Linear Systemsin Discrete Time

Jan C. Willems

Abstract Representations of linear time-invariant discrete-tirygtems are dis-
cussed. A system is defined as a behavior, that is, as a faftiBjectories mapping
the time axis into the signal space. The following charézations are equivalent:
(i) the system is linear, time-invariant, and complet@ t{ie behavior is linear, shift-
invariant, and closed, (iii) the behavior is kernel of a &ndifference operator with
a polynomial symbol, (iv) the system allows a linear inputfut representation in
terms of polynomial matrices, (v) the system allows a lineamstant coefficient
input/state/output representation, and (vi) the behasi@ernel of a linear differ-
ence operator with a rational symbol. If the system is cdlatote, then the system
also allows (vii) an image representation with a polynorsijahbol, and an image
representation with a rational symbol.

1 Introduction

Itis a pleasure to contribute an article to this Festscdtticated to Professor Okko
Bosgra on the occasion of his ‘emeritaat’.

The aim of this presentation is to discuss representatibdsorete-time linear
time-invariant systems described by difference equatidfesdiscuss systems from
the behavioral point of view. Details of this approach maydwnd in [1, 2, 3, 4, 5].

We view a model as a subsgt of a universunmz of a priori possibilities. This
subset# C 7% is called thebehaviorof the model. Thus, before the phenomenon
was captured in a model, all outcomes fr@mwere in principle possible. But after
we accepiZ as the model, we declare that only outcomes frgrare possible.

In the case oflynamicalsystems, the phenomenon which is modeled produces
functions that map the set of time instances relevant to théairto thesignal space
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This is the space in which these functions take on their waluethis article we as-
sume that the set of relevant time instance$ is- {1,2,3,...} (the theory is analo-
gous forZ, R, andR ). We assume also that the signal space is a finite-dimerisiona
real vector space, typicallg”.

Following our idea of a model, the behavior of the dynamigatems which we
consider is therefore a collectio® of functions mapping the time sét into the
signal spacé&R¥. A dynamical model can therefore be identified withbeshavior
% C (R*)". The behavior is hence a family of maps frofrto R¥. Of course, also
for dynamical systems the behavigtis usually specified as the set of solutions of
equations, for the case at hand typically difference equnatiAs dynamical models,
difference equations thus merely serve as a representdtibair solution set. Note
that this immediately leads to a notion of equivalence andatwonical forms for
difference equations. These are particularly relevanha dontext of dynamical
systems, because of the multitude of, usually over-parnizet, representations of
the behavior of a dynamical system.

2 Linear dynamical systems

The most widely studied model class in systems theory, obr@ind signal process-
ing consists of dynamical systems that are (i) linear, ifiietinvariant, and (iii) that
satisfy a third property, related to the finite dimensiaiyadif the underlying state
space, or to the rationality of a transfer function. It ispewer, clearer and advan-
tageous to approach this situation in a more intrinsic wgyiniposing this third
property directly on the behavior, and not on a representatf it. The purpose of
this presentation is to discuss various representatiotitgémodel class.

A behavior# C (R“)N is said to bdinearif we Z,w € %, anda € R imply
w+Ww € Z andaw € %, andtime-invariantif 02 C 2. The shift o is defined
by (of)(t) := f (t+1). The third property that enters into the specification of the
model class is completenesa.is calledcompletdf it has the following property:

[w:N — R belongs toZ] < [w|j; ;€ By forallteN].

In words, % is complete if we can decide that: N — R is ‘legal’ (i.e. belongs to
) by verifying that each of its ‘prefixes(w(1),w(2),...,w(t)) is ‘legal’ (i.e.
belongs to%||1 +)). So, roughly speaking? is complete iff the laws o8 do not in-
volve what happens ateo. Requirements as € ¢, (N,R¥), w has compact support,
or lim;_. w(t) exists, risk at obstructing completeness. However, oftanial in-
formation about a complet® can be obtained by considering its intersection with
l> (N,R¥), or its compact support elements, etc.

Recall the following standard notatioR.[£] denotes the polynomials with real
coefficients in the indeterminafg R(&) the real rational functions, arfgP1*2 [£]
the polynomial matrices with rea} x n, matrices as coefficients. When the number
of rows is irrelevant and the number of columnsjshe notatioriR®*** [£] is used.
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So, in effectR**® [€] = UxenR¥*® [€]. A similar notation is used for polynomial
vectors, or when the number of rows and/or columns is ireelevThe degree of
P e R***[£] equals the largest degree of its entries, and is denoteegyee (P).
Given a time-seriesv : N — R¥ and a polynomial matriR € RV*¥[£], say
R(§) =Ry +Ri& +---+R.EL, we can form the new-dimensional time-series

R(0)W=Row+Ryow+ -+ R.o"w.

HenceR(o) : (R¥)N — (RV)N, with R(G)w: t € N— Row(t )+ Ryw(t + 1)+ -+
Row(t+L) € R".

The combination of linearity, time-invariance, and cont@hess can be ex-
pressed in many equivalent ways. In particular, the follmpare equivalent:

1. % C (R¥)" is linear, time-invariant, and complete;

2. #isalinear, shiftinvariant & 0% C %), closed subset (J{iR“)N, with ‘closed’
understood in the topology of pointwise convergence;

3. IReR**¥[&] such thatZ consists of the solutions: N — R¥ of

R(o)w=0. 1)

The set of behaviorsz C (R¥)" that satisfy the equivalent conditions 1. to 3. is
denoted by.Z", or, when the number of variables is unspecified, 9. Thus,

in effect,.Z® = Uyen.Z". SinceZ = ker nel (R(0)) in (1), we call (1) akernel
representatiorof the behaviorA.

3 Polynomial annihilators

We now introduce a characterization that is mathematicatlye abstract. It identi-
fies a behavioZ € .#* with anR [£]-module.

Consider% € .#¥. The polynomial vecton € R*¥ €] is called arannihilator
(or aconsequengeof Z if n(o)# =0, i.e. ifn(o)w =0 forallw € A. Denote
by .4 the set of annihilators o#8. Observe that/ is anR [£]-module. Indeed,
ne Ay n e Ny anda € R[E] imply n+n' € 4% andan € .#4. Hence the
map% — ./ associates with eacl ¢ . a submodule oR¥[£]. It turns out
that this map is actually a bijection, i.e. to each submodfil&!*¥[£], there cor-
responds exactly one element&f”. It is easy to see what the inverse map is. Let
2 be a submodule dR¥™¥[&]. Submodules oR™¥[&] have nice properties. In
particular, they ardinitely generatedmeaning that there exist elemenigefera-
tors’) 91,02, ...,0g € % such thatZ” consists precisely of the linear combinations
Q101+ a202 + - - - + 0gQ9g Where theny’s range ovelR [£]. Now consider the system
(1) with R= col(g1,02, . ..,9g) and prove that

v

ker nel (col(gl,gg,...,gg)(a)) =
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(2 is obvious,C requires a little bit of analysis). In terms of (1), we obtéie
characterization

[kernel (R(0))=2] < [A4z= (R]

where(R) denotes th& [£]-module generated by the rowsRf
The observation that there is a bijective correspondentedes. ¥ and the
R[&]-submodules oR™¥[&] is not altogether trivial. For instance, the surjectivity
of the map
#=kernel (R(0)) e &" — Nz=(R

onto theR[&]-submodules oR**¥[€] depends on the solution concept used in (1).
If we would have considered only solutions with compact supr that are square
integrable, this bijective correspondence is lost. Equmstiin particular difference
or differential equations, all by themselves, without aaclsolution concept, i.e.
without a definition of the corresponding behavior, are adequate specification
of a mathematical model. Studying linear time-invariarftedence (and certainly
differential) equations is not just algebra, through thieitson concept, it also re-
quires analysis.

The characterization o# in terms of its module of annihilators shows precisely
what we are looking for in order to identify a system in the rlozlassZ’*: (a set
of generators of) the submodulé&y.

4 Input/output representations

Behaviors inZ® admit many other representations. The following two areeexe
ingly familiar to system theorists. In fact,

4) [# € "] & [3 integersm,p € Z., with m+ p = w, polynomial matrices
PeRP*P[£],Qe RP*™[£], with det(P) # 0, and a permutation matrit € R¥*¥
such thatZ consists of alw : N — R¥ for which there exisu: N — R™ and
y: N — RRP such that

P(o)y=Q(o)u (@)

andw =11 ; ]. The matrix of rational function& = P~1Q € (R(&))P ™ is

called thetransfer functionof (2). Actually, for a givenZ € £, it is always
possible to choosél such thatG is proper. If we would allow a basis change
in R¥, i.e. allow any non-singular matrix fdfl (instead of only a permutation
matrix), then we could always tak&to be strictly proper.

5) [# € ¥"] < [3 integeram,p,n € Z; withm+ p = w, matricesA € R*** B ¢
R*>*® C € RP*® D € RP*® and a permutation matriki € R"*¥ such that#
consists of alw: N — R for which there exist: N — R®, x: N — R*, and
y: N — RP such that
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oX=Ax+Bu, y=Cx+Du, w=1rl m ] 3)

If we allow also a basis change R¥, i.e. allow any non-singular matrix fa,
then we can also take = 0.

(2) is called arinput/output(i/o) and (3) aninput/state/outputi/s/o) representation
of the corresponding behavig# € £,

Why, if any elemen® ¢ .£° indeed admits a representation (2) or (3), should
one not use one of these familiar representations ab inifidfere are many good
reasons for not doing so. To begin with, and most importafitsy principles models
aim at describing a behavior, but are seldom in the form (ZBorConsequently,
one must have a theory that supersedes (2) or (3) in ordevtoahelear idea what
transformations are allowed in bringing a first principlesdal into the form (2) or
(3). Secondly, as a rule, physical systems are simply naiwed with a signal flow
direction. Adding a signal flow direction is often a figmenboie’s imagination, and
when something is not real, it will turn out to be cumbersooener or later. A third
reason, very much related to the second, is that the ingptibframework is totally
inappropriate for dealing with all but the most special egsinterconnections. We
are surrounded by interconnected systems, but only vemingiha can these be
viewed as input-to-output connections. The second and teason are valid, in an
amplified way, for continuous-time systems. Fourthly, thhacture implied by (2)
or (3) often needlessly complicates matters, mathembtiaatl conceptually.

A good theory of systems takes the behavior as the basicmatid the refer-
ence point for concepts and definitions, and switches badkath between a wide
variety of convenient representations. (2) or (3) haveuwggbperties, but for many
purposes other representations may be more conveniergxgorple, a kernel rep-
resentation (1) is very relevant in system identificatidrsuggests that we should
look for (approximate) annihilators. On the other hand, witeomes to construct-
ing trajectories, (3) is very convenient. It shows how trijeies are parameterized
and generated : by the initial statgl) € R® and the inputi: N — R™,

5 Representations with rational symbols

Our next representation involves rational functions and €t more ‘tricky’. Let
G e (R(&))**" and consider the system of ‘difference equations’

G(o)w=0. (4)

What is meant by the behavior of (3SinceG is a matrix of rational functions,
it is not evident how to define solutions. This may be done im#eof co-prime
factorizations, as followsG can be factore@® = P~1Q with P € R***[&] square,
detP) # 0,Q € R**¥[&] and (P, Q) left co-prime (meaning that = [P Q] is left
prime, i.e.
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[(U,F" e R***[&]) A (F =UF')] = [U is square and unimoduldr

equivalentlyd H € R***[&] such thaFH = I). We definethe behavior of (4) as that
of
Q(o)w=0, ie.as kernel (Q(0o))

Hence (4) defines a behaviarZ". It is easy to see that this definition is indepen-
dent of which co-prime factorization is taken. There areeotieasonable ways of
approaching the problem of defining the behavior of (4), baytall turn out to be
equivalent to the definition given. Rational representetiare studied in [6]. Note
that, in a trivial way, since (1) is a special case of (4), g\@ement ofZ¥ admits

a representation (4).

6) [%# € £¥] < [there exist$ € R (&)**" such that it admits a kernel representa-
tion (4)].

6 Integer invariants

Certain integer ‘invariants’ (meaning maps fraff to Z..) associated with systems
in .#* are important. One is thiag, denoted by (%), defined as the smallekte
Z such thatw|i; ;)€ |14 forallt € N] = [w e Z]. Equivalently, the
smallest degree over the polynomial matrigesuch thatZ = ker nel (R(0)). A
second integer invariant that is important is iyut cardinality, denoted byn (%),
defined as, the number of input variables in any (2) representatioggolt turns
out thatm is an invariant (while the input/output partition, i.e. fermutation matrix
1 in (2), is not). The number of output variables,yields theoutput cardinality
p(4). A third important integer invariant is thetate cardinalityn (%), defined as
the smallest number of state variables over all i/s/o representations (3)0fThe
three integer invarianta (%), n (#), andL (%) can be nicely captured in one single
formula, involving the growth as a function efof the dimension of the subspace
%|(1¢)- Indeed, there holds

dim(%| (1)) < m (%)t +n(H) with equality ifft > L(%).

7 Latent variables

State models (3) are an example of the more general, but gefuluclass of latent
variable models. Such models involve, in addition tortrenifest/ariables (denoted
by win (5)), the variables which the model aims at, also auxiliEtentvariables
(denoted by in (5)). For the case at hand this leads to behaviBgg € £
described by

R(o)w=M(o)/, (5)
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with Re R**¥ [£] andM € R**}[&].
Although the notion of observability applies more gengralle use it here for
latent variable models only. We calfy € .2 observablgf

[[(W, fl) S %qu and(w, fg) S ggfu” ]] = [[fl = fg]].

(5) defines an observable latent variable systerMiff ) has full row rank for all
A € C. For state systems (witkithe latent variable), this corresponds to the usual
observability of the paifA,C).

An important result, thelimination theoremstates thatZ* is closed under pro-
jection. HenceZyy € ¥ implies that themanifestehavior

% =projection(#)={w:N—R"|3/:N— R!such that (5) holds

belongs taZ”, and therefore admits a kernel representation (1) of its. @anin a
trivial sense, (5) is yet another representatiot/st.

Latent variable representations (also unobservable aresyery useful in all
kinds of applications. This, notwithstanding the elimioattheorem. They are the
end result of modeling interconnected systemsdaying, zooming, and linkingp],
with the interconnection variables viewed as latent vagimbMany physical models
(for example, in mechanics) express basic laws using lageidbles.

8 Controllability

In many areas of system theory, controllability enters asgalarizing assumption.
In the behavioral theory, an appealing notion of contrdligthas been put forward.
It expresses what is needed intuitively, it applies to anyadyical system, regardless
of its representation, it has the classical state trangf@mition as a special case, and
it is readily generalized, for instance to distributed eyss. It is somewhat strange
that this definition has not been generally adopted. Adajatélde case at hand, it
reads as follows. The time-invariant behavigrC (R*)" is said to becontrollable
if for any w; € 8, w, € 4, andt; € N, there exists &, € N and aw € £ such
thatw(t) =wy (t) for 1 <t <tj, andw(t) =wy(t —t1—t2) for t >t + to.
For# € .£°, one can take without loss of generality = O in the above definition.
Denote the controllable elements.&f® by 3, ;and of £¥ by £

The kernel representation (1) defines a controllable systeRiA ) has the same
rank for eachA € C. There is a very nice representation result that charaetri
controllability: it is equivalent to the existence of an igearepresentation. More
precisely,# € £ iff there existsM € R***[£] such that# equals the manifest
behavior of the latent variable system

w=M/ (o). (6)

In other words,
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7) [# € Zeonl & [# =im(M(0))].

So, images, contrary to kernels, are always controllabiies image representation
of a controllable system can always be taken to be observable
For % € £°, we define itxontrollable part denoted byZcontrollable @S

Beoontrollable:= {W € £ | ¥t' € N,3t” € Z,, andw € £ such that
wW(t)=0for1<t <t andw/(t) =w(t -t —t”) fort > t'+t"}.

Equivalently, Zcontrollable iS the largest controllable subsystem containedénit
turns out that two systems of the form (2) (with the same ifguiput partition)
have the same transfer function iff they have the same citatite part.

9 Rational annihilators

ConsiderZ € .#¥. The vector of rational functionse R*¥ (&) is called arational
annihilatorof Z if n(o) % = 0 (note that, since we gave a meaning to (4), this is
well defined). Denote byyJ21°"a the set of rational annihilators &8. Observe that

L atonalis a IR (&)-subspace dR¥ (&). The mapZ — 4/ f2%nalis not a bijection
from .£¥ to theR(&)-subspaces a&@>¥ (&). Indeed,

rational __ rational / o
[['/V’/Z/ - L/@?" ]] A [['%)controllable— ﬁcontrollabl .

However, there exists a bijective correspondence betw&gnp, and theR(&)-
subspaces dk'*¥ (&). SummarizingR [€]-submodules oR**¥[&] stand in bijec-
tive correspondence witl¥’", with each submodule corresponding to the set of
polynomial annihilators, whil& (& )-subspaces dR*¥ (&) stand in bijective cor-
respondence with,,, with each subspace corresponding to the set of rational
annihilators.

Controllability enters in a subtle way whenever a systendéntified with its
transfer function. Indeed, it is easy to prove that the spstescribed by

_ _ W1
W =G(o)w;, w= {WJ : (7)
a special case of (4), is automatically controllable. Tigiaia shows the limitation
of identifying a system with its transfer function. Two irtfautput systems (2) with
the same transfer function are the same iff they are bothraitatile. In the end,
transfer function thinking can deal with non-controllabjestems only in contorted
ways.
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10 Stabilizability

A property related to controllability is stabilizabilitfthe behaviorz C (}R’)N is
said to bestabilizableif for any w € £ and+t < N, there exists av € % such
thatw' (t') = w(t’) for 1 <t’ <, andw (t) — 0 fort — . (1) defines a sta-
bilizable system iffR(A) has the same rank for eaghe C with RealA) > 0. An
important system theoretic result (leading up to the patanagion of stabilizing
controllers) states tha® € .£’" is stabilizable iff it allows a representation (4) with
G e (R(&))*™" left prime over the rindRH., (:= {f € R(&) | f is proper and has
no poles in the closed right half of the complex plgneZ € .£* is controllable iff

it allows a representation = G(o)/ with G € (R(&))"** right prime over the ring
RHe,.

11 Autonomous systems

Autonomous systems are on the other extreme of controltaids.Z C (R*)N is
said to beautonomousf for every w € %, there exists & € N such thatw|(,
uniquely SPecifiesV|(; , 1 «), i-€. such that/ € 2 andw|j; =W, ] Imply w = w.

It can be shown thaly € .£’* is autonomousiiff it is finite dimensional. Autonomous
systems and, more generally, uncontrollable systems am¢nudst importance in
systems theory, in spite of much system theory folkloreneliag the contrary. Con-
trollability as a system property is much more restrictivart is generally appreci-
ated.

Acknowledgments

The SISTA-SMC research program is supported by the Resdaotimcil KUL: GOA AM-
BioRICS, CoE EF/05/006 Optimization in Engineering (OPTHOF-SCORES4CHEM, several
PhD/postdoc and fellow grants; by the Flemish GovernmeWwtOF PhD/postdoc grants, projects
G.0452.04 (new quantum algorithms), G.0499.04 (Stasistic.0211.05 (Nonlinear), G.0226.06
(cooperative systems and optimization), G.0321.06 (Ts)s&.0302.07 (SVM/Kernel, research
communities (ICCoS, ANMMM, MLDM); and IWT: PhD Grants, Mckw-E, Eureka-Flite; by
the Belgian Federal Science Policy Office: IUAP P6/04 (DY SO@namical systems, control and
optimization, 2007-2011) ; and by the EU: ERNSI.

References

1. J. C. Willems, From time series to linear system — Part hit€idimensional linear time
invariant systems, Part Il. Exact modelling, Part lll. Appimate modellingAutomaticavol-
ume 22, pages 561-580 and 675-694, 1986, volume 23, pageé$hB71987.

2. J.C. Willems, Paradigms and puzzles in the theory of dycelnsystems|EEE Transactions
on Automatic Controlyolume 36, pages 259-294, 1991.

3. J.W. Polderman and J.C. Willenmstroduction to Mathematical Systems Theory: A Behav-
ioral Approach Springer-Verlag, 1998.



10

Jan C. Willems

. J.C. Willems, Thoughts on system identificati@untrol of Uncertain Systems: Modelling,

Approximation and Desig(edited by B.A. Francis, M.C. Smith, and J.C. Willems), 8ger
Verlag Lecture Notes on Control and Information Systemkjme 329, pages 389-416, 2006.

. J.C. Willems, The behavioral approach to open and interected systems, Modeling by

tearing, zooming, and linking;ontrol Systems Magazineolume 27, pages 49-99, 2007.

. J.C. Willems and Y. Yamamoto, Behaviors defined by ratiuractions, Linear Algebra and

Its Applications volume 425, pages 226-241, 2007.



