polynomials x1, xs, ..., T, so that
(5) defines a balanced state space system.

4 The controllability and observability gramians

In order to solve this problem, we need polynomial expressions for the controlla-
bility and observability gramians. These are actually quadratic differential forms
(QDEF’s) (see [7] for an in-depth study of QDF’s). The real two-variable polynomial

(¢, m) = Ei,j@i,jcinj
induces the map

d* d?
1, %w (I)i,j —W € QOO(R, R)

(R, R Y
w € C°(R,R) — .
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This map is called a a quadratic differential form (QDF). Denote it as Qg. In
view of the quadratic nature of this map, we will always assume that ®; ; = ®; ;,
i.e., that @ is symmetric, i.e., ® = ®*, with ®*({,n) := ®(n, ().

The derivative —Qq>( ) of the QDF Q¢ is again a QDF, Qg (w), with ¥({,n) =
(C+n)®(¢,n). It readily follows that a given QDF Qg is the derivative of another
QDF if and only if 9(®) = 0, where 0 : R[(,n] — R[] is defined by 9(®)(¢) :=
d(&,—&), in which case the QDF Qg such that Qg (w) = %Qq;(’lﬂ) is induced by

¥(Cn) = T

Every QDF (s can de written as the sum and difference of squares, i.e., there
eXiSt ff?f;? .t '7f1:7ff7f{7 .t 'Jfl'; E R[g] SUCh that

. Note that this is a polynomial since 9(®) = 0.

Qa(w) = B A (o )wl2 e (5 )wl2

Equivalently,
(¢, m) = k 1J/x (C)fk (n) — E§;1f1:(<)f1:(77)

I f fo s i frfa s f € R[E] are linearly independent over R, then
n, +n_is the rank and n, —n_ the signature of Q¢ (or ®). The QDF Q¢ is said
to be non-negative if Q¢(w) > 0 for all w € €*°(R, R). Equivalently, if and only if
the rank of ® is equal to its signature.

While it would be natural to consider the controllability and observability
gramians as QDF’s on B, ), we will consider them as QDF’s acting on the latent
variable ¢ of the image representation (3). This entails no loss of generality, since
there is a one-to-one relation between £ in (3) and (u,y) € By q)-

The controllability gramian Q (equivalently, K) is defined as follows. Let
¢ € €°(R,R) and define Qx(¢) b

Qx(£)(0) 1nﬁmum/ (t)|? dt,

where the infimum is taken over all ¢ € ¢+ (R, R) that join ¢ at ¢ = 0, i.e., such
that £(t) = ¢'(t) for t > 0.

The observability gramian Quw (equivalently, W) is defined as follows. Let
¢ € ¢*(R,R) and define Qu (¢) b

A > d 2
Qw00 = [P .
where ¢/ € D(R,R) is such that

(1) €|(7oo,0) - £I|foo,0);

(i ((iw'(iwve%pq
d



Thus ¢ is a latent variable trajectory that continues ¢ at ¢t = 0 with an ¢ such
that u[(,c0) = P(£)'|(0,00) = 0. This continuation must be sufficiently smooth so
that the resulting (u,y) = (p(£)¢', q(£)¢') belongs to B, ), thus in particular to
L9¢(R,R). This actually means that the (n — 1)-th derivative of ¢ must be in
L9¢(R, R).

The computation of the two-variable polynomials K and W is one of the central
results of this paper.

Theorem 1 Consider the system B, o with p,q € R[], p, q are co-prime, degree(q)
< degree(p) =: n, and p Hurwitz (meaning that all its roots have negative real
part). The controllability gramian and the observability gramian are QDF’s. De-
note them by Qg and Qw respectively, with K € R[(,n] and W € R[(,n]. They
can be computed as follows

(e — PQpn) = p(=¢)p(-n)
(€ _pehon), ©)
_ p(Q)f(m) + f(Qpn) — a(¢)a(n)
Wi(Cn) = i , @)
with | € Ry_1[£] the (unique) solution of the Bezoul-type equation
p(€)f(=8) + F(Ep(=E) — a(§)q(=&) = 0. (8)
Moreover, both Qr and Qw are nonnegative and have rank n. Finally, Qk(¢) and
Qw (¢) only contain the derivatives ¢, %E, o ftn—illf.

The proof of this theorem is given in the appendix (section 7.1).

Note that the equation for f has a unique solution in R, ;[{] since p(§) and
p(—&) are co-prime, a consequence of the fact that p is Hurwitz.

What we call the controllability gramian measures the difficulty it takes to join
the latent variable trajectory ¢ at ¢ = 0 by a trajectory ¢ that is zero in the far

past, as measured by
0 0 d
[ wr = [ wGeor

—00 o0

The observability gramian on the other hand measures the ease with which it is
possible to observe the effect of the latent variable trajectory ¢ as measured by

| e a= [ aGer

assuming that the input u = p(<£)¢'(t) is zero for ¢ > 0. Note the slight difference

with the classical terminology where the controllability gramian corresponds to
the ‘inverse’ of the QDF Q.



5 Balanced state representation

The minimal state representation (4) with state polynomials (zq,xs,...,z,) is
balanced if

1. for ¢; € €°(R,R) such that z;(%£)¢;(0) = b5 (035 denotes the Kronecker
delta), we have

Qw(t:)(0) = 5 (§i>(0)’

i.e., the state components that are difficult to reach are also difficult to
observe, and

2. the state components are ordered so that

0 < Qk(€1)(0) < Qk(lz)(0) < --- < Qi (4)(0),

and hence
Qw (£1)(0) > Qw (£)(0) > -+ > Qw (£,)(0) > 0.

The general state construction (4) and a suitable factorization of the controlla-
bility and observability gramians readily lead to a balanced state representation.

It is a standard result from linear algebra (see [2], chapter 9) that theorem 1
implies that there exist polynomials

bal ,.bal bal
( )

AR 7 S

that form a basis for R, ;[¢], and real numbers
oL >09>->0,>0 9)
(the oy’s are uniquely defined by K and W) such that
K(C,n) = S0y 2™ (O™ (), (10)

W(¢,n) = Shyon 2™ (Qay™ (). (11)

This leads to the main result of this paper.

Theorem 2 Define the polynomials (2P 253 ... 2Py € R, [¢] and the real

?'n

numbers oy > 09 > -+ > o4 > 0 by equations (9, 10, 11). Then the oy’s are the
Hankel singular values of the system B, ) and

d d d d d
— =\ = g(=)¢ bal _ bal s / bal s (... bal/ % /



is a balanced state space representation of B, ). The associated balanced system
Abal bal

(bal Dbal] of the following system

matrices are obtained as the solution matriz [

of linear equations in R, [€]:

oy (6) 27" (€)]
gl‘Qa (5) Abal Bbal ‘TQa (5)
= |:Cbal Dba1:| (12)
£ () ey
| a©) | | (&) |
The proof of this theorem is given in the appendix (section 7.2).
We summarize this algorithm:
DATA: p, q € R[{], co-prime, degree(q) < degree(p) := n, p Hurwitz.
COMPUTE:
1. K € R, 1] by (6).
2. f €Rai[¢] by (8) and W € R[¢, ] by (7),
3. (zbal bl zbal) and 0p > 0y > -+ > 0, > 0 by the expansions (9, 10,

11):
K(¢,n) = Si_y0, 2 (O™ (), W(C,m) = Sasyon 22 (Q)ay™ (n),

bal Bbal

Coval Dbal] by solving (12).

4. the balanced system matrices [

The result is a balanced state representation of B, .

The above algorithm shows how to obtain a balancing-reduced model. Assume
that we wish to keep the significant states

d d d
bal bal bal
Ty (a)&lé (@)E""’mﬂred(a) )

and neglect the insignificant ones

bal ( d ) bal (

l‘n!red'i'1 % ) xnred+2

d a4, d
%)E, e G I

dt
Now, solve the following linear equations in the components of the matrices

[Apa;red] J=L,nred : [Bpalred] .

balred] =1, nred balred
1] i=1,...,0064 1 [C] ’ D



€l (€) = Syt AT ) + B ()

j
modulo(xp? 1 (€),x2™ 15(€),...,x2%(€))

g(€) = hmabalred bal () 4 pbalredyy )
modulo(x2* | (£),x2™ 5(&), ..., x2"()).

Abalred Bbalred
Then [ (balred Dbalred} is an nyeq-th order balancing-reduced state space model for

Bp.q)-

6 Comments

6.1

Our algorithms for obtaining the controllability and observability gramians and
balanced state representations, being polynomial based, offer a number of advan-
tages over the classical matrix based algorithms. In particular, they open up the
possibility to involve the know-how on Bezoutians, Bezout and Sylvester matrices
and equations, and bring ‘fast’ polynomial computations to bear on the problem
of model reduction.

6.2

Instead of computing the oy’s and the z22's by the factorization of K, W given by

(9,10, 11), we can also obtain the balanced state representation by evaluating K
and W at n points of the complex plane.

Let A1, Ag, -+ -, Ay € C be distinct points of the complex plane. Organize them
into the diagonal matrix A = diag(Ay, Aa, -+ -, An), and define

Ky = [KQ3 )0
Wy = [W()""’)‘j)]

j=1,...,n

i=1,...,n

Define further
a j=1,...,n
Xn = [xEl(Aj)]Ji:I,...,n

Y = diag(oy,09,...,00).

There holds
Ky = XXX, Wy = X538 Xy,

It is easy to show that, since the )\ ’s are distinct and the zP3’s form a basis for

Ry 1[£], X4 is non-singular. This implies that X, and ¥ can be computed by
analyzing the regular pencil formed by the Hermitian matrices Ky, Wj.

9



Once X, is known, the balanced state representation is readily computed.
However, in order to do so, we need to evaluate K (or W) at one more set of
points of the complex plane. Let A\,.; € C be distinct from the Ay ’s. Define
2" (Aag1) = [28*(Aat1)],_, .- The vector z°*(X,11) € C* can be computed by
solving the linear equation o

(OHPWENED ¢oIur e PWE)
Define consecutively

Aext = diag(Aa)‘n—H)a

XAext = [XA l‘bal()‘n-l-l)]a
Phew = [Pan P(Aas1)] s
U = [an q¢(ap)].
Since the \’s are distinct, and {zbd 253l ... 2bal pl forms a basis for R,[¢],
[;(Ae’“] is also non-singular. The balanced state representation then follows by
Aext
solving
XA . Aext Abal Bbal XA .
- = | bal  pybal - (13)
quxt C D pAext

Note that the entries K, follow immediately from (6). However, in order to
compute the elements of W, from (7) it seems unavoidable to have to solve (8) for
f, at least, it is not clear if it is possible to evaluate the f()\)’s directly from the
p(Ax)’s and g(Ax)’s.

6.3

When we take for the \;’s, the roots of p, assumed distinct, then f is not needed,
and a very explicit expression for K and W is obtained. In this case

p(—/\?)P(—)\j)} J=hee

R B

)\i + )\j i=1,....,n
o Tae) P

WA B |: )\i+)\3 i=1,...n

Further, z°()\,,) is then obtained from the linear equation

[ p(ADP(— et 1) _ yxy—1_bal
e

Equation (13) yields
Aagil — APz (N\oy1)

p()‘nJrl)
Crbal — QAXXI Dbal — &
Gn

Abal — XAAXXI Bbal —

with p, and ¢, the coefficients of & of p and q.

10



6.4

The balancing-reduced model is usually obtained by simply truncating the matri-
ces of the balanced model. That is in fact what we also did in our discussion of
the reduced model. However, in our algorithm, the system matrices of the bal-
anced model are obtained by solving linear equations in R,[¢]. This suggests other
possibilities for obtaining the reduced system matrices. For example, rather that

bal bal

solving equations (12) modulo (z2 ., a2, o ... z2), one could obtain the best

least squares solution of these equations, perhaps subject to constraints, etc.

Further, by combining these least squares ideas with those of section 6.3, it
may be possible to obtain balanced reductions that pay special attention to the fit
of the reduced order transfer function with the original transfer function at certain
privileged frequencies or selected points of the complex plane.

6.5

The algorithms discussed have obvious counterparts for discrete-time systems. It is
interesting to compare our algorithm for obtaining a balanced state representation
with the classical SVD-based algorithm of Kung [4]. Kung’s algorithm starts from
the Hankel matrix formed by the impulse response and requires the computation
of the SVD of an infinite matrix. In contrast, our algorithm requires first finding
(a least squares approximation of) the governing difference equation, followed by
finite polynomial algebra.

7 Appendix

7.1 Proof of theorem 1:

Define K by (6). Note that K it is symmetric (K = K*), and that the highest
degree in ¢ or nis n — 1. For every w € €*(R,R), there holds

d

L yp ~ p(— Syl (1)

Let ¢ € €°(R,R) be given. We first prove that

d
Q) = I

0
minimum / |p(%)f’|2 dt = Qi (0)(0),

where the minimum is taken over all ¢' € €*°(R, R) such that

! d ! dnil !
£(8), 20 (0),- o, T l(8) = 0 as T — —o (15)
and d d ! !
£(0) = £0), 5 £(0) = 2L0), ..., 5 L(0) = = 0(0). (16)

11



Integrating (14), yields

/ p (;;)E’F dt = QK(z)(o)+/ |p(—%)€'|2 dt.

o0

Therefore, the minimum is obtained by the solution of p(—%)¢' = 0 that satisfies
the initial conditions (16). Note that it follows that Qg (¢)(0) > 0. Moreover,
p(—4)0'(t) = 0,p(4)0'(t) = 0 for ¢t < 0 implies ¢'(t) = 0 for ¢ < 0, since p(&) and
p(—&) are co-prime. Therefore the rank of Qx is n

Now use a smoothness argument to show that

1nﬁmum/ €'|2 dt = Qx(£)(0),

where the infimum is taken over all ¢ € ¢7(R,R) (instead of just having the limit
conditions (15)) such that ¢(t) = £(t) for t > 0 (hence ¢ and ¢ must be glued
at t = 0 in a €°(R,R) way, instead of just by the initial conditions (16)). This
implies that (D is indeed the controllability gramian.

Next, consider W, defined by (7, 8). For every w € €*°(R,R) here holds

CQuw) = ~laCwl + 200w F(Syw. (1)

Note further that W is symmetric (W = W*), and that the highest degree in ¢ or
nis n — 1. Therefore, if ¢ € D(R,R) is such that p(L)¢'(t) = 0 for t > 0 there
holds, by integrating (17) and using the fact that p is Hurw1tz,

o d
| latper at=awe)o).
0
Let ¢ € €°(R/R) be given, and assume that (i) /w0 = ¢|(~c,0), and
(i) (p(£)¢', q(L)0') € By Then €']_oo g is actually a function, with

! d ! d ! dnil ! dnil !
£(0) = £(0), 50(0) = S0(0),., S 0(0) = S £(0).

Therefore, if, in addition to (i) and (ii), (iii) holds: p(4%)¢'(t) = 0 for t > 0, we
obtain

| WG di= Qo)

It follows that @y defines the observability gramian. That Qx > 0 is immedi-
ate, and that its rank is n follows from the fact that p and ¢ are co-prime.

7.2 Proof of theorem 2:
Using (10,11), we obtain
Qr(l) = S50 loal( )fl2

12



and p
Qul) = T3\l ()P

Hence, if £; € €*(R,R) is such that 22 (£)¢;(0) = d;;, then

Qr(6:)(0) = o7, and Qw (£:)(0) = 0.

This shows that the 223’s define a balanced state representation, as claimed. That
the oy’s are the Hankel SV’s of 9B, ) is a standard consequence of the theory of
balanced state representations.
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