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Abstract

The problem of factoring a polynomial matrix B = B* into B({) =
H(&)*H (), with H Hurwitz, is called the Hurwitz spectral factorization
problem. We show that the Newton iteration, applied to the computation
of H, converges.
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1 Introduction

It is a great pleasure for me to contribute this paper for the Festschrift for Paul
Fuhrmann at the occasion of his 60—th birthday. Paul was perhaps the first pure—
mathematics trained researcher that I had occasion to collaborate with. At first,
this collaboration was mainly in the form of exchanges of ideas, but later on, we co-
authored a few papers as well [1], [2], [8]. In many ways, seeing how a mathematics
trained researcher as Paul approached problems in systems and control was —
well over 25 years ago — a new experience to me, and I remember admiring in a
somewhat starry-eyed way, the creativity that the internal logic of mathematics
could lead to in a field as systems and control. Paul’s virtuosity, his impressive
oeuvre and boundless creativity, and his warmth, energy and friendship brought
me closer to it than I have ever been.

The purpose of this paper is to explain some ideas on the interaction of one-
and two-variable polynomial matrices that have emerged in our present research
program and that are more than reminiscent of Paul Fuhrmann’s work.

We start with a few items of notation. Throughout, we denote one-variable
polynomials with real coefficients by R[¢], and two-variable polynomials by R[(, 7]
(thus ¢ is usually the indeterminate in the one-variable case, and (,n are the
indeterminates in the two-variable case). Polynomial matrices are denoted by
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R***[¢], R**™[£] (when the number of rows is not specified), etc., with similar
notation in the two-variable case. We will use some special operators acting on
polynomial matrices: *,x, e and 0 :

x maps R***[¢] into itself: if P € R™*™[¢], then P* € R™*™[¢] is defined as
P*(€) := PT(=¢) (T denotes transposition);

* maps R***[(,n] into itself: if P € R™*"™[(,n], then P € R™*™[(, 7] is
defined as P*(¢,n) := P (n,();

o maps R***[¢, 5] into itself: if P € R™*"2[¢, ], then Pe R™ *"2[¢, 5] is defined
as P (¢,n) :== (C+n)P(Cn);

0 maps R***[(,n] into R***[¢]: if P € R™*™[(,n], then OP € R™*™[¢] is
defined as OP(§) := P(—¢,¢).

We call an element P of R***[£] symmetric if P = P*, and of R***[(,n] if P = P*,
and skew-symmetricif P = —P*, or P = — P*. Note that the operator 0 thus maps
(skew-)symmetric elements to (skew-)symmetric elements. Of course, it is possible
to view, in an obvious way, the one-variable polynomial matrix P € R***[(] as an
element of R***[(,n] in which it so happens that no powers of 1 appear. Thus
when the “one-variable” polynomial matrix P is viewed with the indeterminate (,
P* is the “one-variable” polynomial matrix P7(n).

An important relation among the e and the 0 operators is given in the following

proposition (see [9] for a proof).

Proposition 1.1 The image of the e operator equals the kernel of the O operator.
In other words, for ® € R***[(,n],

®(¢,n)
C+m

is a polynomial iff ®(§,—&) = 0.

The field of rational functions over R is denoted by R(£); R***(£) denotes the set
of matrices of rational functions. An element P € R(£) is said to be proper if
P = py/ps, with the degree of p; € R[{] less than or equal to that of py € R[¢], bi-
proper if these degrees are equal, and strictly properif “less than” holds. Obviously
any P € R(€) can be written as P = Py + P,, with P, € R[{] the polynomial part
and P, € R(&) strictly proper. The polynomial part of P is denoted by P,,. All
this can be generalized in an obvious way to R***[¢]. In particular, P € R***[{] is
bi-proper iff it is square and P,, € R*** is invertible (equivalently, iff P~ exists
and is also proper).



A square matrix P € R*[{] is said to be Hurwitz if det(P) is a Hurwitz poly-
nomial, i.e. a non-zero polynomial with all its roots in the open left half of the
complex plane.

We are interested in the question of factoring a polynomial matrix B = B* into
the product B = F*F. Such factorization questions, which go under the name
of spectral factorization, have many applications in control and signal processing,
and go back to the work of Wiener in the first half of this century. There have
been literally countless articles on this problem since. Formally, let B = B* €
R9*9[¢]. We call the factorization B = H*H a Hurwitz spectral factorization of B
if H € R77[¢] is Hurwitz. It is well known when such a factorization exists. We
state this for easy reference.

Theorem 1.1 Let B = B* € R?[¢]. Then there exists H € R [¢] with H

Hurwitz such that
(1)
iff

B(iw) >0 Vw e R (2)

where (2) means that the Hermitian matriz B(iw) € C™*7 is positive definite for
all w € R. This H is unique up to pre-multiplication by an orthogonal matriz.

The aim of this paper is to study the convergence of the Newton iteration as
an algorithm for computing a Hurwitz spectral factor. The Newton iteration for
(1), studied before by Kucera and others ([5, 3, 6]), and the convergence results
are stated in the following theorem.

Theorem 1.2 Assume that B = B* € R[] satisfies (2). Let X, € R[] be
Hurwitz and satisfy (X;) 'BXy")e = I. Then the Newton iteration

NipXr + Xj X = B+ X% (3)

with the normalization condition

(Xk-l—le_l)oo =1 (4)

defines a unique sequence X1, Xo, ..., Xp, ... € R™*[£]. Moreover, each of the
Xy ’s is Hurwitz, and Xy, — H as k — oo, with H Hurwitz and satisfying (1). This
convergence is quadratic.

2 Quadratic differential forms

Let & € R™*™2[(, n], i.e.
(D(Ca 77) = Z (I)k,éck éa
k0



with &5, € R"*"2, This two-variable polynomial matrix induces the mapping
Le : C*(R,R™) x C*°(R,R™?) — C*(R,R),

defined by

k¢

We call Lg a bilinear differential form (BLDF). For ® € R**"[(,n], this leads to
the quadratic differential form (QDF)

Qo : C*°(R,R") — C*(R,R),

defined by Q¢ (w) := Lg(w,w). Note that Q¢ = Qo+ = Q%(qﬂr@). Accordingly, we
only consider QDF’s induced by symmetric ®’s. Note that L&)(v, w) = %Lq; (v, w)
and Qé(w) = 2£Q¢(w). Following this correspondence of & = &* € R**"[(, ]
with QQg, we will identify ® and Q¢ whenever there is no danger of confusion. We

denote C*(R,R™) by C'* when the co-domain is obvious from the context (the
domain is always R).

We say that Q¢ (or @) is nonnegative (denoted @@ > 0) if Q¢ (w) > 0 for all
w € C*, and positive if in addition Q¢(w) = 0 implies w = 0. Every ® > 0 can
be factored as ®((,n) = MT(¢)M(n), with M € R***[].

We will deal with continuous-time real linear time-invariant differential systems,
as discussed in [7], and amply elaborated in our recent work. Thus the time axis
is R, the signal space is R? (the number of variables may of course depend on the
case at hand), and the behavior 9B is the solution set of a system of linear constant
coefficient differential equations

d

R(—
(dt

Jw =0, (5)
where R € R**?[¢]. We denote the resulting system by Yz = (R R?,Bg) and its

behavior by
d

Br={weC*RRY) | R(—)w=0}. (6)
This class of systems, or alternatively its behaviors, is denoted by £4. For obvious
reasons we refer to (5) as a kernel representation of Xg.

We say that B € £7 is autonomous if wi,wy € B, wi(t) = wy(t) for t < 0
implies w; = wy. Autonomous systems are those that allow a representation (5)
with R € R7*7[¢] nonsingular: det(R) # 0. An autonomous system B € £7 is said
to be asymptotically stable if w € B implies w(t) — 0 as t — co. Asymptotically
stable systems correspond to those for which R can be taken to be Hurwitz.



Let X € £9 be represented by (5), and let S € R***[¢]. Then

x = S(%)w (7)

is called a state map for (5) if (5,7) jointly define a state system, i.e. if whenever
wi,wy € By satisfy S(L)w;(0) = S(L)ws(0), then wy A wy (A denotes concate-
nation at 0) is a weak solution of (5) and z; A z is absolutely continuous. A
state map is minimal if for all @ € Rowdm(S)  there exists w € Bp such that
S(4)w(0) = a, in other words if the map w € B — S(L)w(0) is surjective.
For autonomous systems, the minimal state map construction can be carried out
as follows. Consider the set {f € R'™[¢] | fR™'is strictly proper}. This set is
actually a finite-dimensional vector space. Let S = col(fi, fo,..., fn) be a basis

for this vector space. This S defines a minimal state map for (5).

We will encounter the question when two systems admit the same state map.

Lemma 2.1 Assume that Ry, Ry € R[], with det(Ry) # 0, and det(Ry) # 0,

are such that RyR{" is bi-proper. Then x = S(&4)w is a state map for Ry (%)w =0

dt
iff it is a state map for Ro(L)w = 0.

Proof: This lemma follows immediately from the fact that, with f € R'4[¢],
fR™! is strictly proper iff fR," is. B

B
Let B € £9. We will call the QDF Qg B-nonnegative (denoted & > 0 ) if

B
Qs(w) > 0 for all w € B and B-positive (denoted ® > 0 ) if ® > 0 and if
Qo(w) = 0 implies w = 0. In [9] B positivity is studied in depth. The following
proposition from there plays a role in the sequel.

Proposition 2.1 Let B € £7. Then B is asymptotically stable if there exists
B (2]
U = U* € \T(,n] such that ¥ >0 and U< 0.

3 The polynomial matrix Lyapunov equation

The analysis of (3) leads to the analysis of the (linear) polynomial equation

| X*A+ A*X = B| (8)

with A, B = B*, X € R™7[¢]. In (8) we view A, B as given and X as the unknown.
Because of its similarity to the case in which A, B, X are ordinary matrices, we call
(8) the polynomial matriz Lyapunov equation. It is of much interest to study this
equation in its full generality. However, we only consider the case that corresponds
to the situation that is encountered in the Newton iteration (3).



Theorem 3.1 Assume that B = B* € RI*[{], and that A € RI*[¢] is Hurwitz.
Assume further that (A*)"'BA™! is bi-proper, normalized to ((A*) *BA 1), =
2I. Then (8) admits a solution such that X A~' is bi-proper and a unique such
solution with

(XA ) = 1. 9)
This unique solution satisfies (X*) 'BX 1), = 2I

Proof: Consider the more general version of (8) YA + A*X = B, with X, Y €
R9*9[¢] unknown. To show the existence of a solution, observe that using the
Smith form for polynomial matrices, we may assume with loss of generality that A
is diagonal. This equation then reduces to ¢* equations of the form ax + b*y = c,
with a, b, ¢ € R[{], a, b Hurwitz, in the unknowns z,y € R[¢]. These Bezout-type
equations have a solution since a, b Hurwitz implies that a, b* are co-prime. Now
use B = B* to show that X*A + A*Y* = B and conclude that (X + Y™*)/2 solves
(8).

It is easy to see [3, 9], that if X is a solution, then all the solutions are generated
by X — X + SA, where S € R?7*?[¢] ranges over the skew-symmetric elements.
Note further that the polynomial part of (4*) 1 X*+ X A~! equals 21. The solution
X' = X + SA, with S such that the polynomial part of XA ! + S equals I,
yields a solution such that X A~! is bi-proper with polynomial part I. The above
representation of all solutions also yields the uniqueness of this solution.

To prove the normalization of the polynomial part of ((X*)7'BX~'),, note
that (X*)1A*+ AX ! = (X*)"!BX . Since XA~! bi-proper implies AX ! bi-
proper, and since their polynomial parts are each other’s inverse, it follows that
(X*)~'BX ™! is also bi-proper, with polynomial part 27. B

The following refinement of the above theorem plays also an important role in
our analysis of the Newton iteration (3).

Theorem 3.2 Assume that B = B* € RI*[¢{], that A € RI*[{] is Hurwitz,
and that (A*)"*BA™! is bi-proper, normalized to ((A*)"'BA™1) = 2I. Assume
further that (2) holds. Let X be the unique solution of (8,9), identified in theorem
3.1. Then X is Hurwitz.

In the proof we use the following lemmas. The first lemma is proven in [9].

Lemma 3.1 Let B = B* € R1[¢|. Then there exists & = ®* € R7[(,n] such
that 0® = B and ® > 0 iff (2) holds.

Lemma 3.2 Let the assumptions of theorem 3.2 be in force, and let X € RI*7[¢]
be the solution to (8,9). Define ¥ € R™*1[(, n] by :

AT(OX () + XT(O)A(n) — ®(¢,n)
C+n

Let x = S’(%)w be a minimal state map of the system defined by A(%)w =0. Then

there exists K = K" such that ¥((,n) = ST(Q)KS(n).

(¢, m) =

(10)



Proof: Let ®((,n) = MT(¢)M(n). Use (8) to deduce that MA! is proper.
Therefore (¢ +n)¥(¢,n)A 1 (n), viewed as a matrix of rational functions in 1 with
coefficients in R[(], is proper. Factor ¥(¢,n) as NT(()LN(n) with L = LT € R***.
Let (NA™(n) = Nyn® + ...+ Ny. Then NT(¢)N, = 0. Proceed recursively
and obtain N7(¢)(Nyn* + ...+ Ny) = 0. This yields ¥(¢,n) = (C)LNT(n) with
NA™' strictly proper, and, by a symmetric argument, ¥(¢,n) = N7 (n)LN(n),
with NA~! strictly proper. By lemma 2.1 N (&) = FS(€) for some F € R***. The
result follows. l

Proof of Theorem 3.2: The proof that X is Hurwitz is based on the Lyapunov
theory for high-order differential equations discussed in [9]. Let ¥ be defined by
10, where @ is as in lemma 3.1. That ¥ is indeed a matrix of polynomials follows
from proposition 1.1 and equation (8). Let Bx € £7 be the behavior defined

by X(£)w = 0. ;From the definition of ¥, 1t follows that U2 —. Obviously,
therefore, \Il < 0. Next, we show that ¥ Z 0. Indeed, for all w € C* that
converge to zero together with all its derivatives, there holds

o d d
Qu)(0) = [ (@olw) +2 < ACG)w X (0 ).

0

In particular, along solutions of A(di w = 0, we have

0= [ Qutwi

B
Hence ¥ > 0. By lemma 3.2, ¥((,n) = ST(()KS(n), with K = KT € R***,
and S a minimal state map for 84, and thus, by lemma 2.1, for Bx. Since the

B
map that takes w € B4 to X(L)w(0) is surjective, ¥ >' 0. This implies that

B (32
K = KT > 0. Hence ¥ zx 0 and ¥ < 0, and therefore by proposition 2.1, X is
indeed Hurwitz. H

4  Convergence analysis

In this section, we will prove theorem 1.2. The result of theorem 3.2 allows to
conclude that if X, € R*?[¢] is Hurwitz, with ((X3)7'BXy)s = I, then (3)
generates an unique sequence such that (X1 X, ')o = I. We will now prove that
the limit of these X}’s exists and that this limit is a Hurwitz spectral factorization
of B.

In order to do this, we consider the sequence of two-variable polynomial matrices
Wy, W,, - with ¥, defined by:

X (QOXk(n) + X (O Xk (n) — (¢, ) — XL (O Xu(n)
C+n

\Ijk+1(C7 ) (11)



where ® is obtained from B using lemma 3.1.

Let z = S (%) w be a minimal state map for X (%) w = 0. Use lemma 2.1
and the fact that X, X" is bi-proper to conclude that S (%) w is hence a minimal
state map for all the systems X, (%) w = 0. Hence, by lemma 3.2, each of the
U,.(¢,m)’s is of the form X7 (¢)KXy(n) for suitable K = KI' € R***. We will
show that Uy > Wy > .- > U > Uy, > --- > 0. In order to see this, observe
that Ay = Wy — ¥y, satisfies (in the obvious notation)

Ap= XiXpe 4+ X Xe — Xf X1 + Xpo Xi 4+ X X — Xi X

Denote the behavior of X} (%) w = 0 by B,. It follows from the above equation
that

Qa, (w)(0) 2 / T X G | ar

Using the surjectivity of the map w € By, — X (L)w(0), this yields A, > 0. To
show that Wy > 0, use the same reasoning after observing that

Qur, (w)(0) 2 / " Qu(w)dt.

The monotone convergence and boundedness from below, imply that the K}’s and
hence the W;’s converge.

Note that the Xj’s were defined by (3,4), without involving the W¥,’s. Further,
(11) shows how to compute the U,’s using the Xj’s. However, it is also possible
to deduce the X}’s from the ¥;’s. Since we know already that the ¥;’s converge,
this will allow us to conclude that the X}’s also converge. In order to obtain this
desired relation, write (11) as

(C+m)ST(O)KS(n) =
Xy (X k=1 () + X1 () Xk () = M ()M (n) — Xy (O)Xp—1(n)

where MT ()M (n) = ®(¢,n). Now pre-multiply by (X/(¢))~" and keep the poly-
nomial part of the left and the right hand side, viewed as rational functions with
coefficients in R***[7]. Note that, as a consequence of (3), MX,' is proper.
We obtain YLZKS(n) = Xi(n) — ML M(n), where Yy = (£S(6) X5 (€)oo, and
My = (MX;")s. This relation and the convergence of the ¥,’s imply that the
X)’s also converge. Let X be this limit. Obviously, (XX;')s = I. Use this
and the fact that each of the X}’s is Hurwitz to conclude that the limit X is also
Hurwitz.

That the convergence is quadratic is a general property of convergent Newton
iterations.

This ends the proof of theorem 1.2. Il

It is worthwhile to note the more than casual similarity between the above
proof and the proof of the convergence of the Newton iteration for computing the
solution of the Algebraic Riccati Equation [4].
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Conclusions

In this paper we have given a proof for the convergence of the Newton iteration for
spectral factorization studied before in [5, 3, 6]. The proof involves an interesting
interplay between one- and two-variable polynomial matrices. The crucial step of
the algorithm is the solution of the matrix polynomial Lyapunov equation at each
iteration. In [3] a very nice recursive implementation for giving this solution is
given, using the Routh array. We are presently investigating whether this equa-
tion can be solved using fast algorithms for polynomial equations, similar to FFT
algorithms.
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