PATH INTEGRALS AND STABILITY *
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Abstract

A path integral associated with a dynamical system is an integral of a
memoryless function of the system variables which, when integrated along
trajectories of the system, depends only on the value of the trajectory and
its derivatives at the endpoints of the integration interval. In this paper
we study path independence for linear systems and integrals of quadratic
differential forms. These notions and the results are subsequently applied to
stability questions. This leads to Lyapunov stability theory for autonomous
systems described by high-order differential equations, and to more general
stability concepts for systems in interaction with their environment. The
latter stability issues are intimately related to the theory of dissipative sys-
tems.
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teacher in the mid-sixties when the field of systems and 'modern’ (as it was called
then) control theory was relatively new and undeveloped, and as a frequent co-
author. Indirectly, as the person who in many ways helped shape my own scientific
taste and attitudes.
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The second half of the twentieth century has witnessed an intensive develop-
ment in the use of mathematical ideas in engineering. This development has, in
some ways, been a successful one, but in other ways, it has shown to be a rocky
road. Roger Brockett’s scientific career coincides with this era and he has lived and,
in his environment, led this uneasy symbiosis between mathematics and engineer-
ing in a very successful way. As this volume is testimony of, Roger Brockett’s work
has had many different facets and touched most aspects of systems and control in
one way or another. In the sixties, including the period during which I was his
graduate student at MIT, his interests centered on stability problems and optimal
control. In this period he developed a very effective technique for constructing Lya-
punov functions that allowed to prove stability and instability of feedback systems
[1, 2, 4, 5]. These ideas enabled to obtain Lyapunov proofs of the circle crite-
rion (including the instability part), the Popov theorem, and many other results
involving various classes of nonlinear systems and multipliers. This method was
based on treating systems described by high-order differential equations, instead
of the representations by state space equations or input-output operators which
were in vogue at that time. Considerations involving the path independence of
certain integrals of quadratic expressions involving the system variables and their
derivatives played a central role in this work. Later on, he applied these ideas
also to find elegant spectral factorization algorithms for linear-quadratic problems

3, 5].

Unfortunately, these methods did not become part of the mainstream of the
field, and few researchers seem to have mastered these techniques, to the point
that they seem somewhat forgotten. The purpose of this paper is to explain the
ideas underlying path independence, apply them to the construction of Lyapunov
functions, and show the implication of these methods in stability analysis. An
effective new tool which we have recently introduced in this context is the use of
two-variable polynomial matrices [24]. These play the same role for dealing with
quadratic functionals in the system variables and their derivatives that one-variable
polynomial matrices play in representing linear differential systems. Because of
length considerations, we will treat in this paper only stability questions. However,
the techniques can also be applied very effectively in optimal control problems (see
[18]). The material discussed in this paper shows some overlap with related papers
[24, 18] where, however, the theory is carried much further.

In order to make the paper reasonably self-contained and easy to follow, we
have added some background material in the appendix. The notation is explained
in appendix A; appendix B contains a brief introduction on behavioral systems;
and the proofs of the propositions and the theorems are given in appendix C.



2 Path independence

In this section we study when an integral of a quadratic expression in a set of
variables and their derivatives is independent of path. We refer to appendix A for
the notation used, in particular for polynomial matrices, and for the definition of
the operators x, *,°, and 0, which play an important role throughout this paper.

Consider the symmetric two-variable polynomial matrix ® = ®* € R7*?[(, n],
written out in terms of its coefficient matrices @, = ®, € R7*7 as ®((,n) =
S @, CFn. The map Qp : €° (R, R?) x €*°(R,R?) — €*(R,R) defined by
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is called the quadratic differential form (QDF) induced by ®.

The integral expression
t

2

t1
(or, briefly, [ Qs) is said to be independent of path, or a path integral, if it depends
only on the values taken on by w and its derivatives at t; and ¢5. More precisely,
if for any wy, we € € (R, R?) and ¢, ], t,,t5 € R such that

dk ! dk n dk ! dk n
le(h) = ﬁw(h) and ﬁwl(tz) = ﬁu&(tz)a (2)

for k =0,1,2,..., the equality
A t
/ Qa(w:)dt = Qo (ws)dt
# o

holds.

In order to fix the ideas, consider the following two trivial examples. Ob-
serve that Qg(w) = w’w leads to an integral that is not independent of path,
while Q¢(w) = w”£Lw does. Indeed, in the latter case the integral (1) equals
s(w(ts)"w(ta) — w(t1)"w(t1)), whence path independence is evident.

The question arises what conditions on the two-variable polynomial matrix ®
lead to path independence. The most direct test on ® is singled out in the following
proposition.

Proposition 1 : [ Qs is a path integral if and only if 0® = 0, i.e., if and only if
d(-¢£,8) =0.



It turns out that path independence is equivalent to many other useful condi-
tions, some of which are collected in the following theorem.

Theorem 2 : Let ® = &* € R™[(,n|. The following conditions are equivalent:
(i) [ Qs is a path integral;
(i1) 0P =0;
+00
(iii) [ Qo(w)dt =0 for all w € D(R,R?);

(iv) the expression
®(¢. )
¢+
1$ a polynomial matriz, i.e., there exists a two-variable polynomial matrix
U = U* € RI*(,n| such that U= o

(v) there ezists a two-variable polynomial matriz W = U* € RI*[(, n| such that

d
£5Qu(w) = Qafw) §)

for all w € €°(R,RY?). Note this equality implies that the integral (1) equals
Qu(w)(tz) — Qu(w)(t1), which puts path independence into evidence.

The above theorem tells us when path independence holds for smooth but oth-
erwise unconstrained trajectories w € €*(R,R?). Of course, a casual examination
of the arguments used in the proofs shows that €* is much more smoothness than
is needed: only the derivatives appearing in Qg are required to exist (note that
this also holds for the number of derivatives for which equality is required in (2)).
We are, however, interested in a more meaningful avenue of generalization. In
many applications, we need path independence only for trajectories that are gen-
erated by a given dynamical system, i.e., for the w’s that satisfy certain dynamical
equations.

Consider the dynamical system B € £9 (see appendix B for an introduction
to linear differential systems), and the QDF induced by ® = &* € R, n].
The integral (1) is said to be independent of path or a path integral along B if
the path independence condition explained earlier holds for all wy,ws € B. Let
B = ker(R(4)), with R € R**[¢]. The quesgion now is to find conditions on

® and R for path independence along ker(R(J;)). The key to this is given by



the following polynomial equation relating the one-variable polynomial matrices
X e R[] and Z = Z* € R™*1[¢] to R € R**1[¢]:

X*R+ R*X = Z. (4)

It is appropriate to call this equation the polynomial Lyapunov equation. It is a
generalization of the matrix Lyapunov equation in the square matrices A, X, Z =
ZT € R7 related by XA + ATX = Z; X = XT, (which may be written as
X*(I€+ A) + (I€+ A)*X = Z, in order to make it look more like (4)). This
equation is studied extensively in matrix theory and first-order state equations,
and the polynomial Lyapunov equation plays an analogous role in applications of
systems described by high-order differential equations.

Proposition 3 : [ Qg is a path integral along B = ker(R(%)) if there ezists a

X € R*™[¢] such that (4) holds with Z = 0®. This condition is also necessary if
B is controllable.

Note that in the unconstrained case (R = 0), this result specializes to propo-
sition 1. As is the case in the unconstrained case, path independence is again
equivalent to a number of other insightful conditions, which we state here for
controllable systems only (see appendix B for the notion of controllability in the
context of behaviors).

Theorem 4 : Let B € £7 be a controllable system, B = ker(R(%)) = im(M (<)),
and ® = ®* € R™™[(,n|. The following conditions are equivalent:

(i) [ Qo is a path integral along B;

(ii) the polynomial Lyapunov equation (4) with Z = 0P has a solution X €
R’Xq[d,’

(1i1) there exist Y € R**9[(,n] and ¥ = U* € R*?[(, n] such that

U (Com) = B(Cn) + Y (R () + BT (OY (), (5)
(iv) there exists U = U* € R™*[(, n| such that
d
2 Qu(w) = Qu(w) ©)

for all w € B;
(v) [ Qs is a path integral, where ' is defined by @' (¢, n) := M ()®(¢,n)M(n);
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(vi) 0P = 0;

(vii) there exists W' = U™ € R™*9((,n) such that
SQu(0) = Qu (0
ar VN T

for all ¢ € €®(R, ReoMimM)) i ¢ T'= P,

The immediate conclusion that may be drawn from theorems 2 and 4 is the
equivalence — for controllable linear differential systems — of path independence
and the fact that the QDF Q¢ is a perfect differential, expressed by equations
(3) and (6). The polynomial matrix ¥ which expresses this property plays an
important role in applications. It may be computed using the polynomial Lya-
punov equation (4) as follows. Let X € R**7[¢] and ¥ € R**?[(, ] be related by
0Y = —X . Then Y satisfies (5) for some ¥ if and only if X satisfies (4) with
7 = 09.

Hence, in order to compute ¥, solve first (4) for X with Z = 0®. From the
solution X obtained, use Y = —X, to deduce a Y. Then ¥ obtained by

(¢, n) +Y*(¢,n)R(n) + RT(QY (¢, n)
C+m

is a two-variable polynomial matrix that leads to a QDF satisfying %Q\p(w) =
Qu(w) for w € ker(R(L)).

dt

v(¢,n) = (7)

The solvability of the polynomial Lyapunov equation (4) with Z = 0® ap-
pears to be the key to path independence. Its solvability is always a sufficient
condition for path independence and in the controllable case, it is necessary as
well. Moreover, we have seen how a solution X to (4) with 0® = Z leads, via ¥
such that Y = —X, and (7) to a ¥ that puts path independence into evidence.
Unfortunately, controllability is not a superfluous condition. In order to illustrate
this, consider the autonomous (see appendix B for the definition of this notion) —
hence non-controllable — system described by w — dd—;w = 0. Its behavior equals
all linear combinations of ¢’ and e!. Consider furthermore the QDF defined by
w?, i.e., ® = 1. Then path independence holds trivially since there is at most one
path of this dynamical system connecting any set of initial and terminal conditions
w(ty) = ag, Sw(t) = a1, w(ts) = by, Lw(tz) = by. In fact, it is possible to give an
explicit expression for the path integral [w? in terms of the endpoints. Indeed,

/t Wit = %(w(tg)%w(tg) _ w(tl)%w(tl)) +ol(w+ %w)(tl), (w + %w)(tQ))

where a(y,z) =0 if y =0, and = %logg if y # 0. In the case at hand, (4) with
0% = 1 becomes (1 — &*)(X(§) + X(—£)) = 1, which obviously is not solvable
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for X € R[¢]. This example shows that path independence along B € £9 is
in the non-controllable case unfortunately simply not equivalent to solvability of
the polynomial Lyapunov equation (4) with Z = 0®. There are various ways
in which equivalence can nevertheless be enforced. For example, by requiring
that the integral (1) depends quadratically on w and its derivatives at the end-
points. This idea is obviously restricted to linear systems and quadratic differential
forms. Another way is to extend the set of solutions of R(Z)w = 0 so as to allow
trajectories that pass through infinity. In fact, it is the presence of the time-
reversible non-periodic solutions that cause the difficulty.

3 Positivity of quadratic differential forms

Positivity of QDF’s plays, as is to be expected, an important role in applications,
for example as Lyapunov functions in stability analysis, for determining the sign
of the second variation in optimal control, etc.

Let @1, ®% € R™™[(,n|, &y = ®f, Py = @5, and B € £7. We call Q4, and Qq,
(or @1 and ®5) B-equivalent (denoted Py Z D,) if Qg, (w) = Qa, (w) for all w € B.
Thus ®; 2 @, if and only if Qo,_s, = 0.

The QDF induced by ® = ®* € R, n] is said to be nonnegative (denoted
® > 0) if Qo(w) > 0 for all w € €*(R,R?), and positive (denoted ® > 0) if it is
nonnegative and if Q(w) = 0 implies w = 0. It is easy to see that ® is nonnegative
if and only if there exists D € R**?[¢] such that ®(¢,n) = D" (¢)D(n), and positive
if and only if in addition rank(D())) = ¢ for all A € C. This last condition may be
interpreted as stating that in the system d = D(%)w, w must be observable from
d (see appendix B for the behavioral definition of observability). It is important

to have also positivity concepts when QDF’s are evaluated along trajectories of
a system. Let B € £9. The QDF induced by ® = &* € R7?[(,n] is said to

B
be B-nonnegative (denoted ® > 0) if Qg(w) > 0 for all w € B and B-positive
B
(denoted ® > 0) if it is B-nonnegative and if Q¢(w) = 0 and w € B imply w = 0.

Let B = ker(R(4)). The following proposition gives conditions of B-positivity
in terms of ® and R.

Proposition 5 : Let ® = ®* € R™*?[(,n] and B = ker(R(4%)) € £7.

(i) ® 20 if and only if there exists Y € R**Y[(,n] such that

®(¢,m) =Y (¢, mRmn) + R ()Y (¢, n);



(11) ® is B-nonnegative if and only if there exists D € R**1[¢] such that ®((,n) 2

D*(¢)D(n);

(ii1) @ is B-positive if and only if in addition rank(col[R(\), D(N)]) = q for all
reC.

The rank condition in this proposition admits again an interpretation in terms
of observability. Indeed, it is equivalent to the requirement that in the system
R(4)yw = 0,d = D(ZL)w, w is observable from d (i.e., if (R, D) is an observable
pair — see appendix B for what it means that a pair of polynomial matrices is

observable); equivalently if in this system d = 0 implies w = 0.

Quadratic differential forms that are 2B-positive can only be zero when the
trajectory along which it is evaluated is zero. However, when the system ‘B is au-
tonomous, which is the case of interest in Lyapunov theory, it is useful to consider
also a stronger concept of positivity. Let B € £7 and & = &* € RI*[(, n]; we call

B
O strongly B-positive (denoted P >%; 0) if ® > 0 and if w € B and Qg(w)(0) =0
imply w = 0. Thus in this case Q¢(w) € €°(R,R) is zero if and only if it is zero

B B
at one point. Obviously, ® > 0 implies ® > 0. It is possible to prove that in order
for ® to be strongly B-positive, B must necessarily be autonomous.

4 Lyapunov theory for high-order
differential equations.

State-of-the-art Lyapunov theory pertains to systems described by explicit first-
order differential equations. However, first-principles-models are seldom in this
form, they may contain high-order derivatives, they usually involve auxiliary (la-
tent) variables, and invariably there will be implicit (e.g., algebraic) equations.
Writing them in explicit first-order form may not be easy, nor desirable: the trans-
formations required to bring them in explicit first-order form will upset the para-
metric integrity of the equations, and may introduce spurious solutions. However,
stability analysis does not require systems to be in explicit first-order form. Histor-
ically, in fact, the very first stability questions and results, as Maxwell’s stability
analysis of governors for steam engines and the Routh-Hurwitz conditions which
it led to, pertain to high-order differential equations. It is only since the work of
Lyapunov and Poincaré that stability analysis has been preoccupied by explicit
first-order models. Under the influence of the work of Kalman, systems and con-
trol theory has also succumbed to this fashion, indeed with great conviction, one
may say. Oddly enough, to our knowledge, no attempts seem to have been made
to establish Lyapunov theory for high-order differential equations. The purpose



of this section is to set up such a theory. We limit attention to linear differential
systems and to Lyapunov functions that are quadratic differential forms.

First, we introduce the notion of stability. In this section, we restrict attention
to autonomous differential systems in £. More general notions of stability will
be considered in section 7. An autonomous B € £7 is said to be asymptotically
stable if w € B implies w(t) == 0. Let R € R**7. The complex number A € C is
said to be a singularity of R if rank(R())) < rank(R); R is said to be Hurwitz if
rank(R) = ¢ and if R has all its singularities in the open left half of the complex
plane. Thus a square polynomial matrix R € R?*?[¢] is Hurwitz if and only if
det(R) is a Hurwitz polynomial, i.e., a non-zero polynomial with its roots in the
open left half plane. From the elementary theory of differential equations, we
conclude that B = ker(R(4)) is asymptotically stable if and only if R is Hurwitz.

We now examine how asymptotic stability may be deduced from the behavior of
QDF’s along the trajectories of 28, and what asymptotic stability implies regarding
the existence of suitable QDF’s that may serve as Lyapunov functions. Our most
basic Lyapunov theorem regarding high-order systems is the following. In the
remainder of this section, we will use the notation ¥ for the QDF that serves as
the Lyapunov function, and ® for its derivative.

Theorem 6 : Let B € £1. Then B is asymptotically stable if and only if there
B .
exists U = WU* € RI*[(,n] such that ¥ > 0 and \Il? 0.

The point of theorem 6 is two-fold: it avoids the state construction which
algorithmically (and conceptually) is not always easy in the multi-variable case,
and it has the usual Lyapunov theory as a special case, by applying it to systems
in first-order form and using memoryless QDF’s.

As an illustration, consider the multi-variable system described by

K D d M @ =
with K,D,M € R, K = KT >0, D+ D" >0, and M = M” > 0. Second
order equations of this type occur frequently as models of mechanical systems, with
elasticity (the K-term), viscous damping (the D-term), and inertial effects (the
M-term), all of which may be negligible. In order to analyze the stability of this

system, consider ¥((,n) = K + M(n. Then ¥ (¢,n) = K((+n) + M(C*n + (n?)
which is obviously B-equivalent to —(D+D")(n. Thus asymptotic stability follows
if col[K + DX + MA?, /(D + DT))| has full column rank for all A € C. This is
the case, for example, if {0} = ker(K) C ker(D + D) C ker(M).

In our basic Lyapunov theorem, theorem 6, we only need nonnegativity of
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the Lyapunov function. However, positivity, in fact, strong positivity, can be
concluded, as is shown in the following proposition.

B .
Proposition 7 : Let B € €7, and U = U* € R, ). If U > 0 and ¥ = 0,
B
then B is asymptotically stable and W > 0.

It is well-known that in linear asymptotically stable state space systems, one
can always choose the derivative of the Lyapunov function, and construct the
Lyapunov function accordingly. The same holds for the case at hand, leading to
the following stronger version of the ‘only if” part of theorem 6.

Theorem 8 : Assume that B € £7 is asymptotically stable. Then for any ® =
. B
o* € RI*(, ] there exists a ¥ = U* € R™[(,n| such that U 2 5. If o <0,

B b B
then W > 0, and if ® < 0, then ¥ > 0. The following algorithm allows to compute
U from ®. Let B = ker(R(%)). Then the polynomial Lyapunov equation (4) with
Z = 0% has a solution X € R™1[¢]. Take any Y € R**[(,n| such that Y = —X

and compute V((,n) using equation (7). Then 720

The above results allow generalizations in various directions, in particular to
unstable systems. Let us briefly mention a few. We have seen that B is asymp-

B
totically stable if and only if there exists ¥ = ¥* € RI*?[(, n] such that ¥ > 0

and \ifg 0. There also holds that 9B is stable (in the sense that all solutions are
bounded on the half line [0, 00)) if and only if there exists ¥ = ¥* € R7*?[(, )]

B B
such that ¥ > 0 and U< 0. Furthermore an autonomous B is not stable if there

exists ¥ = U* € RI*Y[(, | such that ¥ ; 0 and \ilﬁ 0. However, the result that a
Lyapunov function @@y can be constructed so that it has a given derivative Q¢ is
of course not always true for systems that are not asymptotically stable. It is the
case when the singularities of R and R* are distinct. More generally, the derivative
can be taken to be Qg if and only if the polynomial Lyapunov equation (4) with
7 = 0P has a solution X. As such the construction of Lyapunov functions via
equation (4) extends to a large class of unstable systems and ®’s.

The above results are related to path integrals. When B € £9 is autonomous,

. . . . . o, . o, . d
t};en an element w € B is uniquely specified by its initial conditions w(0), $w(0),
;?w(()), ..., in fact, by a finite subset of these. From there, it follows in the case
of asymptotically stable systems (but not for general autonomous systems) that

any QDF is independent of path. Indeed,

/t,oo Qa(w)dt
1

0



obviously depends only on w(t'), %w(t’), dd—;w(t’), .... Hence since

1t2 Qo (w)dt = /too Qa(w)dt — /too Qo (w)dt,

t 1 2

path independence of [ Qe along B follows. The construction of a Lyapunov
function can therefore be carried out by integrating Qs (w) and computing the
QDF Qy such that Qu(w)(0) = — [~ Qa(w)dt. This obviously comes down to

finding ¥ = ¥* € R, n] such that = ®. Imposing suitable positivity and
observability conditions on ® leads to B-positivity W.

Theorem (8) shows how the polynomial Lyapunov equation (4) may be used
for constructing a Lyapunov function for asymptotically stable systems 8 =
ker(R(%)) € £9. There are two basic ways of proceeding. In the first one, choose
Z = 7* € R [¢] such that Z(iw) < 0 for all w € R. It is well-known from the
theory of spectral factorization that Z may then be factored as 7 = D*D with
D € R?7*7 [£]. Hence taking ®(¢,n) = —DT(¢)D(n) leads to a ® < 0 such that
0P = Z. Then solve (4) for X, take any Y such that 0Y = —X, and use (7) to

B .

compute a ¥ > 0 such that U2 ®. If Z is chosen such that (R, D) is an observable
B B

pair, then ® < 0 and ¥ > 0.

In the second method, the polynomial Lyapunov equation (4) is used by choos-
ing an X such that Z has the required properties. Assume R € R?7%? [£]. Then
asymptotic stability implies that R™' € RI*(¢) is analytic in the closed right
half plane. Now choose X € R7*?[¢] such that —X R~ is positive real (meaning
XR Hiw)+(XR YT (—iw) < 0forallw € R). Then X*(iw)R(iw)+R*(iw) X (iw) <
0) for all w € R, and hence we are in the situation of the previous paragraph, lead-
ing to ® < 0 such that ¥ ; 0 and \if2 ®. If we choose X such that —XR™! is

strictly positive real (meaning X*R + R*X = —D*D with (R, D) observable —
this is but one of many possible definitions of strict positive realness of —XR™!),

B B
then ® < 0 and ¥ > 0.

Thus the polynomial Lyapunov equation (4) leads to two alternative (but re-
lated) procedures for constructing Lyapunov functions: choosing Z = Z* such that
Z(iw) > 0 for all w € R and solving for X, or choosing X such that —XR™" is
strictly positive real.

5 The Bezoutian

We will now use the results of the previous section in order to obtain the Be-
zoutian as a universal Lyapunov function for scalar systems, and deduce Lyapunov
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proofs of the Routh test for the stability of scalar differential equations and of the
Kharitonov theorem for interval families of polynomials. None of the results that
will be obtained are novel. However, we believe that the proofs are of some peda-
gogical interest, in the spirit and elegance of the mathematical arguments in [5].

Since we consider in this section only scalar systems, we use, in keeping with
tradition, the notation p € R[] for the polynomial that defines the differential
system whose stability is at issue. Consider the n-th order scalar system

d n—1 n
wH+p—w+- -+ ppi——w+ pp—w = 0, 8

Po pldt Dn L =1 pndt” (8)
with po,p1, -+, Pn1, Pn € R, with p, # 0. Let p(§) = po+p1€+- -+ pn1&” ' +pp”
denote the polynomial associated with (8). A classical problem going back to
Maxwell, Routh, and Hurwitz is to find conditions on the coefficients (pg, p1,- - -,
Pn_1,Pn) of p for it to be Hurwitz, i.e., for its roots to lie in the open left half of
the complex plane. An effective way to obtain such conditions is by considering
the following two-variable polynomial

p(Q)p(n) — p(=C)p(=n)
¢+
Note that since the numerator of the right hand side of (9) is zero when evaluated

at ( = —§ and n = ¢, B, is indeed a two-variable polynomial. Expressed in the
even and odd part of p,p = E, + O,, with E, = (p + p*) and O, = 1(p — p*), B,

becomes
B,(C,n) = 2Ep(C)0p(772 _+|_ SP(C)EP(n).

Bp(Ca n) =

(9)

(10)

n—1

Write B,(¢,n) = > breCFn'. Obviously, B, = B, whence by = bgx. Define the
=0

rank of the QDF @p, to be that of the associated symmetric (n x n) matrix

bo,o boj -+ bon—1
~ bi,o big 0 bip—
B, = . . .
bn—1,0 bn—i1 0 bp_ip—1

The two-variable polynomial B, (or the matrix B,) is called the Bezoutian
of p. It is one of the very classical objects [7, 8] studied in the interaction of

polynomials/matrices/linear systems. Note that () (w) evaluated along solutions
of (8) equals —|p(—d/dt)w|?, which shows that @Qp, is suitable as a Lyapunov
function for (8).

Theorem 9 : The following conditions are equivalent:

12



(1) the system defined by (8) is asymptotically stable;
(i1) p is Hurwitz;
(iii) Qp, > 0 and p and p* are co-prime polynomials;

(iv) B, is positive definite.

The proof of the above theorem shows that the QDF defined by the Bezoutian is a
universal Lyapunov function for scalar autonomous differential systems: it can be
written down directly from the system equation, and a system is asymptotically
stable if and only if the QDF induced by the Bezoutian as a Lyapunov function
shows it to be. Actually, this generalizes to the multi-variable case, with the
Bezoutian associated with B = ker(R(<%)) defined by

R"(Q)R(n) — R" (=n)R(=()
C+n '

However, it appears much more difficult to obtain concrete results from this multi-
variable version.

BR(C? 77) =

The Bezoutian as a Lyapunov function can be deduced from the procedure
explained in the previous section: take in the Lyapunov equation X = —p/2, 7 =

—p'p, ®(¢,n) = —p(=Q)p(—n) and Y((,n) = p(n)/2. Using (7), this results in
¥ = B,. There are other ways to obtain this Lyapunov function. For example,

take X = —FE,, Z = —2E2, ®((,n) = —2E,(()Ey(n), and Y (¢,n) = E,(¢);
alternatively, X = O,, Z = =207, ®(¢,n) = —20,(¢)0,(n), and Y (¢, 1) = Oy(n).
These also lead to ¥ = B,. Of course, the three ®’s obtained are all ker(p(<))-
equivalent.

5.1 The Routh test

Consider the polynomial p. Write it in terms of its even E,(£) = E;(£?), and odd
part as 0,(£) = EE4(£2), as p(€) = Eo(§*) +EE1(£2). Now use Ey and Ej to define
recursively the polynomials

_ Ek_Q(O)Ek_l(ﬁ) - Ek—l(O)Ek—2(§)
3

for k =2,3,---,n. The polynomials (Fy, Ey,- -, E,_1, E,) obtained this way play
an important role in stability tests. In fact, it is easy to see that the coefficients
of (Eo, Ey, -+, E, 1, Ey) listed in increasing order underneath each other form the
Routh table. Their leading elements (Ey(0), E1(0),---, E,_1(0), E,(0)) form the

Ei(€) (11)
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Routh array. We now show the classical result that (8) is asymptotically stable if
and only if the elements of the Routh array are all positive.

In order to prove this, define the polynomials py(§) = Ey_1(£?) + £Eg(£2) for
k=1,2,---,n. Note that p; = p, and that the degree of p;. is less than or equal
to n — k + 1. Now use the definition of the Bezoutian to verify that

_ CEx1(P)Ex(0®) + B () Er(n?)
¢+ '

Combined with (11) this yields the following backwards recursion for the B, 's:

Ek(O)Bpk (Ca 77) = Cank+l (Ca 77) + Ek—l(O)Ek(C2)Ek (772)

Bpk- (Ca 77)

This equation combined with theorem 9 shows that p = p; is Hurwitz if and
only if py is Hurwitz, Fy(0) > 0, and F;(0) > 0. Recursively, this yields the Routh
test for the asymptotic stability of p. The important point is that

n

E; 1(0
By(¢m) = S 2O ki (21 2) (12)
=1 T1 E(0)
=1
generates a QDF satisfying
d d
%QBp(w) == |p(—a)w °

along solutions of (8). The positivity of (12) is what allows to conclude asymptotic
stability. This reasoning yields a fully self-contained Lyapunov proof of the Routh
test. This proof is readily generalized to unstable systems for which the E;(0)’s
are nonzero.

5.2 The Kharitonov theorem

As a second application of the Bezoutian, consider the problem of the stability of
interval polynomials. It is well-known that the set of Hurwitz polynomials is not
convex. However, there are interesting subsets that have this property. Using the
Bezoutian, it is possible to obtain a nice example of such a convex family.

Consider

p(&) =D aBr(&) + Y ButFu(S?) (13)

i.e., the even and odd parts of p are finite linear combinations of certain given even
and odd polynomials. We now show that if all the a;’s and [’s are nonnegative,
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and if all the polynomials pg 4 (£) = Ey(£?) + Ew (€%), obtained by combining the
even and odd polynomials appearing in p, are Hurwitz, then p is also Hurwitz.
This follows readily from theorem 9. Indeed, use (10) and (13) to show that the
Bezoutian B, is related to the Bezoutians By, ,, by

Bp((a 77) = Z akﬁk’Bpk,k/ (Ca 77)7

Kok
and apply theorem 9.

This result implies for example that if p(£) and ¢(&) = p(€) + a&? are both
Hurwitz, so will be Sp(§) + (1 — B)q(€) for 0 < 8 < 1. From this we immediately
deduce the weak Kharitonov theorem which states that all the polynomials py +
€+ A Pr 1 E7 4 pr€™ in the interval family defined by 0 < a;, < pr, < Ay, for
k =0,1,--+,n are Hurwitz if and only if the 2"*! extreme polynomials obtained
by taking pp = ay or Ay for each k are all Hurwitz. In this case p(§) can indeed
be written as a convex combination of the extreme polynomials, which yields

p(&) = Y anEL(&?) + 3. BrEEL (£2) with 0 < ag, B, and the Ei(£2)’s and the
k K

EE;,(£2)’s the even and odd part of the extreme polynomials. Equation (10) shows
that the Bezoutian B,((,n) can be written as

2n+1

BP(C? 77) = Z VEBE(Ca 77)7
=1

with 0 < 7, and the B,’s the Bezoutians associated with the extreme polynomials.

It is well-known that his result can be strengthened to lead to the remarkable
strong Kharitonov theorem [9] which states that the interval polynomials are all
Hurwitz if the following four specimens, the Kharitonov polynomaials, are:

k1(€) ap + a1€ + Agf? + AzE3 + agt+ - -,
ko(§) = ag+ A1E+ Af% +as€® +agft+ - -+,
ks(§) = A+ A€+ af® +asf® + At + - -+,
ko(€) = Ap+aré +anf® + A3+ At + - - -

This may be proven as follows. First, note that any convex combination &
of ki, ko, k3, ks is Hurwitz. In order to see this, define £y = FE,, F3 = E; and
O1 = 04,09 = O3 to be the even and odd parts of ky = E1+ 01, ky = E1+03, k3 =
E3 + O3,ky = E3 + O;. This shows that the even and odd parts of k& are convex
combinations of F;, F3 and Oy, O, respectively. It follows that k is Hurwitz if
ki, ko, k3, k, are. Next, use the crucial observation from [11] that, since all the
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coefficients of kq, ko, k3, k4 are positive, there holds for all w € [0, 00):

1(iw) =
Im(k4(iw)) < Im(p(iw)) < Im(kq(iw))
= Im(k3(iw)) = O5(iw).

It follows that for all w € R p(iw) is a convex combination of {k;(iw), ko(iw),
ks(iw), ks(iw)}. Since if ky, ko, k3, k4 are Hurwitz, then every convex combination
of kq, ko, k3, k4 is Hurwitz (and therefore has no roots on the imaginary axis), this
implies that also p cannot have roots on the imaginary axis.

This leads to Kharitonov’s result. Observe that the degree of p equals the degree
of one of the Kharitonov polynomials. Now consider the convex combinations of
p and this particular Kharitonov polynomial. By the reasoning that we have just
used, none of these convex combinations can have roots on the imaginary axis.
Furthermore, they have all the same degree, and the Kharitonov polynomial is
Hurwitz. Hence p is Hurwitz as well. Note that this proof yields the strong
Kharitonov theorem, without having to impose the usual assumption that all the
interval polynomials have the same degree. More details concerning this difficulty
can be found in [25].

The Kharitonov theorem implies that the Bezoutian B, is positive definite
if the Bezoutians By,, By,, By,, By, are. It would be interesting to give a direct
proof of this. It seems reasonable to conjecture that B, must somehow be a
nonnegative sum of By,, By,, By,, Br,. This conjecture, if true, would yield a
simple and elegant proof of the Kharitonov theorem that is completely based on
Bezoutians and Lyapunov arguments.

6 Dissipative systems

One of the concepts that was put forward as a result of the stability work of the
sixties and early seventies is the notion of a dissipative system [20] (the influence in
these papers of Roger Brockett’s work is too obvious to mention). This notion came
to play an important role in the development of control, especially in H,-theory
and robust control. In this section we put forward our most recent viewpoint on
this. For simplicity of exposition, we restrict attention to linear differential systems
and quadratic differential forms.

The notion of a dissipative system involves:
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dynamics: expressed by a dynamical system B € £7;

a supply rate: expressed by a QDF Q¢ with & = &* € R7*[(, n];

a storage function: expressed by a QDF Qg with ¥ = U* € RI*?[(, n];

a dissipation rate: expressed by a QDF Qa with A = A* € RI*7([(, n].

The triple (®, ¥, A) is called B-matched if

d

Qv () = Qa(w) — Qa(w) (14)

for all w € B, i.e., if &,2 o — A.
The system B € £9 is said to be dissipative with respect to the triple of QDF’s

B
(@, ¥, A) if (®,¥,A) is B-matched, and if A > 0. A dissipative system with
A = 0 is said to be conservative.

The intuition behind these definitions is rather apparent: Qg(w) models the
rate at which supply is delivered to the system, @y (w) models the amount stored,
and Qa(w) = Qo (w) — £Qy(w) models the dissipation rate, which in a dissipative
system must be nonnegative, and in a conservative system must be zero. Physical
systems where this definition is appropriate are electrical circuits, with as sup-
ply rate the power delivered to the circuit via the external terminals, as storage
function the energy stored in the inductors and the capacitors, and as dissipation
rate the heat produced in the resistors; or mechanical systems with as supply rate
the mechanical power supplied through external forces acting on the system, as
storage the potential plus kinetic energy, and as dissipation the heat produced by
friction.

An important question is whether one can deduce dissipativity from observing
for a black-boxr how supply flows in and out of a system, i.e., can one conclude
dissipativity by observing Qg (w) for w € B? The question is then to deduce,
from B and & = ®* € RI*[(,n|, the existence of an appropriate ¥ = U* €

RI*7[(,n] and A = A* € R?7*?[(, n] such that A § 0 and the matching condition
(14) holds. For example, in thermodynamics, Qg (w) corresponds to the rate of
heat supplied to the environment divided by the temperature, and the storage
function corresponds to minus the entropy. However, the entropy is hardly an
‘observable’, but for the second law, in first instance only its existence matters.
The dissipation, in this case the rate of entropy production, is then defined by the
matching condition (14).

Note that by redefining A, if need be, we may as well assume in this question

B
that A > 0, instead of A > 0. Second, instead of looking for both ¥ and A, we
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may as well look only for a ¥ such that £Qu(w) < Qg (w) for all w € B. Once ¥

is found, A can be deduced from A 2\if —&®. The issue is then how to deduce ¥
from observing Q4 (w) for w € B. The existence of such a ¥ can indeed be solved
very nicely for controllable systems.

Theorem 10 : Let B € £7 be a controllable system, B = ker(R(Z)) = im(M (%)),
and ® = ®* € R™™[(,n|. The following conditions are equivalent:

(i) there exist ¥ = U* € RI*[(,n] and A = A* € R?[(,n] such that B is
dissipative with respect to (®, ¥, A);

(i1) fj;o Qo(w)dt > 0 for allw € BND(R,RY);
(1) there exists A = A* € R1”*[(,n] > 0 such that

+/OOQ<1>(U)) = +/OOQA(U’)

for allw € BND(R R?),

(iv) there exists ¥ = U* € R™[(,n] such that

Qu(w) < Qu(w) (15)
for all w € B;
(v) ®'(—iw,iw) >0 for all w € R, where ®'(¢,n) := M"(Q)®(¢,n)M(n);
(vi) there exists X € R*9 such that
®(—iw, iw) + X7 (—iw)R(iw) + RT (—iw) X (iw) > 0
for allw € R.

The first of the statements in the above theorem gives a black-box-type con-
dition for dissipativity: if a system always absorbs some external supply when it
starts at rest and is driven back to rest, then it can be viewed as being externally
dissipative, in the sense that an appropriate storage function and dissipation rate
exists. The required non-negativity of this integral along any compact support
trajectory in B can be replaced by non-negativity along any periodic trajectory
in B when the integral is evaluated over one period.

An important issue which is taken up in detail in [24] is the study of the set of
storage functions satisfying (15). This set consists in general of many elements, it is
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convex, and attains its upper and lower bound. These properties are of importance
in applications, for example in H-control [18].

In many applications, the storage function is nonnegative, as, for example,
the stored energy in electrical circuits. Actually, since the physical energy is only
defined up to a constant, non-negativity can be interpreted as bounded from below
(but, when considering QDF’s, this yields non-negativity). The question thus
occurs when a nonnegative storage function exists. This is treated in the following
theorem.

Theorem 11 : Let B € £7 be a controllable system and ® = ®* € RI*I[(, n).
Then there exist ¥ = ¥* € R7*[(,n] > 0 and A = A* € RI*[(,n] such that B is
dissipative with respect to (®, W, A) if and only if

/0 Qo(w) >0

for allw € BND(R,RY).

A number of other equivalent statements in addition to those given in the above
theorem can be stated, so as to make it look more like an analogue of theorem
10. Both theorems 10 and 11 allow refinements in a number of directions, in
particular by imposing appropriate strict dissipativity and positivity conditions.
We will not dwell on these ramifications here, but mention only the following point.
The main deficiency of theorem 11 is that the condition given for the existence of
a nonnegative storage function is not particularly explicit in 8 and ®. However,
recently [24] necessary and sufficient conditions have been obtained — under some
strictness assumptions — for the existence of a nonnegative storage function in
terms of a Pick matrix derived from 0®. For details of these results, we refer to
the source given.

The theory of dissipative systems is closely connected to path integrals and
Lyapunov theory. Theorem 2 shows that a system is externally conservative with
respect to the QDF induced by @ if and only if [Qe is a path integral along
B. The storage function is then simply the QDF @y that expresses the path
independence via (3) and (6). In a dissipative system, the dissipation rate is a
nonnegative QDF that makes [ Qs_n into a path integral along B. Equation (15)
shows that a storage function for an externally dissipative system plays the role for
general systems in interaction with their environment that a Lyapunov plays for
autonomous systems (in which case it is natural to take the supply rate to be zero).
Thus, given the importance of Lyapunov theory, and given the isolated position
for autonomous systems, it stands to reason that dissipative systems should play
an important role in the theory of dynamical systems.
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The notion of a storage function refers to accumulation of a physical quantity as
energy, or entropy, or mass. The notion of the state of a system, on the other hand,
refers to the memory of a system, intuitively, to the accumulation of information.
It is an intriguing idea to question whether the two are related. They are, indeed:
the ("physical’) storage function of a dissipative system is necessarily a memoryless
function of the ('information’) state. Note that, following [20], it is usually assumed
in the theory of dissipative systems that the storage is a state function, but now
it is a fact that can actually be proven [17] (at least for linear differential systems
and quadratic supply rates). However, the relevant system of which we have to
consider the state, involves both the dynamics of the system in combination with
the differentiations in the supply function.

Let ® = & € RI™7[¢,n]. Then ® can be factored as ®((,n) = MT ()M (n)
with M € R**?[¢] and & = £7 € R***. Let ¥ be of dimension ¢’ x ¢’. Consider
now the system B € £¢. This induces the behavior B’ € £7 defined by

d
B' = {w € R RY) | w' = M(%)w,w € B}.
This way we obtain the dynamical system ¥’ = (R, R?,B’). It is of this system that
the storage function is a memoryless function of the state (at least for controllable
systems). We refer to the appendix B for a precise definition of a state map.

Theorem 12 : Assume that B € £9 is controllable, and ® = ®* € RI*[(, 7).
Factor ® as ®((,n) = MT(O)SM(n) with M € RY*¢] and ¥ = £T € RI*7,
Define B' := M(4)B and assume that X € R*™[{] induces by = = X (&)w'
a state map for B'. Assume that B is dissipative with respect to (®,V,A).
Then Qe(w) is a memoryless function of the state of B', i.e., there exists K =
KT € R™™ such that Qu(w') = || X (L)w'|[% for w' € B', equivalently, ¥((,n) =
MT(OXT(OKX(n)M(n), and A is a memoryless function of the state and the
manifest variable of B, i.e., there exists D = DT > 0 such that Qa(w') =
|col[X (L)w', w')||3, for w' € B

The interesting part of this theorem is the fact that the storage is a memoryless
function of the state of the system that combines in a precise way the dynamics
and the supply rate.

7 Stability of non-autonomous systems

How should one formulate stability of dynamical systems
that are not autonomous?
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This question has preoccupied me for a long time. For autonomous systems, it is
natural to define stability in terms of boundedness or convergence of the manifest
trajectories in the behavior (or, which leads to very similar conditions, in terms of
the convergence of the underlying state trajectory). However, a reasonable model
for a physical (or economic) system considers a system in interaction with its
environment, and the preoccupation in mathematics and physics with autonomous
systems must be considered as somewhat of an abstract anomaly: it forces one in
the absurd situation that in order to model a system, one ends up being forced to
model also its environment. The question thus occurs: When is a physical system
that interacts with its environment, to be called stable?

A possible approach is the following. Assume that ¥ = (T, W, B) is a dynam-
ical system (see appendix B). In order to define stability, consider two additional
behaviors, B,, B, C W' (a suggests "admissible’, g suggests 'good’); B, are the
signals that can be imposed by the environment and against which stability has
to be tested, and B, are the signals that are indicative of stable, of non-explosive
behavior. Thus 8 N ‘B, are all the signals that are physically possible when the
system has an admissible interaction with its environment. The dynamical system
Y = (T, W, B) is said to be B,/B,-stable if B N B, C B, i.e., if all signals that
are physically possible and admissible are non-explosive in character.

Consider the following examples of this type of stability. For simplicity, we
assume ¥ = (R R?,B) € £9.

e Take B, = (R))%, and B, = {w: R — R | w = 0)}. In this case stability
corresponds to what in section 4 we called asymptotic stability. In order to
have this type of stability, ¥ must be autonomous, and, with B = ker(R(%)),
R must be Hurwitz.

e Assume R? = R™ x RP corresponding to a partition of w into (u,y) with
w the input, and y the output (see appendix B for what this means it a
behavioral context). Take

B, = {w=(1,y):R—>R" xR | /||u||2dt< s},
0

and

B, = {w=(0,y):R—R" x R | /||w||2dt<oo}.
0

This type of stability corresponds to £2-input/output stability. If B is de-

scribed by
d d
P(—)y=Q(—
(Z)y=Q(

Ju,
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with P,@Q € R***[{], P square, det(P) # 0, and P~'Q € RP*"(£) proper,
then for this type of stability requires P to be Hurwitz.

e Continuing the previous example, take
B, ={w=(u,y) :R—=>R" xR | u=0},

and
t—00

B, ={w=(u,y) :R—=>R" xR |w(t) — 0)}.
This type of stability again requires P to be Hurwitz.

e The next type of stability uses QDF’s. Let & = ®* € R7*?[(, 5] and define
B, = {w:R — R | / Qa(w)dt < 400},
0

and -
B, = {w :—>Rq|/ (| Pdt < oo}.
0

This last type of stability is physically certainly the most pleasing one, and
we will pursue it now. Intuitively, it significance is as follows. Imagine that
our (physical) system B exchanges supply, say energy, with its environment. The
instantaneous power delivered to the system by the environment is Qg (w). To test
stability, we assume that the energy delivered to the system by the environment
during [0, 00) is finite. We call the system stable if the manifest variable w has
then a non-explosive character, modeled as requiring it to be square integrable.
This definition suggests that the dissipation present in the system avoids unstable
explosive behavior. However, as we shall see, we also have to assume non-negativity
of the storage function for dissipation to lead to this type of stability. Note that
replacing the square integrability condition w € £?(R, R?) on B, by boundedness

of w on [0,00), or by w(t) == 0, are very reasonable alternatives. The former is
reminiscent of £2-input/output stability, the second of ordinary stability, the third
of asymptotic stability.

We now formulate a few results using this type of stability. Let B € £7 be
controllable and ® = ®* € R™*9[(,n]. We call B — strictly dissipative on R_ with
respect to @ if there exists £ > 0 such that

0 0
/ Qq)(w)dtZs/ (] [2dt

for all w € BN D(R,R?). Using theorem 11 it is easy to show that strict dissi-
pativity on R_ implies the existence of a B-positive storage function ¥ = ¥U* €
R%7[(, n]. In fact, there exists a storage function that is positive definite in the
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state of B. More precisely, let X € R"™7[¢] be such that z = X (4)w induces a
state for 28. Then, if B € £7 is controllable and strictly dissipative with respect
to @ = &* € R™[(,n], there exists ¥ = ¥* € R?”*7[(,n] and £ > 0,e5 > 0 such

that for w € B, there holds
d 2
%Qw(w) < Qo(w) — &1 |w][7, (16)

Qulw) > o[ X (S yul (17)

These inequalities are proven in appendix C. Using these inequalities we readily
obtain the following result.

Theorem 13 : Let B € £ be controllable and & = &* € R™*[(, n|, and assume
that B is strictly dissipative with respect to ®. Let B, and B, be defined as:

B, ={w:R—->R?| /oqu)(w)dt < 400},
0

B, = {w :—>Rq|/ ||w|[?dt < oo}
0

Then ‘B is B, /B, -stable.

The stability concept used in theorem 13 only requires to prove that [ ||w||?dt <

oo if fooo Qu(w)dt < 0. However, further analysis allows to conclude other types
of stable behavior as well. Indeed, the proof of theorem 13 shows that under the
conditions of the theorem, fooo Qu(w) < 0 implies that the state X(%)w of B
is bounded on [0,00) and in fact approaches zero as t — oo. The significance
of theorem 13 is as follows. Whenever a strictly dissipative dynamical system is
interconnected with an (uncertain) system that can deliver only a finite total sup-
ply to the system, then the system itself will behave in a stable way: its manifest
variables will be square integrable and its internal state will go to zero. Intuitively,
a lossy passive system to which only a finite amount of energy is delivered, will
dissipate this energy and have a stable behavior. It is this principle that lies at
the root of the small gain and positive operator theorem of Zames [26] and the
many related stability results obtained in the sixties. In theorem 13, these results
are presented in both a very general and a very intuitive way. The proof relies
on the construction of storage functions for dissipative systems. This construction
uses path integrals and in this sense formalizes Brockett’s path integral/even part
approach to stability as developed in [1, 3].

Examples:
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1. Assume that B € £7 is controllable. Then, up to re-ordering of its components,
w = col[wy, wy] admits kernel and image representations [13]

d d
P(%)MZ = Q(E)Uh
and p p
wy = D(E)K; wy = N(E)Z

respectively, with P and N square, det P # 0,det N # 0 and P~'Q = ND™! ¢
R*** (£) respectively left and right co-prime factorizations of G = P~'Q = ND 1.
The H,—norm of G, ||G||~, satisfies ||G||s < 1, if and only if D (and hence P) is
Hurwitz and there exists an £ > 0 such that

DT (—iw)D(iw) — NT(—iw)N(iw) > e(D* (—iw)D(iw) + NT (—iw)N(iw)) (18)

for all w € R. This inequality implies that

0 0
| il = el > = [ o) P (19
— 00 —0o0

for all w € B with compact support. Thus ||G||o < 1 implies that B is strictly
I,

0o -1,
denote the identity matrix of dimensions m = the number of components of wy,
and p = the number of components of ws.

dissipative on R_ with respect to ®(¢,n) = W = where I, and I,

Assume now that B is interconnected to a (possible nonlinear and/or time-
varying) system that restricts w to satisfy [°(|Jw:]|* — |Jws|[*)dt < +oo. This is
the case, for example, if the interconnection implies that ||wy(t)|| < ||we(¢)]| holds
point-wise for t € R. This will be the case, for instance, if the interconnection is
defined by wy(t) = K(t)wy(t) with K(-) a time-varying matrix whose Euclidean
induced norm satisfies ||K(¢)|| < 1 for all £ € R. Theorem 13 then implies that in
the interconnected system [;°(||w||?dt < oo, and it can moreover be shown that
the state of B goes to zero as t — o0.

Of course, the above result is the small loop gain theorem. Replacing W
by another symmetric matrix and changing the weighting matrix (18) and (19)
appropriately, yields the positive operator ([26, 19]) and conicity (|26, 16]) based
stability results.

2. Consider the controllable system 9B € £2 with kernel representation

d d
p(%)wz = Q(%)wh
and equivalent observable image representation
d d
=p(—); = q(—)L.
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Assume that B is interconnected to a memoryless time-invariant nonlinearity w; =
—f(wy) with f : R — R a measurable map satisfying 0 < of (o) for all 0 € R,
and such that F(0) := [ f(0')do’ is a well-defined map F : R — R. Obviously,
F >0.

Define ®((,n) = 1+ a(¢ + n) with a > 0. Note that

o oo d
/ Qo(w)dt = / (wywy + awlﬂ)dt.

Consider the right-hand side of this equality. The first term equals — fooo f(we)wadt
and is obviously non-positive. To compute the second term, observe that

CY/O wl%dtz _F(w2(t)) +F(w2(0))7

whence

a/ wl%dt < F(w9(0)) < +o00.
0

Therefore -
« / Qo(w)dt < 0.
0

It follows from theorem 13 that in the interconnected system col[wy, wsy] will be
square integrable if p is Hurwitz and if there exists an £ > 0 such that

(14 ciw)q(iw)
fie < p(iw)

>Z6>0

for all w € R. This criterion is the celebrated Popov criterion [14]. The interpre-
tation given here leading to this criterion, is that when a system is interconnected
to a memoryless nonlinearity, it will acquire from its environment only a finite
amount of supply corresponding to a well-chosen supply rate. When the system
itself is strictly dissipative with respect to this supply rate, stability results. For the
system under consideration, other kinds of stability can again be deduced. In par-
ticular, it can be shown that the internal state of the system will converge to zero
as t — 0o0. The method explained will also yield many other related well-known
stability criteria. For example, criteria with f bounded by K,0? < o f(0) < Kyo?.

In closing, we remark the rather obvious connection between the choice of the
supply rate, i.e., of the two-variable polynomial (matrix) ®, and the resulting
stability conditions. This is the idea behind the use of multipliers [19] in stability
analysis. However, the implied restriction to the use of QDF’s (rather than more
general operators) is at first sight somewhat restrictive. It would be interesting
indeed to cast the results on multipliers using LMI’s [12], IQC’s [10] and their
application to p-analysis and -synthesis [6] in our framework of dissipative systems.
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8 Conclusions

The main technical idea that we have put forward in this paper is the calculus
of two-variable polynomial matrices as a means of analyzing quadratic differential
forms. We have shown how this allows to construct path integrals which in turn
yield storage functions for dissipative systems and very effective Lyapunov func-
tions for stability analysis. We believe that (quadratic) differential forms are a very
natural and wanting concept in systems theory, paralleling the use of polynomial
matrices for system descriptions, and (quadratic) Lyapunov functions for stability
analysis. Roger Brockett’s path integrals and ’even part’ calculations which he
developed over two decades ago, contained more than the germ of these ideas. In
this sense this paper is a fitting tribute to him at the occasion of his 60-th birthday.

9 Appendix

9.1 Appendix A: Notation

As usual we denote by R the reals, by C the complex numbers, and by R™ *"2 the
ny X ny real matrices. The integers are denoted by 7Z, and the nonnegative ones by
Z.. By R**™ we denote the real matrices with n columns (this notation leaves the
number of rows free, but it is, of course, finite); the meaning of R*** R*** Cm*"2,
etc., follows. The notation col[A;, As, ..., A,] denotes the matrix formed by stack-
ing the matrices Ay, Ao, ... A, underneath each other (this saves space in printing
— of course the A;’s must all have the same number of columns). For A € R™*"2,
rank(A), det(A) are defined in the usual way; rowdim(A) = nq, coldim(A) = na,
and dim(A) = (ny, ny). This notation obviously carries over to complex and poly-
nomial matrices. Finally, ker(L) and im(L) denote the kernel and the image of
L.

As usual we denote by €(R,R"), €¥(R, R"), or €°(R,R") the maps from R to
RY that are once, k£ times, or infinitely often continuously differentiable. Further,
we denote by D(R,R™) the elements of €*°(R,R™) that have compact support;
£2(R,R™) denotes the square integrable maps from R to R".

We denote one-variable polynomials with real coefficients by R[¢], and two-
variable polynomials by R[(,7n] (thus £ is the indeterminate in the one-variable
case, and (, n are the indeterminates in the two-variable case). Polynomial matrices
are denoted by R***[¢], R**"[£] (when the number of columns is free), etc., with
similar notation in the two-variable case.

We use some important special operators acting on polynomial matrices: %, *,°
and 0 :
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* maps R***[£] into itself: if P € R"*™[¢], then P* € R™*™[{] is defined as
P*(€) := PT(=¢) (T denotes transposition);

* maps R***[(,n] into itself: if P € R™*™[(,n], then P* € R™*™[(,n] is
defined as P*(¢,n) := P"(n,();

* maps R***[(, n] into itself: if P € R™ *"2[(, ], then pe Ruxn2 [C,n] is defined
as P (¢,n) := (C+n)P(¢,n);

0 maps R***[(,n] into R***[¢]: if P € R™*™[(,n], then OP € R™*™[¢{] is
defined as OP(§) := P(—¢,¢).

There is an important relation among the * and the 0 operators. Indeed, the
image of the * operator equals the kernel of the 0 operator. In other words, for
@ E R.X. [C) 77]7

®(¢. )
C+mn

is polynomial if and only if ®(—¢,&) = 0.

The field of rational functions over R is denoted by R(&); R***(&) denotes the
set of matrices of rational functions. An element P € R(§) is said to be proper if
P = p1/py, with the degree of p; € R[¢] less than or equal to that of p, € R[(],
and strictly proper if “less than” holds.

9.2 Appendix B: Linear differential systems

In order to make this paper reasonably self-contained, we introduce in this ap-
pendix some basic facts from the behavioral approach to linear differential dy-
namical systems. The ideas follow those introduced in [21, 22, 23, 13], where
more details may be found. As also the present paper illustrates, the behavioral
approach provides a very suitable point of view for treating dynamical systems,
more so than the state space approach of the sixties (see [5]) does.

A dynamical system ¥ is defined as a triple ¥ = (T, W,B) withT C R the
time-axis, W a set called the signal space, and B C /mathbbW T the behavior. In
this paper we deal exclusively with continuous-time systems with T = R which are
time-invariant (meaning o"B = B for all t € R, where o' denoted the ¢-shift) and
with signal space W = R?. The dynamical system (R, R?,B) is said to be linear
if wy, wy € B implies that w; + we € B and that aw; € B for all « € R.

In this paper, we deal almost exclusively with continuous-time real linear time-
invariant differential dynamical systems. Differential means that the systems are
described by differential equations. Thus the time-axis is R, the signal space is R?,
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and the behavior B is the solution set of a system of linear constant coefficient

differential equations

R(%)w ~ 0 (20)

in the real variables w;, ws, -+, w,, arranged as the column vector w; R is a real
polynomial matrix with ¢ columns. The number of rows of R depends, as do
its coefficients, on the particular dynamical system described. Thus if R(§) =
Ro+ R+ -+ RyEYN, then we are considering the system of differential equations
dw dNw

+- 4 Ry=—— = 0.

R[)U) + R1 i dtN

For the behavior, i.e., for the solution set of this system of differential equations,
one usually considers locally integrable w’s as candidate solutions, and interprets
the differential equation in the sense of distributions. However, in order to avoid
mathematical technicalities, we assume in this paper that the solution set consists
of infinitely differentiable functions. Hence the behavior of (20) is defined as

B ={we cR,R7) | R(%)w =0}. (21)
We denote the family of dynamical systems obtained this way by £7, and L. =
Ugez, £9. Hence elements of £7 are dynamical systems ¥ = (R, R?,B) with time-
axis R, signal space R?, and behavior 9B described through some R € R?**[¢] by
(21). Note that instead of writing ¥ € £7 we may as well write B € £7, and we
use this notation in this paper. There are many other ways of specifying a given
behavior B € £7. Note that (21) describes B as B = ker(R(4)) with R(%) viewed
as a map from €% (R, R?) into €*(R, Rv4m(R))  For obvious reasons, we hence
refer to (20) as a kernel representation of B. We will meet other representations, in
particular image, latent variable, input/output, and state representations. These
are now briefly introduced.

A time-invariant system ¥ = (R, W,B) is said to be controllable if for all
wy, we € B there exists a w € B and a ¢’ > 0 such that w(t) = wy(¢) for t < 0
and w(t) = wy(t —t') for t > ¢'. It can be shown that B € £ is controllable if and
only if its kernel representation B = ker(R(%)) satisfies rank(R())) = rank(R)
for all A\ € C. Here, rank(R) is defined as the rank of R considered as a matrix
with elements in the field R(£) of real rational functions. On the other hand, for
a given A € C, R(\) is a matrix with elements in C. Accordingly, rank(R(\))
denotes the rank of the complex matrix R(\). It is easy to see that rank(R) =

maxcc(rank(R(A))).

Controllable systems are exactly those that admit an image representation.
More concretely, B € £7 is controllable if and only if there exists a polynomial

matrix M € R7**[¢] such that B = im(M (%)), with M(4) viewed as a mapping
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from €>°(R, R4™ (A7) into €*°(R,RY). The resulting representation

d

)0 (22)

is called an image representation of *B.

An image representation is a special case of what we call a latent variable
representation of 8. The system of differential equations
d d
M

R(Z)w = M(3)¢ (23)

is said to be a latent variable representation of B € £7 if
B = {we ¢(R,RY) | I L C°(R, RO gych that (23) holds}.

A latent variable representation is said to be observable if R(L)w = M(L4)¢; and
R(4)w = M(4)0, implies ¢; = (5. Observability is equivalent to the condition
that M (A) is of full column rank for all A € C. A controllable system, it turns
out, allows an observable image representation, i.e., an image representation (22)
with rank(M (X)) = coldim(M) for all A € C. Actually, the notion of observability
applies to more general situations than the latent variable case. Thus ws is said
to be observable from w; in the system with kernel representation Rl(%)wl =
Ry(Lyws if Ry(L)wy = Ro(L)wh and Ry(L)wy = Ry(4)wh implies wh = wh. Of
course, for observability conditions analogous to those on M must now hold on
Ry: Ry(A) must be of full column rank for all A € C. Of special interest in this
paper is the observability of a system of the form A(£)¢ =0, w = C(4%£)¢. If this
system is observable, then we call the pair of polynomial matrices (A, C') with the
same number of columns an observable pair. Hence (A, C') is an observable pair if

and only if col[A(A) C(A)] is of full column rank for all A € C.

Systems in £ admit many other useful representations. We already encountered
kernel and image representations. Next, we introduce state representations. In [15]
the notion of state models and their construction has been discussed in detail. Here
we limit ourselves to the bare essentials. A latent variable representation (with
the latent variable denoted by z) of the form (23) is said to be a state model if
whenever (wy,z1) and (wq, z5) are €>®-solutions of (23) with z;(0) = z2(0), then
the concatenation (wi,z1) A (we, x2) also satisfies (23) (f A g is the function such
that (f A g)(t) equals f(t) for ¢ < 0 and g(t) for ¢ > 0). Since this concatenation
need not be in €, it need only be a weak solution of (23), that is, a solution in the
sense of distributions. State models are governed by equations of the form (23) with
special structure. In fact, a state model can be described by Gw + Fz + E%x = 0.
The important feature of this representation is that it consists of a system of
(implicit) differential equations containing derivatives of order at most one in the
latent (state) variable x and of order zero in w.
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Every system B € £ also admits an input/output representation. By re-
ordering the components of the vector w, if need be, we can decompose w into
w = colu y] with, in terms of R, rank(R) components for y and ¢ — rank(R)
components for u, such that 2B admits the special kernel representation

P(%)y = Q(%)u (24)

with P square, det P # 0, and P~'(Q) a matrix of proper rational functions. Thus in
(24), u has the usual properties of input (in the sense that it is free) and y those of
output (in the sense that it is determined by the input and the initial conditions).
Therefore (24) is called an input/output representation. It is possible to combine
state and input/output representations, leading to the familiar input/state/output
representation

d
%‘Z‘:A‘T—FBU, y = Cx+ Du.

Summarizing, given any w € B, we may partition the components of w into
inputs and outputs. Also, there exists a X € R**? such that

d

Jw
is a state for B. For a system in image representation this leads to a state repre-

sentation of the form y

- X'(=
v (2

).

The dynamical system 3 = (T, W, B) is said to be autonomous if wy, wy € B
and wq(t) = wy(t) for t < 0 imply w; = we, i.e., if the past of a trajectory
in the behavior determines its future. If B € £9,8 = ker(R(%)) then B is

autonomous if and only if rank(R) = ¢. Alternatively, if and only if B admits a

state representation of the special form %x = Az, w=Czx.

9.3 Appendix C: Proofs

We only give the main lines of the proofs, and refer to the literature cited, in
particular to [24] for more details.

Proposition 1:

This proposition is part of theorem 2.

Theorem 2:

(i) = (d17) is trivial by taking in (2) ¢; and t3 outside the support of w.
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(i7) < (i7i) follows by considering the Fourier transform w of w. This yields

+oo 1 +0o0o

Qq:.(ﬂ))dt

=5 - W7 (—iw) ®(—iw, iw ) (iw)dw.

Hence (7i) = (i77). The converse follows by assuming ®(—iwy, iwy) # 0 for some
wp € R, and constructing a suitable w (see [24]).

(i7) < (iv) follows from observing that a two-variable polynomial f € R[(, n] has
a factor (¢ +n) if and only if f = 0. The ’if” part of this is trivial, and for the
‘only if” part, we refer again to [24].

(iv) < (v) is trivial since £Qg = Q\i.
Finally note that the implication (v) = i) is trivial.
Theorem 4:

The equivalence of (v), (vi), and (vii) follows from theorem 2.

Next, observe that w € 9B if and only if there exists £ € ¢ (RR4™(M)) guch that
w = M(4)¢. Equivalence of (iv) and (vii) follows.

(i17) < (iv) is a consequence of proposition 5, part (7).

(i7i) < (17): the direction (iii) = (ii) is trivial: take X = —dY. To see the
converse, take Y such that Y = —X and observe that this implies

O(B(&,m) + Y™ (&R + R (€)Y (&, m) = 0.

Now use equivalence of (iz) and (iv) of theorem 2.
The implications (iv) = (i) and (i) = (vi) are obvious, which closes the loop.
Proposition 3:

Verify that controllability was not used in the proof of the implications (ii) =
(i7i) = (iv) = (4) of theorem 4.

Proposition 5:

(i): The ’if” part can be seen from observing that for all w € €*(R,R?) there
holds that Q¢ (w) = 2By (w, R(:%)w), where By denotes the bilinear differential

form defined by
&\ d’
By (wy,wy) = Xy (wUJl) Yi e (ﬁ%@)

with Y (£,1) = Z1.Y5..£"nf. The only if’ part may be shown by putting R is Smith
form. The proof is easy for controllable systems, but a bit harder in the general
case. The details can be found in [24].
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(#7): The ’if” part is again obvious since Qg (w) 2 |D(4)w]||*. The ’only if” part
uses again the Smith form and is completely analogous to the proof of the 'only
if’-part of (7).

(iii): Follows from the fact that w € B and D(%)w = 0 imply w = 0 if and

only if in R(£)w =0, d = D(4)w, w is observable from d. This is equivalent to

rank(col[R(A), D(N)]) = ¢ for all A € C.
Theorem 6:

if”: let exp, : t € R — e € C be the exponential function with parameter \. The
system B € £9 is asymptotically stable if and only if exp, a € B,a # 0 implies
Re(\) < 0. Note that we have silently decided to consider that also complex
functions w : R — C? belong to B if Re(w) and Im(w) belong to B. Assume
exp, a € B. Then

Qu(expya) = aT\p(j\, Aa eXpZRe(/\)a
and B
Q‘i(exp/\ CL) = QRQ()\)C_‘LT\I/()\, )‘)a’ eXp2Re()\)'
B _ B
Hence Qg (w) > 0 implies @ U(A, A)a < 0. Therefore Q&I(w) < 0 implies Re(A) <
0, as desired.
The ’only if’ part will be proven as part of theorem 8.
Proposition 7:

Asymptotic stability follows from theorem 6. Let w € B. Then
Qo)) =~ [ Qyw)dr
0

o B
Since ¥< 0 and w # 0 imply Q&, (w) # 0, it follows that Qg (w)(0) > 0.
Theorem 8:

The key to this proof is that if R is Hurwitz, then the polynomial Lyapunov
equation (4) has a solution X for all Z = Z*. In order to see this, verify first
that without loss of generality, we can assume that R is in Smith form. Then
in the obvious notation equation (4) reduces to ¢* scalar equations of the form
5627@7”16 + ;2 = 2k with 7, and 7, Hurwitz. Since the polynomials r, and 7}
are co-prime, these equations are indeed solvable.Now consider (4) with Z = 0.
Let X be a solution. Take Y € R**9[(,n] such that 0Y = —X. Then (7) yields

Q&, 2 Qo, as desired. Note that Qg is in fact given by

Qu(w)(0) 2 - / " Qulw)dt
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B B B B
This formula shows that ® < 0 implies ¥ > 0. That ® < 0 implies ¥ > 0 follows
from proposition 7 .

Theorem 9:
Let B = ker(pd).

(i) & (di) is a (perhaps the most) classical result from the theory of differential
equations.

(i) < (iii) follows from the fact that 4Qp (w) z —|p(—4)w|?, and theorem 6.

To see that (i) = (iv), note that for w € B, there holds
* d
@n, ()(0) = [ Ipl= 5w
0

Hence, Qp,(w)(0) > 0 for all w(0), Lw(0),..., jtnn—__llw(O). This implies that B, is
positive definite.

To show that (iv) = (ii7) we need to show that p and p* are co-prime. Assume that
p =rq and p* = rq*. Then B,((,n) = r(¢)By(¢,n)r(n). From this it follows that

rank(B,) < rank(B,)). Hence rank(B,) = n implies that p and p* are co-prime.
Theorem 10:

We will run the circle (i) = (iii) = (iv) = (i1) = (v) = (vi) = (7).

The implications (i) = (ii7) and (iv) = (i7) are obvious.

(i7i) = (iv) follows from theorem 4. Indeed, (i77) implies the existence of ¥ =
U* € R™[¢, 7] such that £Qy = Qs — Qa, which yields (iv).

The implication (i) = (v) follows since B consists of the w’s of the form w =
M(£)¢. It can be shown that the elements in B N D(R,R?) are those generated
by the ¢’s which are also of compact support. Since

+0o0 +o0
Qo (w)dt = Qo (£)dt

the implication follows.

To show (v) = (vi), observe that we can without loss of generality assume that R
is in Smith form, R(§) = [I 0]. Partition ® comformably as

(I)l 1 (I)l 2
= 0 T2
{ P, Dop ]

Then (v) states that [*>° Qa,, (€)dt > 0 for all £ € €*(R,Rem)) of compact
support. Using Fourier transforms and arguments analogous to the implication
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(i7) < (i77) of theorem 2, it is possible to prove that this is the case if and only if
0P 1 (iw) > 0 for all w, which yields (vi).

To show that (vi) implies (i), assume
®(—iw, iw) + X7 (—iw)R(iw) + RT (—iw) X (iw) > 0

for all w € R. Use spectral factorization to obtain a D € R**?[¢] such that
P (—iw,iw) = D" (—iw)D(iw). Now use A(¢,n) = DT (¢)D(n) and

(¢, n) +Y*(¢,n)R(n) + R(QY (¢, n) — A(¢,n)
C+m

with Y such that Y = X. It is easy to verify that B is dissipative with respect
to (D, ¥, A).

U(¢,n) =

Theorem 11:
(only if): Qg (w) = Qe(w) — Qa(w) and w € B ND(R,R?) implies

Qu(w)(0) < / Qu(w)dt.

B
Hence ¥ > 0 implies [°_ Qq(w)dt > 0.

(if) Using controllability and image representations, it suffices to give the proof in
the case B = €>*°(R,R?). Note that ffoo Qo(w)dt > 0 for all w € D(R, RY) implies,
using theorem 10, ®(—iw,iw) > 0 for all w € R. We will give the proof under the
somewhat stronger assumption that there exists ¢ > 0 such that ®(—iw,iw) > I
for all w € R. In this case, ®(—iw,iw) can be factored asAT (—iw)A(iw) with A
anti-Hurwitz (i.e., with A* Hurwitz). Define

B(¢n) — AT(Q)A(m)

(¢, m) = T

Then
Qq;(w)(()):/_ Qq>(w)dt—/_ ||A(%)w||2dt

o0

for all w € D(R,R?). Now apply this formula for the w’s such that A(%£)w = 0
to conclude (using a suitable limit argument to get around the compact support
difficulty) that Qu(w)(0) > 0 for all w’s in the behavior of A(£)w = 0. To prove
that this indeed implies QQy > 0 requires an argument for which we refer to [24].

Theorem 12:
See [17].
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Equations (16) and (17):

Since B is strictly dissipative with respect to ® = ®* € R7*?[(,n] on R_, there
exists an € > 0 such that

0 0
/ Qq)(w)dtZs/ (] [2dt

for w € BND(R,R?). Using theorem 11 this yields the existence of ¥ = U* €
R9*9[¢,n] > 0 such that

d
—Qu(w) < Qa(w) — elw],
for w € ®B. This yields (16). Next, observe that there exists M < oo such that
d d
— | X (=)w|]* < M||w]||?
LNyl < M

for w € B. Combining the above two inequalities yields (17).
Theorem 13 :

Integrating (16) yields

5/0 ||w||2dt§/0 Q — (w)dt — Qu(w)(#) + Qu(w)(0).

Since ¥ = U* € R7*?[(, n] > 0, this yields

. / wl P < / Q — (w)dt + Qw(w)(0)

for w € B. Now assume [~ Q — ®(w)dt < oo, and let ¢ — oo in the above
inequality to obtain [J*||w||*dt < co. This yields B,/%B,~stability.
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