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Abstract Representations of linear time-invariant discrete-time systems are dis-
cussed. A system is defined as a behavior, that is, as a family of trajectories mapping
the time axis into the signal space. The following characterizations are equivalent:
(i) the system is linear, time-invariant, and complete, (ii) the behavior is linear, shift-
invariant, and closed, (iii) the behavior is kernel of a linear difference operator with
a polynomial symbol, (iv) the system allows a linear input/output representation in
terms of polynomial matrices, (v) the system allows a linearconstant coefficient
input/state/output representation, and (vi) the behavioris kernel of a linear differ-
ence operator with a rational symbol. If the system is controllable, then the system
also allows (vii) an image representation with a polynomialsymbol, and an image
representation with a rational symbol.

1 Introduction

It is a pleasure to contribute an article to this Festschriftdedicated to Professor Okko
Bosgra on the occasion of his ‘emeritaat’.

The aim of this presentation is to discuss representations of discrete-time linear
time-invariant systems described by difference equations. We discuss systems from
the behavioral point of view. Details of this approach may befound in [1, 2, 3, 4, 5].

We view a model as a subsetB of a universumU of a priori possibilities. This
subsetB ⊆ U is called thebehaviorof the model. Thus, before the phenomenon
was captured in a model, all outcomes fromU were in principle possible. But after
we acceptB as the model, we declare that only outcomes fromB are possible.

In the case ofdynamicalsystems, the phenomenon which is modeled produces
functions that map the set of time instances relevant to the model to thesignal space.
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This is the space in which these functions take on their values. In this article we as-
sume that the set of relevant time instances isN := {1,2,3, . . .} (the theory is analo-
gous forZ,R, andR+). We assume also that the signal space is a finite-dimensional
real vector space, typicallyRw.

Following our idea of a model, the behavior of the dynamical systems which we
consider is therefore a collectionB of functions mapping the time setN into the
signal spaceRw. A dynamical model can therefore be identified with itsbehavior
B ⊆ (Rw)N. The behavior is hence a family of maps fromN to Rw. Of course, also
for dynamical systems the behaviorB is usually specified as the set of solutions of
equations, for the case at hand typically difference equations. As dynamical models,
difference equations thus merely serve as a representationof their solution set. Note
that this immediately leads to a notion of equivalence and tocanonical forms for
difference equations. These are particularly relevant in the context of dynamical
systems, because of the multitude of, usually over-parameterized, representations of
the behavior of a dynamical system.

2 Linear dynamical systems

The most widely studied model class in systems theory, control, and signal process-
ing consists of dynamical systems that are (i) linear, (ii) time-invariant, and (iii) that
satisfy a third property, related to the finite dimensionality of the underlying state
space, or to the rationality of a transfer function. It is, however, clearer and advan-
tageous to approach this situation in a more intrinsic way, by imposing this third
property directly on the behavior, and not on a representation of it. The purpose of
this presentation is to discuss various representations ofthis model class.

A behaviorB ⊆ (Rw)N is said to belinear if w∈ B,w′ ∈ B, andα ∈ R imply
w+ w′ ∈ B andαw ∈ B, andtime-invariantif σB ⊆ B. Theshift σ is defined
by (σ f ) (t) := f (t+1). The third property that enters into the specification of the
model class is completeness.B is calledcompleteif it has the following property:

[[w : N → R
w belongs toB ]] ⇔ [[w|[1,t]∈ B|[1,t] for all t ∈ N ]].

In words,B is complete if we can decide thatw : N → Rw is ‘legal’ (i.e. belongs to
B) by verifying that each of its ‘prefixes’

(

w(1) ,w(2) , . . . ,w(t)
)

is ‘legal’ (i.e.
belongs toB|[1,t]). So, roughly speaking,B is complete iff the laws ofB do not in-
volve what happens at+∞. Requirements asw∈ ℓ2(N,Rw), w has compact support,
or limt→∞ w(t) exists, risk at obstructing completeness. However, often crucial in-
formation about a completeB can be obtained by considering its intersection with
ℓ2 (N,Rw), or its compact support elements, etc.

Recall the following standard notation.R [ξ ] denotes the polynomials with real
coefficients in the indeterminateξ , R(ξ ) the real rational functions, andRn1×n2 [ξ ]
the polynomial matrices with realn1×n2 matrices as coefficients. When the number
of rows is irrelevant and the number of columns isn, the notationR•×n [ξ ] is used.
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So, in effect,R•×n [ξ ] = ∪k∈NRk×n [ξ ]. A similar notation is used for polynomial
vectors, or when the number of rows and/or columns is irrelevant. The degree of
P∈ R

•×• [ξ ] equals the largest degree of its entries, and is denoted bydegree(P).
Given a time-seriesw : N → Rw and a polynomial matrixR ∈ Rv×w [ξ ], say

R(ξ ) = R0 +R1ξ + · · ·+RLξ L, we can form the newv-dimensional time-series

R(σ)w = R0w+R1σw+ · · ·+RLσLw.

HenceR(σ) : (Rw)N → (Rv)N, with R(σ)w : t∈N 7→R0w(t)+R1w(t+1)+ · · ·+
RLw(t+L) ∈ Rv.

The combination of linearity, time-invariance, and completeness can be ex-
pressed in many equivalent ways. In particular, the following are equivalent:

1. B ⊆ (Rw)N is linear, time-invariant, and complete;
2. B is a linear, shift invariant (:⇔σB ⊆B), closed subset of(Rw)N, with ‘closed’

understood in the topology of pointwise convergence;
3. ∃ R∈ R•×w [ξ ] such thatB consists of the solutionsw : N → Rw of

R(σ)w = 0. (1)

The set of behaviorsB ⊆ (Rw)N that satisfy the equivalent conditions 1. to 3. is
denoted byL w, or, when the number of variables is unspecified, byL •. Thus,
in effect,L • = ∪w∈NL w. SinceB = kernel(R(σ)) in (1), we call (1) akernel
representationof the behaviorB.

3 Polynomial annihilators

We now introduce a characterization that is mathematicallymore abstract. It identi-
fies a behaviorB ∈ L • with anR [ξ ]-module.

ConsiderB ∈ L w. The polynomial vectorn∈ R1×w [ξ ] is called anannihilator
(or a consequence) of B if n(σ)B = 0, i.e. if n(σ)w = 0 for all w ∈ B. Denote
by NB the set of annihilators ofB. Observe thatNB is anR [ξ ]-module. Indeed,
n ∈ NB,n′ ∈ NB, and α ∈ R [ξ ] imply n+ n′ ∈ NB and αn ∈ NB. Hence the
mapB 7→ NB associates with eachB ∈ L w a submodule ofR1×w[ξ ]. It turns out
that this map is actually a bijection, i.e. to each submoduleof R

1×w[ξ ], there cor-
responds exactly one element ofL w. It is easy to see what the inverse map is. Let
K be a submodule ofR1×w[ξ ]. Submodules ofR1×w[ξ ] have nice properties. In
particular, they arefinitely generated, meaning that there exist elements (‘genera-
tors’) g1,g2, . . . ,gg ∈ K such thatK consists precisely of the linear combinations
α1g1+α2g2+ · · ·+αggg where theαk’s range overR [ξ ]. Now consider the system
(1) with R= col(g1,g2, . . . ,gg) and prove that

Nkernel(col(g1,g2,...,gg)(σ)) = K
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(⊇ is obvious,⊆ requires a little bit of analysis). In terms of (1), we obtainthe
characterization

[[ kernel
(

R(σ)
)

= B ]] ⇔ [[NB = 〈R〉 ]]

where〈R〉 denotes theR [ξ ]-module generated by the rows ofR.
The observation that there is a bijective correspondence betweenL w and the

R[ξ ]-submodules ofR1×w[ξ ] is not altogether trivial. For instance, the surjectivity
of the map

B = kernel
(

R(σ)
)

∈ L
w 7→ NB = 〈R〉

onto theR[ξ ]-submodules ofR1×w[ξ ] depends on the solution concept used in (1).
If we would have considered only solutions with compact support, or that are square
integrable, this bijective correspondence is lost. Equations, in particular difference
or differential equations, all by themselves, without a clear solution concept, i.e.
without a definition of the corresponding behavior, are an inadequate specification
of a mathematical model. Studying linear time-invariant difference (and certainly
differential) equations is not just algebra, through the solution concept, it also re-
quires analysis.

The characterization ofB in terms of its module of annihilators shows precisely
what we are looking for in order to identify a system in the model classL •: (a set
of generators of) the submoduleNB .

4 Input/output representations

Behaviors inL • admit many other representations. The following two are exceed-
ingly familiar to system theorists. In fact,

4) [[B ∈ L w]] ⇔ [[ ∃ integersm,p ∈ Z+, with m+ p = w, polynomial matrices
P∈Rp×p [ξ ] ,Q∈Rp×m [ξ ] , with det(P) 6= 0, and a permutation matrixΠ ∈Rw×w

such thatB consists of allw : N → Rw for which there existu : N → Rm and
y : N → Rp such that

P(σ)y = Q(σ)u (2)

andw = Π
[

u
y

]

]]. The matrix of rational functionsG = P−1Q ∈ (R(ξ ))p×m is

called thetransfer functionof (2). Actually, for a givenB ∈ L w, it is always
possible to chooseΠ such thatG is proper. If we would allow a basis change
in Rw, i.e. allow any non-singular matrix forΠ (instead of only a permutation
matrix), then we could always takeG to be strictly proper.

5) [[B ∈ L
w]] ⇔ [[ ∃ integersm,p,n ∈ Z+ with m+p = w, matricesA∈ R

n×n,B∈
Rn×m,C ∈ Rp×n,D ∈ Rp×m, and a permutation matrixΠ ∈ Rw×w such thatB
consists of allw : N → Rw for which there existu : N → Rm, x : N → Rn, and
y : N → Rp such that
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σx = Ax+Bu, y = Cx+Du, w = Π
[

u
y

]

]]. (3)

If we allow also a basis change inRw, i.e. allow any non-singular matrix forΠ ,
then we can also takeD = 0.

(2) is called aninput/output(i/o) and (3) aninput/state/output(i/s/o) representation
of the corresponding behaviorB ∈ L w.

Why, if any elementB ∈ L • indeed admits a representation (2) or (3), should
one not use one of these familiar representations ab initio?There are many good
reasons for not doing so. To begin with, and most importantly, first principles models
aim at describing a behavior, but are seldom in the form (2) or(3). Consequently,
one must have a theory that supersedes (2) or (3) in order to have a clear idea what
transformations are allowed in bringing a first principles model into the form (2) or
(3). Secondly, as a rule, physical systems are simply not endowed with a signal flow
direction. Adding a signal flow direction is often a figment ofone’s imagination, and
when something is not real, it will turn out to be cumbersome sooner or later. A third
reason, very much related to the second, is that the input/output framework is totally
inappropriate for dealing with all but the most special system interconnections. We
are surrounded by interconnected systems, but only very sparingly can these be
viewed as input-to-output connections. The second and third reason are valid, in an
amplified way, for continuous-time systems. Fourthly, the structure implied by (2)
or (3) often needlessly complicates matters, mathematically and conceptually.

A good theory of systems takes the behavior as the basic notion and the refer-
ence point for concepts and definitions, and switches back and forth between a wide
variety of convenient representations. (2) or (3) have useful properties, but for many
purposes other representations may be more convenient. Forexample, a kernel rep-
resentation (1) is very relevant in system identification. It suggests that we should
look for (approximate) annihilators. On the other hand, when it comes to construct-
ing trajectories, (3) is very convenient. It shows how trajectories are parameterized
and generated : by the initial statex(1) ∈ Rn and the inputu : N → Rm.

5 Representations with rational symbols

Our next representation involves rational functions and isa bit more ‘tricky’. Let
G∈ (R(ξ ))•×w and consider the system of ‘difference equations’

G(σ)w = 0. (4)

What is meant by the behavior of (4)? SinceG is a matrix of rational functions,
it is not evident how to define solutions. This may be done in terms of co-prime
factorizations, as follows.G can be factoredG = P−1Q with P ∈ R•×•[ξ ] square,
det(P) 6= 0,Q ∈ R•×w[ξ ] and(P,Q) left co-prime (meaning thatF = [P Q] is left
prime, i.e.



6 Jan C. Willems

[[(U,F ′ ∈ R
•×•[ξ ])∧ (F = UF ′)]] ⇒ [[U is square and unimodular]],

equivalently∃ H ∈ R•×•[ξ ] such thatFH = I ). Wedefinethe behavior of (4) as that
of

Q(σ)w = 0, i.e. as kernel(Q(σ))

Hence (4) defines a behavior∈ L
w. It is easy to see that this definition is indepen-

dent of which co-prime factorization is taken. There are other reasonable ways of
approaching the problem of defining the behavior of (4), but they all turn out to be
equivalent to the definition given. Rational representations are studied in [6]. Note
that, in a trivial way, since (1) is a special case of (4), every element ofL w admits
a representation (4).

6) [[B ∈ L w]] ⇔ [[there existsG∈ R(ξ )•×w such that it admits a kernel representa-
tion (4)]].

6 Integer invariants

Certain integer ‘invariants’ (meaning maps fromL • to Z+) associated with systems
in L • are important. One is thelag, denoted byL(B), defined as the smallestL ∈
Z+ such that[[w|[t,t+L]∈ B|[1,t+1] for all t ∈ N ]] ⇒ [[w ∈ B]]. Equivalently, the
smallest degree over the polynomial matricesR such thatB = kernel(R(σ)). A
second integer invariant that is important is theinput cardinality, denoted bym(B),
defined asm, the number of input variables in any (2) representation ofB. It turns
out thatm is an invariant (while the input/output partition, i.e. thepermutation matrix
Π in (2), is not). The number of output variables,p, yields theoutput cardinality
p(B). A third important integer invariant is thestate cardinality, n(B), defined as
the smallest numbern of state variables over all i/s/o representations (3) ofB. The
three integer invariantsm(B), n(B), andL(B) can be nicely captured in one single
formula, involving the growth as a function oft of the dimension of the subspace
B|[1,t]. Indeed, there holds

dim(B|[1,t]) ≤ m(B)t+n(B) with equality iff t≥ L(B) .

7 Latent variables

State models (3) are an example of the more general, but very useful, class of latent
variable models. Such models involve, in addition to themanifestvariables (denoted
by w in (5)), the variables which the model aims at, also auxiliary, latentvariables
(denoted byℓ in (5)). For the case at hand this leads to behaviorsBfull ∈ L w+l

described by
R(σ)w = M(σ)ℓ, (5)
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with R∈ R•×w [ξ ] andM ∈ R•×l[ξ ].
Although the notion of observability applies more generally, we use it here for

latent variable models only. We callBfull ∈ L
w+l observableif

[[ (w, ℓ1) ∈ Bfull and(w, ℓ2) ∈ Bfull ]] ⇒ [[ℓ1 = ℓ2 ]].

(5) defines an observable latent variable system iffM(λ ) has full row rank for all
λ ∈ C. For state systems (withx the latent variable), this corresponds to the usual
observability of the pair(A,C).

An important result, theelimination theorem, states thatL • is closed under pro-
jection. HenceBfull ∈ L w+l implies that themanifestbehavior

B = projection(B) = {w : N → R
w | ∃ ℓ : N → R

l such that (5) holds}

belongs toL w, and therefore admits a kernel representation (1) of its own. So, in a
trivial sense, (5) is yet another representation ofL w.

Latent variable representations (also unobservable ones)are very useful in all
kinds of applications. This, notwithstanding the elimination theorem. They are the
end result of modeling interconnected systems bytearing, zooming, and linking[5],
with the interconnection variables viewed as latent variables. Many physical models
(for example, in mechanics) express basic laws using latentvariables.

8 Controllability

In many areas of system theory, controllability enters as a regularizing assumption.
In the behavioral theory, an appealing notion of controllability has been put forward.
It expresses what is needed intuitively, it applies to any dynamical system, regardless
of its representation, it has the classical state transfer definition as a special case, and
it is readily generalized, for instance to distributed systems. It is somewhat strange
that this definition has not been generally adopted. Adaptedto the case at hand, it
reads as follows. The time-invariant behaviorB ⊆ (R•)N is said to becontrollable
if for any w1 ∈ B, w2 ∈ B, andt1 ∈ N, there exists at2 ∈ N and aw ∈ B such
that w(t) = w1 (t) for 1 ≤ t ≤ t1, andw(t) = w2 (t−t1−t2) for t > t1 + t2.
ForB ∈L •, one can take without loss of generalityw1 = 0 in the above definition.
Denote the controllable elements ofL • by L •

cont and ofL w by L w
cont.

The kernel representation (1) defines a controllable systemiff R(λ ) has the same
rank for eachλ ∈ C. There is a very nice representation result that characterizes
controllability: it is equivalent to the existence of an image representation. More
precisely,B ∈ L •

cont iff there existsM ∈ R•×•[ξ ] such thatB equals the manifest
behavior of the latent variable system

w = M (σ)ℓ. (6)

In other words,
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7) [[B ∈ L •
cont]] ⇔ [[B = im(M(σ))]].

So, images, contrary to kernels, are always controllable. This image representation
of a controllable system can always be taken to be observable.

ForB ∈ L •, we define itscontrollable part, denoted byBcontrollable, as

Bcontrollable:= {w∈ B | ∀t′ ∈ N,∃t′′ ∈ Z+, andw′ ∈ B such that

w′(t) = 0 for 1≤ t ≤ t′ andw′(t) = w(t − t ′− t ′′) for t > t′ +t′′}.

Equivalently,Bcontrollable is the largest controllable subsystem contained inB. It
turns out that two systems of the form (2) (with the same input/output partition)
have the same transfer function iff they have the same controllable part.

9 Rational annihilators

ConsiderB ∈L w. The vector of rational functionsn∈R1×w (ξ ) is called arational
annihilator of B if n(σ)B = 0 (note that, since we gave a meaning to (4), this is
well defined). Denote byN rational

B
the set of rational annihilators ofB. Observe that

N
rational

B
is aR(ξ )-subspace ofR1×w (ξ ). The mapB 7→N

rational
B

is not a bijection
from L w to theR(ξ )-subspaces ofR1×w (ξ ). Indeed,

[[N rational
B′ = N

rational
B′′ ]] ⇔ [[B′

controllable= B
′′
controllable]].

However, there exists a bijective correspondence betweenL
w
cont and theR(ξ )-

subspaces ofR1×w (ξ ). Summarizing,R [ξ ]-submodules ofR1×w[ξ ] stand in bijec-
tive correspondence withL w, with each submodule corresponding to the set of
polynomial annihilators, whileR(ξ )-subspaces ofR1×w(ξ ) stand in bijective cor-
respondence withL w

cont, with each subspace corresponding to the set of rational
annihilators.

Controllability enters in a subtle way whenever a system is identified with its
transfer function. Indeed, it is easy to prove that the system described by

w2 = G(σ)w1, w =

[

w1

w2

]

, (7)

a special case of (4), is automatically controllable. This again shows the limitation
of identifying a system with its transfer function. Two input/output systems (2) with
the same transfer function are the same iff they are both controllable. In the end,
transfer function thinking can deal with non-controllablesystems only in contorted
ways.



Linear Systems in Discrete Time 9

10 Stabilizability

A property related to controllability is stabilizability.The behaviorB ⊆ (R•)N is
said to bestabilizableif for any w ∈ B andt ∈ N, there exists aw′ ∈ B such
that w′ (t′) = w(t′) for 1 ≤ t′ ≤ t, andw′ (t) → 0 for t → ∞. (1) defines a sta-
bilizable system iffR(λ ) has the same rank for eachλ ∈ C with Real(λ ) ≥ 0. An
important system theoretic result (leading up to the parametrization of stabilizing
controllers) states thatB ∈ L w is stabilizable iff it allows a representation (4) with
G ∈ (R(ξ ))•×w left prime over the ringRH∞ (:= { f ∈ R(ξ ) | f is proper and has
no poles in the closed right half of the complex plane}). B ∈L w is controllable iff
it allows a representationw = G(σ)ℓ with G∈ (R(ξ ))w×• right prime over the ring
RH∞.

11 Autonomous systems

Autonomous systems are on the other extreme of controllableones.B ⊆ (R•)N is
said to beautonomousif for every w ∈ B, there exists at ∈ N such thatw|[1,t]
uniquely specifiesw|[t+1,∞), i.e. such thatw′ ∈B andw|[1,t]= w′|[1,t] imply w′ = w.
It can be shown thatB ∈L • is autonomous iff it is finite dimensional. Autonomous
systems and, more generally, uncontrollable systems are ofutmost importance in
systems theory, in spite of much system theory folklore claiming the contrary. Con-
trollability as a system property is much more restrictive than is generally appreci-
ated.
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