Random forests

Gérard Biau

Hervelee, September 2012

- A small simulation study
- 4 Layered nearest neighbors and random forests

- 3 A small simulation study
- 4 Layered nearest neighbors and random forests

G. Biau (UPMC)

From trees to forests

• Leo Breiman promoted random forests.

- Idea: Using tree averaging as a means of obtaining good rules.
- The base trees are simple and randomized.

Breiman's ideas were decisively influenced by

- Amit and Geman (1997, geometric feature selection).
- Ho (1998, random subspace method).
- Dietterich (2000, random split selection approach).

stat.berkeley.edu/users/breiman/RandomForests

From trees to forests

- Leo Breiman promoted random forests.
- Idea: Using tree averaging as a means of obtaining good rules.
- The base trees are simple and randomized.

Breiman's ideas were decisively influenced by

- Amit and Geman (1997, geometric feature selection).
- Ho (1998, random subspace method).
- Dietterich (2000, random split selection approach).

stat.berkeley.edu/users/breiman/RandomForests

- Leo Breiman promoted random forests.
- Idea: Using tree averaging as a means of obtaining good rules.
- The base trees are simple and randomized.

Breiman's ideas were decisively influenced by

- Amit and Geman (1997, geometric feature selection).
- Ho (1998, random subspace method).
- Dietterich (2000, random split selection approach).

stat.berkeley.edu/users/breiman/RandomForests
- Leo Breiman promoted random forests.
- Idea: Using tree averaging as a means of obtaining good rules.
- The base trees are simple and randomized.

Breiman's ideas were decisively influenced by

- Amit and Geman (1997, geometric feature selection).
- Ho (1998, random subspace method).
- Dietterich (2000, random split selection approach).

stat.berkeley.edu/users/breiman/RandomForests

- Leo Breiman promoted random forests.
- Idea: Using tree averaging as a means of obtaining good rules.
- The base trees are simple and randomized.

Breiman's ideas were decisively influenced by

- Amit and Geman (1997, geometric feature selection).
- Ho (1998, random subspace method).
- Dietterich (2000, random split selection approach).

stat.berkeley.edu/users/breiman/RandomForests

Random forests

- They have emerged as serious competitors to state of the art methods.
- They are fast and easy to implement, produce highly accurate predictions and can handle a very large number of input variables without overfitting.
- In fact, forests are among the most accurate general-purpose learners available.
- The algorithm is difficult to analyze and its mathematical properties remain to date largely unknown.
- Most theoretical studies have concentrated on isolated parts or stylized versions of the procedure.

- They have emerged as serious competitors to state of the art methods.
- They are fast and easy to implement, produce highly accurate predictions and can handle a very large number of input variables without overfitting.
- In fact, forests are among the most accurate general-purpose learners available.
- The algorithm is difficult to analyze and its mathematical properties remain to date largely unknown.
- Most theoretical studies have concentrated on isolated parts or stylized versions of the procedure.

- They have emerged as serious competitors to state of the art methods.
- They are fast and easy to implement, produce highly accurate predictions and can handle a very large number of input variables without overfitting.
- In fact, forests are among the most accurate general-purpose learners available.
- The algorithm is difficult to analyze and its mathematical properties remain to date largely unknown.
- Most theoretical studies have concentrated on isolated parts or stylized versions of the procedure.

- They have emerged as serious competitors to state of the art methods.
- They are fast and easy to implement, produce highly accurate predictions and can handle a very large number of input variables without overfitting.
- In fact, forests are among the most accurate general-purpose learners available.
- The algorithm is difficult to analyze and its mathematical properties remain to date largely unknown.
- Most theoretical studies have concentrated on isolated parts or stylized versions of the procedure.

- They have emerged as serious competitors to state of the art methods.
- They are fast and easy to implement, produce highly accurate predictions and can handle a very large number of input variables without overfitting.
- In fact, forests are among the most accurate general-purpose learners available.
- The algorithm is difficult to analyze and its mathematical properties remain to date largely unknown.
- Most theoretical studies have concentrated on isolated parts or stylized versions of the procedure.

- Breiman (2000, 2001, 2004).
 - Definition, experiments and intuitions.
- Lin and Jeon (2006).
 - Link with layered nearest neighbors.
- Biau, Devroye and Lugosi (2008).
 - Consistency results for stylized versions.
- **Biau** (2012).
 - Sparsity and random forests.

- Breiman (2000, 2001, 2004).
 - Definition, experiments and intuitions.
- Lin and Jeon (2006).
 - Link with layered nearest neighbors.
- Biau, Devroye and Lugosi (2008).
 - Consistency results for stylized versions.
- **Biau** (2012).
 - Sparsity and random forests.

- Breiman (2000, 2001, 2004).
 - Definition, experiments and intuitions.
- Lin and Jeon (2006).
 - Link with layered nearest neighbors.
- Biau, Devroye and Lugosi (2008).
 - Consistency results for stylized versions.

• **Biau** (2012).

Sparsity and random forests.

- Breiman (2000, 2001, 2004).
 - Definition, experiments and intuitions.
- Lin and Jeon (2006).
 - Link with layered nearest neighbors.
- Biau, Devroye and Lugosi (2008).
 - Consistency results for stylized versions.
- Biau (2012).
 - Sparsity and random forests.

- 3 A small simulation study
- 4 Layered nearest neighbors and random forests

Three basic ingredients

-Randomization and no-pruning

- For each tree, select at random, at each node, a small group of input coordinates to split.
- Calculate the best split based on these features and cut.
- The tree is grown to maximum size, without pruning.

Three basic ingredients

-Randomization and no-pruning

- For each tree, select at random, at each node, a small group of input coordinates to split.
- Calculate the best split based on these features and cut.

▷ The tree is grown to maximum size, without pruning.

Three basic ingredients

-Randomization and no-pruning

- For each tree, select at random, at each node, a small group of input coordinates to split.
- ▷ Calculate the best split based on these features and cut.
- The tree is grown to maximum size, without pruning.

2-Aggregation

▷ Final predictions are obtained by aggregating over the ensemble.

> It is fast and easily parallelizable.

2-Aggregation

- ▷ Final predictions are obtained by aggregating over the ensemble.
- ▷ It is fast and easily parallelizable.

Bagging

▷ The subspace randomization scheme is blended with bagging.

- ▷ Breiman (1996).
- Bühlmann and Yu (2002).
- Biau, Cérou and Guyader (2010).

Bagging

▷ The subspace randomization scheme is blended with bagging.

- > Breiman (1996).
- Bühlmann and Yu (2002).
- ▷ Biau, Cérou and Guyader (2010).

- A training sample: $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ i.i.d. $[0, 1]^d \times \mathbb{R}$ -valued random variables.
- A generic pair: (**X**, *Y*) satisfying $\mathbb{E}Y^2 < \infty$.
- Our mission: For fixed $\mathbf{x} \in [0, 1]^d$, estimate the regression function $r(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$ using the data.
- Quality criterion: $\mathbb{E}[r_n(\mathbf{X}) r(\mathbf{X})]^2$.

- A training sample: $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ i.i.d. $[0, 1]^d \times \mathbb{R}$ -valued random variables.
- A generic pair: (**X**, *Y*) satisfying $\mathbb{E} Y^2 < \infty$.
- Our mission: For fixed $\mathbf{x} \in [0, 1]^d$, estimate the regression function $r(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$ using the data.
- Quality criterion: $\mathbb{E}[r_n(\mathbf{X}) r(\mathbf{X})]^2$.

- A training sample: $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ i.i.d. $[0, 1]^d \times \mathbb{R}$ -valued random variables.
- A generic pair: (**X**, *Y*) satisfying $\mathbb{E} Y^2 < \infty$.
- Our mission: For fixed $\mathbf{x} \in [0, 1]^d$, estimate the regression function $r(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$ using the data.
- Quality criterion: $\mathbb{E}[r_n(\mathbf{X}) r(\mathbf{X})]^2$.

- A training sample: $\mathcal{D}_n = \{(\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)\}$ i.i.d. $[0, 1]^d \times \mathbb{R}$ -valued random variables.
- A generic pair: (**X**, *Y*) satisfying $\mathbb{E} Y^2 < \infty$.
- Our mission: For fixed $\mathbf{x} \in [0, 1]^d$, estimate the regression function $r(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$ using the data.
- Quality criterion: $\mathbb{E}[r_n(\mathbf{X}) r(\mathbf{X})]^2$.

 A random forest is a collection of randomized base regression trees {r_n(x, Θ_m, D_n), m ≥ 1}.

• These random trees are combined to form the aggregated regression estimate

 $\bar{r}_n(\mathbf{X}, \mathcal{D}_n) = \mathbb{E}_{\Theta} [r_n(\mathbf{X}, \Theta, \mathcal{D}_n)].$

• Θ is assumed to be independent of **X** and the training sample \mathcal{D}_n .

 However, we allow ⊖ to be based on a test sample, independent of, but distributed as, D_n.

- A random forest is a collection of randomized base regression trees {r_n(x, Θ_m, D_n), m ≥ 1}.
- These random trees are combined to form the aggregated regression estimate

$$\bar{r}_n(\mathbf{X}, \mathcal{D}_n) = \mathbb{E}_{\Theta} \left[r_n(\mathbf{X}, \Theta, \mathcal{D}_n) \right].$$

- Θ is assumed to be independent of **X** and the training sample \mathcal{D}_n .
- However, we allow ⊖ to be based on a test sample, independent of, but distributed as, D_n.

- A random forest is a collection of randomized base regression trees {r_n(x, Θ_m, D_n), m ≥ 1}.
- These random trees are combined to form the aggregated regression estimate

$$\bar{r}_n(\mathbf{X}, \mathcal{D}_n) = \mathbb{E}_{\Theta} [r_n(\mathbf{X}, \Theta, \mathcal{D}_n)].$$

- Θ is assumed to be independent of **X** and the training sample \mathcal{D}_n .
- However, we allow ⊖ to be based on a test sample, independent of, but distributed as, D_n.

- A random forest is a collection of randomized base regression trees {r_n(x, Θ_m, D_n), m ≥ 1}.
- These random trees are combined to form the aggregated regression estimate

$$\bar{r}_n(\mathbf{X}, \mathcal{D}_n) = \mathbb{E}_{\Theta} \left[r_n(\mathbf{X}, \Theta, \mathcal{D}_n) \right].$$

- Θ is assumed to be independent of **X** and the training sample \mathcal{D}_n .
- However, we allow ⊖ to be based on a test sample, independent of, but distributed as, D_n.

The procedure

▷ Fix $k_n \ge 2$ and repeat the following procedure $\lceil \log_2 k_n \rceil$ times:

• At each node, a coordinate of $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})$ is selected, with the *j*-th feature having a probability $p_{nj} \in (0, 1)$ of being selected.

At each node, once the coordinate is selected, the split is at the midpoint of the chosen side.

Thus

$$\bar{r}_n(\mathbf{X}) = \mathbb{E}_{\Theta} \left[\frac{\sum_{i=1}^n Y_i \mathbf{1}_{[\mathbf{X}_i \in \mathbf{A}_n(\mathbf{X}, \Theta)]}}{\sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in \mathbf{A}_n(\mathbf{X}, \Theta)]}} \, \mathbf{1}_{\mathcal{E}_n(\mathbf{X}, \Theta)} \right]$$

where

$$\mathcal{E}_n(\mathbf{X},\Theta) = \left[\sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A_n(\mathbf{X},\Theta)]} \neq 0\right]$$

The procedure

▷ Fix $k_n \ge 2$ and repeat the following procedure $\lceil \log_2 k_n \rceil$ times:

- At each node, a coordinate of $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})$ is selected, with the *j*-th feature having a probability $p_{nj} \in (0, 1)$ of being selected.
- At each node, once the coordinate is selected, the split is at the midpoint of the chosen side.

Thus

$$\overline{r}_{n}(\mathbf{X}) = \mathbb{E}_{\Theta} \left[\frac{\sum_{i=1}^{n} Y_{i} \mathbf{1}_{[\mathbf{X}_{i} \in A_{n}(\mathbf{X}, \Theta)]}}{\sum_{i=1}^{n} \mathbf{1}_{[\mathbf{X}_{i} \in A_{n}(\mathbf{X}, \Theta)]}} \mathbf{1}_{\mathcal{E}_{n}(\mathbf{X}, \Theta)} \right]$$

where

$$\mathcal{E}_n(\mathbf{X},\Theta) = \left[\sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A_n(\mathbf{X},\Theta)]} \neq 0\right]$$

The procedure

▷ Fix $k_n \ge 2$ and repeat the following procedure $\lceil \log_2 k_n \rceil$ times:

- At each node, a coordinate of $\mathbf{X} = (X^{(1)}, \dots, X^{(d)})$ is selected, with the *j*-th feature having a probability $p_{nj} \in (0, 1)$ of being selected.
- At each node, once the coordinate is selected, the split is at the midpoint of the chosen side.

Thus

$$\bar{r}_n(\mathbf{X}) = \mathbb{E}_{\Theta} \left[\frac{\sum_{i=1}^n Y_i \mathbf{1}_{[\mathbf{X}_i \in \mathbf{A}_n(\mathbf{X}, \Theta)]}}{\sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in \mathbf{A}_n(\mathbf{X}, \Theta)]}} \, \mathbf{1}_{\mathcal{E}_n(\mathbf{X}, \Theta)} \right].$$

where

$$\mathcal{E}_n(\mathbf{X}, \Theta) = \left[\sum_{i=1}^n \mathbf{1}_{[\mathbf{X}_i \in A_n(\mathbf{X}, \Theta)]} \neq 0\right].$$

Binary trees

Binary trees

• Each individual tree has exactly $2^{\lceil \log_2 k_n \rceil}$ ($\approx k_n$) terminal nodes, and each leaf has Lebesgue measure $2^{-\lceil \log_2 k_n \rceil}$ ($\approx 1/k_n$).

- If X has uniform distribution on [0, 1]^d, there will be on average about n/kn observations per terminal node.
- The choice $k_n = n$ induces a very small number of cases in the final leaves.

This scheme is close to what the original random forests algorithm does.
- Each individual tree has exactly 2^{⌈log₂ k_n⌉} (≈ k_n) terminal nodes, and each leaf has Lebesgue measure 2^{-⌈log₂ k_n⌉} (≈ 1/k_n).
- If X has uniform distribution on [0, 1]^d, there will be on average about n/kn observations per terminal node.
- The choice $k_n = n$ induces a very small number of cases in the final leaves.

This scheme is close to what the original random forests algorithm does.

- Each individual tree has exactly $2^{\lceil \log_2 k_n \rceil}$ ($\approx k_n$) terminal nodes, and each leaf has Lebesgue measure $2^{-\lceil \log_2 k_n \rceil}$ ($\approx 1/k_n$).
- If X has uniform distribution on [0, 1]^d, there will be on average about n/kn observations per terminal node.
- The choice $k_n = n$ induces a very small number of cases in the final leaves.

This scheme is close to what the original random forests algorithm does.

- Each individual tree has exactly 2^{⌈log₂ k_n⌉} (≈ k_n) terminal nodes, and each leaf has Lebesgue measure 2^{-⌈log₂ k_n⌉} (≈ 1/k_n).
- If X has uniform distribution on [0, 1]^d, there will be on average about n/kn observations per terminal node.
- The choice k_n = n induces a very small number of cases in the final leaves.

This scheme is close to what the original random forests algorithm does.

Assume that the distribution of **X** has support on $[0, 1]^d$. Then the random forests estimate \bar{r}_n is consistent whenever $p_{nj} \log k_n \to \infty$ for all j = 1, ..., d and $k_n/n \to 0$ as $n \to \infty$.

- In the purely random model, $p_{nj} = 1/d$, independently of *n* and *j*, and consistency is ensured as long as $k_n \to \infty$ and $k_n/n \to 0$.
- This is however a radically simplified version of the random forests used in practice.
- A more in-depth analysis is needed.

Assume that the distribution of **X** has support on $[0, 1]^d$. Then the random forests estimate \bar{r}_n is consistent whenever $p_{nj} \log k_n \to \infty$ for all j = 1, ..., d and $k_n/n \to 0$ as $n \to \infty$.

• In the purely random model, $p_{nj} = 1/d$, independently of *n* and *j*, and consistency is ensured as long as $k_n \to \infty$ and $k_n/n \to 0$.

• This is however a radically simplified version of the random forests used in practice.

• A more in-depth analysis is needed.

Assume that the distribution of **X** has support on $[0, 1]^d$. Then the random forests estimate \bar{r}_n is consistent whenever $p_{nj} \log k_n \to \infty$ for all j = 1, ..., d and $k_n/n \to 0$ as $n \to \infty$.

- In the purely random model, $p_{nj} = 1/d$, independently of *n* and *j*, and consistency is ensured as long as $k_n \to \infty$ and $k_n/n \to 0$.
- This is however a radically simplified version of the random forests used in practice.
- A more in-depth analysis is needed.

Assume that the distribution of **X** has support on $[0, 1]^d$. Then the random forests estimate \bar{r}_n is consistent whenever $p_{nj} \log k_n \to \infty$ for all j = 1, ..., d and $k_n/n \to 0$ as $n \to \infty$.

- In the purely random model, $p_{nj} = 1/d$, independently of *n* and *j*, and consistency is ensured as long as $k_n \to \infty$ and $k_n/n \to 0$.
- This is however a radically simplified version of the random forests used in practice.
- A more in-depth analysis is needed.

• There is empirical evidence that many signals in high-dimensional spaces admit a sparse representation.

- Images wavelet coefficients.
- ▷ High-throughput technologies.
- Sparse estimation is playing an increasingly important role in the statistics and machine learning communities.
- Several methods have recently been developed in both fields, which rely upon the notion of sparsity.

- There is empirical evidence that many signals in high-dimensional spaces admit a sparse representation.
 - Images wavelet coefficients.
 - High-throughput technologies.
- Sparse estimation is playing an increasingly important role in the statistics and machine learning communities.
- Several methods have recently been developed in both fields, which rely upon the notion of sparsity.

- There is empirical evidence that many signals in high-dimensional spaces admit a sparse representation.
 - Images wavelet coefficients.
 - High-throughput technologies.
- Sparse estimation is playing an increasingly important role in the statistics and machine learning communities.
- Several methods have recently been developed in both fields, which rely upon the notion of sparsity.

- There is empirical evidence that many signals in high-dimensional spaces admit a sparse representation.
 - Images wavelet coefficients.
 - High-throughput technologies.
- Sparse estimation is playing an increasingly important role in the statistics and machine learning communities.
- Several methods have recently been developed in both fields, which rely upon the notion of sparsity.

- There is empirical evidence that many signals in high-dimensional spaces admit a sparse representation.
 - Images wavelet coefficients.
 - High-throughput technologies.
- Sparse estimation is playing an increasingly important role in the statistics and machine learning communities.
- Several methods have recently been developed in both fields, which rely upon the notion of sparsity.

- The regression function r(X) = E[Y|X] depends in fact only on a nonempty subset S (for Strong) of the d features.
- In other words, letting $\mathbf{X}_{S} = (X_{j} : j \in S)$ and S = Card S, we have

- In the dimension reduction scenario we have in mind, the ambient dimension *d* can be very large, much larger than *n*.
- As such, the value *S* characterizes the sparsity of the model: The smaller *S*, the sparser *r*.

- The regression function r(X) = E[Y|X] depends in fact only on a nonempty subset S (for Strong) of the d features.
- In other words, letting $\mathbf{X}_{S} = (X_{j} : j \in S)$ and S = Card S, we have

- In the dimension reduction scenario we have in mind, the ambient dimension *d* can be very large, much larger than *n*.
- As such, the value *S* characterizes the sparsity of the model: The smaller *S*, the sparser *r*.

- The regression function r(X) = E[Y|X] depends in fact only on a nonempty subset S (for Strong) of the d features.
- In other words, letting $\mathbf{X}_{S} = (X_{j} : j \in S)$ and S = Card S, we have

- In the dimension reduction scenario we have in mind, the ambient dimension *d* can be very large, much larger than *n*.
- As such, the value *S* characterizes the sparsity of the model: The smaller *S*, the sparser *r*.

- The regression function r(X) = E[Y|X] depends in fact only on a nonempty subset S (for Strong) of the d features.
- In other words, letting $\mathbf{X}_{S} = (X_{j} : j \in S)$ and S = Card S, we have

- In the dimension reduction scenario we have in mind, the ambient dimension *d* can be very large, much larger than *n*.
- As such, the value *S* characterizes the sparsity of the model: The smaller *S*, the sparser *r*.

• Ideally, $p_{nj} = 1/S$ for $j \in S$.

• To stick to reality, we will rather require that $p_{nj} = (1/S)(1 + \xi_{nj})$.

 Such a randomization mechanism may be designed on the basis of a test sample.

Action plan

$$\mathbb{E}\left[\tilde{r}_{n}(\mathbf{X})-r(\mathbf{X})\right]^{2}=\mathbb{E}\left[\tilde{r}_{n}(\mathbf{X})-\tilde{r}_{n}(\mathbf{X})\right]^{2}+\mathbb{E}\left[\tilde{r}_{n}(\mathbf{X})-r(\mathbf{X})\right]^{2}$$

$$\tilde{r}_n(\mathbf{X}) = \sum_{i=1}^n \mathbb{E}_{\Theta} \left[W_{ni}(\mathbf{X}, \Theta) \right] r(\mathbf{X}_i).$$

• Ideally, $p_{nj} = 1/S$ for $j \in S$.

• To stick to reality, we will rather require that $p_{nj} = (1/S)(1 + \xi_{nj})$.

 Such a randomization mechanism may be designed on the basis of a test sample.

Action plan

$$\mathbb{E}\left[\tilde{r}_{n}(\mathbf{X})-r(\mathbf{X})\right]^{2}=\mathbb{E}\left[\tilde{r}_{n}(\mathbf{X})-\tilde{r}_{n}(\mathbf{X})\right]^{2}+\mathbb{E}\left[\tilde{r}_{n}(\mathbf{X})-r(\mathbf{X})\right]^{2}$$

$$\tilde{r}_n(\mathbf{X}) = \sum_{i=1}^n \mathbb{E}_{\Theta} \left[W_{ni}(\mathbf{X}, \Theta) \right] r(\mathbf{X}_i).$$

• Ideally,
$$p_{nj} = 1/S$$
 for $j \in S$.

- To stick to reality, we will rather require that $p_{nj} = (1/S)(1 + \xi_{nj})$.
- Such a randomization mechanism may be designed on the basis of a test sample.

Action plan

$$\mathbb{E}\left[\tilde{r}_{n}(\mathbf{X})-r(\mathbf{X})\right]^{2}=\mathbb{E}\left[\tilde{r}_{n}(\mathbf{X})-\tilde{r}_{n}(\mathbf{X})\right]^{2}+\mathbb{E}\left[\tilde{r}_{n}(\mathbf{X})-r(\mathbf{X})\right]^{2}$$

$$\tilde{r}_n(\mathbf{X}) = \sum_{i=1}^n \mathbb{E}_{\Theta} \left[W_{ni}(\mathbf{X}, \Theta) \right] r(\mathbf{X}_i).$$

• Ideally, $p_{nj} = 1/S$ for $j \in S$.

- To stick to reality, we will rather require that $p_{nj} = (1/S)(1 + \xi_{nj})$.
- Such a randomization mechanism may be designed on the basis of a test sample.

Action plan

$$\mathbb{E}\left[\bar{r}_{n}(\mathbf{X})-r(\mathbf{X})\right]^{2}=\mathbb{E}\left[\bar{r}_{n}(\mathbf{X})-\tilde{r}_{n}(\mathbf{X})\right]^{2}+\mathbb{E}\left[\tilde{r}_{n}(\mathbf{X})-r(\mathbf{X})\right]^{2}$$

$$\tilde{r}_n(\mathbf{X}) = \sum_{i=1}^n \mathbb{E}_{\Theta} \left[W_{ni}(\mathbf{X}, \Theta) \right] r(\mathbf{X}_i).$$

Assume that **X** is uniformly distributed on $[0, 1]^d$ and, for all $\mathbf{x} \in \mathbb{R}^d$,

$$\sigma^2(\mathbf{x}) = \mathbb{V}[Y \,|\, \mathbf{X} = \mathbf{x}] \le \sigma^2$$

for some positive constant σ^2 . Then, if $p_{nj} = (1/S)(1 + \xi_{nj})$ for $j \in S$,

$$\mathbb{E}\left[\tilde{r}_n(\mathbf{X}) - \tilde{r}_n(\mathbf{X})\right]^2 \leq C\sigma^2 \left(\frac{S^2}{S-1}\right)^{S/2d} (1+\xi_n) \frac{k_n}{n(\log k_n)^{S/2d}},$$

$$C = \frac{288}{\pi} \left(\frac{\pi \log 2}{16}\right)^{S/2d}$$

Assume that **X** is uniformly distributed on $[0, 1]^d$ and *r* is *L*-Lipschitz. Then, if $p_{nj} = (1/S)(1 + \xi_{nj})$ for $j \in S$,

$$\mathbb{E}\left[\tilde{r}_n(\mathbf{X})-r(\mathbf{X})\right]^2 \leq \frac{2SL^2}{\frac{k_n^{\frac{0.75}{S\log 2}(1+\gamma_n)}}{k_n^{\frac{0.75}{S\log 2}(1+\gamma_n)}}} + \left[\sup_{\mathbf{x}\in[0,1]^d}r^2(\mathbf{x})\right]e^{-n/2k_n}.$$

• The rate at which the bias decreases to 0 depends on the number of strong variables, not on *d*.

- $k_n^{-(0.75/(S \log 2))(1+\gamma_n)} = o(k_n^{-2/d})$ as soon as $S \le \lfloor 0.54d \rfloor$.
- The term $e^{-n/2k_n}$ prevents the extreme choice $k_n = n$.

Assume that **X** is uniformly distributed on $[0, 1]^d$ and *r* is *L*-Lipschitz. Then, if $p_{nj} = (1/S)(1 + \xi_{nj})$ for $j \in S$,

$$\mathbb{E}\left[\tilde{r}_n(\mathbf{X})-r(\mathbf{X})\right]^2 \leq \frac{2SL^2}{k_n^{\frac{0.75}{S\log 2}(1+\gamma_n)}} + \left[\sup_{\mathbf{x}\in[0,1]^d}r^2(\mathbf{x})\right]e^{-n/2k_n}.$$

• The rate at which the bias decreases to 0 depends on the number of strong variables, not on *d*.

• $k_n^{-(0.75/(S \log 2))(1+\gamma_n)} = o(k_n^{-2/d})$ as soon as $S \le \lfloor 0.54d \rfloor$.

• The term $e^{-n/2k_n}$ prevents the extreme choice $k_n = n$.

Assume that **X** is uniformly distributed on $[0, 1]^d$ and *r* is *L*-Lipschitz. Then, if $p_{nj} = (1/S)(1 + \xi_{nj})$ for $j \in S$,

$$\mathbb{E}\left[\tilde{r}_n(\mathbf{X})-r(\mathbf{X})\right]^2 \leq \frac{2SL^2}{k_n^{\frac{0.75}{S\log 2}(1+\gamma_n)}} + \left[\sup_{\mathbf{x}\in[0,1]^d}r^2(\mathbf{x})\right]e^{-n/2k_n}.$$

• The rate at which the bias decreases to 0 depends on the number of strong variables, not on *d*.

•
$$k_n^{-(0.75/(S\log 2))(1+\gamma_n)} = o(k_n^{-2/d})$$
 as soon as $S \le \lfloor 0.54d \rfloor$.

• The term $e^{-n/2k_n}$ prevents the extreme choice $k_n = n$.

Assume that **X** is uniformly distributed on $[0, 1]^d$ and *r* is *L*-Lipschitz. Then, if $p_{nj} = (1/S)(1 + \xi_{nj})$ for $j \in S$,

$$\mathbb{E}\left[\tilde{r}_n(\mathbf{X})-r(\mathbf{X})\right]^2 \leq \frac{2SL^2}{k_n^{\frac{0.75}{S\log 2}(1+\gamma_n)}} + \left[\sup_{\mathbf{x}\in[0,1]^d}r^2(\mathbf{x})\right]e^{-n/2k_n}.$$

• The rate at which the bias decreases to 0 depends on the number of strong variables, not on *d*.

•
$$k_n^{-(0.75/(S\log 2))(1+\gamma_n)} = o(k_n^{-2/d})$$
 as soon as $S \le \lfloor 0.54d \rfloor$.

• The term $e^{-n/2k_n}$ prevents the extreme choice $k_n = n$.

If $p_{nj} = (1/S)(1 + \xi_{nj})$ for $j \in S$, with $\xi_{nj} \log n \to 0$ as $n \to \infty$, then for the choice

$$k_n \propto \left(\frac{L^2}{\Xi}\right)^{1/(1+\frac{0.75}{S\log 2})} n^{1/(1+\frac{0.75}{S\log 2})},$$

we have

$$\limsup_{n\to\infty} \sup_{(\mathbf{X},Y)\in\mathcal{F}_{S}} \frac{\mathbb{E}\left[\bar{r}_{n}(\mathbf{X})-r(\mathbf{X})\right]^{2}}{\left(\Xi L^{\frac{2S\log 2}{0.75}}\right)^{\frac{0.75}{S\log 2+0.75}} n^{\frac{-0.75}{S\log 2+0.75}}} \leq \Lambda.$$

Take-home message

The rate $n^{\frac{-0.75}{\text{Slog}2+0.75}}$ is strictly faster than the usual minimax rate $n^{-2/(d+2)}$ as soon as $S \leq \lfloor 0.54d \rfloor$.

If $p_{nj} = (1/S)(1 + \xi_{nj})$ for $j \in S$, with $\xi_{nj} \log n \to 0$ as $n \to \infty$, then for the choice

$$k_n \propto \left(\frac{L^2}{\Xi}\right)^{1/(1+\frac{0.75}{S\log 2})} n^{1/(1+\frac{0.75}{S\log 2})},$$

we have

$$\limsup_{n\to\infty} \sup_{(\mathbf{X},Y)\in\mathcal{F}_{S}} \frac{\mathbb{E}\left[\bar{r}_{n}(\mathbf{X})-r(\mathbf{X})\right]^{2}}{\left(\Xi L^{\frac{2S\log 2}{0.75}}\right)^{\frac{0.75}{S\log 2+0.75}} n^{\frac{-0.75}{S\log 2+0.75}}} \leq \Lambda.$$

Take-home message

The rate $n^{\frac{-0.75}{S\log^2+0.75}}$ is strictly faster than the usual minimax rate $n^{-2/(d+2)}$ as soon as $S \leq \lfloor 0.54d \rfloor$.

Dimension reduction

s

G. Biau (UPMC)

- The optimal parameter k_n depends on the unknown distribution of (\mathbf{X}, Y) .
- To correct this situation, adaptive choices of *k_n* should preserve the rate of convergence of the estimate.
- Another route we may follow is to analyze the effect of bagging.
- Biau, Cérou and Guyader (2010).

- The optimal parameter k_n depends on the unknown distribution of (\mathbf{X}, Y) .
- To correct this situation, adaptive choices of *k_n* should preserve the rate of convergence of the estimate.
- Another route we may follow is to analyze the effect of bagging.

• Biau, Cérou and Guyader (2010).

- The optimal parameter k_n depends on the unknown distribution of (\mathbf{X}, Y) .
- To correct this situation, adaptive choices of *k_n* should preserve the rate of convergence of the estimate.
- Another route we may follow is to analyze the effect of bagging.

• Biau, Cérou and Guyader (2010).

- The optimal parameter k_n depends on the unknown distribution of (\mathbf{X}, Y) .
- To correct this situation, adaptive choices of *k_n* should preserve the rate of convergence of the estimate.
- Another route we may follow is to analyze the effect of bagging.
- Biau, Cérou and Guyader (2010).

 \bigcirc \bigcirc Ο 0 0 \bigcirc \bigcirc

- **O** Select at random M_n candidate coordinates to split on.
- If the selection is all weak, then choose one at random to split on.
- If there is more than one strong variable elected, choose one at random and cut.

- Select at random *M_n* candidate coordinates to split on.
- If the selection is all weak, then choose one at random to split on.
- If there is more than one strong variable elected, choose one at random and cut.

- **O** Select at random M_n candidate coordinates to split on.
- 2 If the selection is all weak, then choose one at random to split on.
- If there is more than one strong variable elected, choose one at random and cut.

- **O** Select at random M_n candidate coordinates to split on.
- **2** If the selection is all weak, then choose one at random to split on.
- If there is more than one strong variable elected, choose one at random and cut.

• Each coordinate in S will be cut with the "ideal" probability

$$p_n^{\star} = \frac{1}{S} \left[1 - \left(1 - \frac{S}{d} \right)^{M_n} \right]$$

• The parameter *M_n* should satisfy

$$\left(1-rac{S}{d}
ight)^{M_n}\log n o 0 \quad ext{as } n o\infty.$$

• This is true as soon as

$$M_n \to \infty$$
 and $\frac{M_n}{\log n} \to \infty$ as $n \to \infty$.

• Each coordinate in S will be cut with the "ideal" probability

$$p_n^{\star} = \frac{1}{S} \left[1 - \left(1 - \frac{S}{d} \right)^{M_n} \right]$$

• The parameter *M_n* should satisfy

$$\left(1-rac{S}{d}
ight)^{M_n}\log n o 0 \quad ext{as } n o\infty.$$

• This is true as soon as

$$M_n \to \infty$$
 and $\frac{M_n}{\log n} \to \infty$ as $n \to \infty$.

• Each coordinate in S will be cut with the "ideal" probability

$$p_n^{\star} = \frac{1}{S} \left[1 - \left(1 - \frac{S}{d} \right)^{M_n} \right]$$

• The parameter *M_n* should satisfy

$$\left(1-rac{S}{d}
ight)^{M_n}\log n o 0 \quad ext{as } n o\infty.$$

• This is true as soon as

$$M_n \to \infty$$
 and $\frac{M_n}{\log n} \to \infty$ as $n \to \infty$.

- We have at hand an independent test set \mathcal{D}'_n .
- The model is linear:

$$Y = \sum_{j \in S} a_j X^{(j)} + \varepsilon.$$

- For a fixed node $A = \prod_{j=1}^{d} A_j$, fix a coordinate *j* and look at the weighted conditional variance $\mathbb{V}[Y|X^{(j)} \in A_j] \mathbb{P}(X^{(j)} \in A_j)$.
- If *j* ∈ S, then the best split is at the midpoint of the node, with a variance decrease equal to a²_i/16 > 0.
- If *j* ∈ W, the decrease of the variance is always 0, whatever the location of the split.

- We have at hand an independent test set \mathcal{D}'_n .
- The model is linear:

$$Y = \sum_{j \in S} a_j X^{(j)} + \varepsilon.$$

• For a fixed node $A = \prod_{j=1}^{d} A_j$, fix a coordinate *j* and look at the weighted conditional variance $\mathbb{V}[Y|X^{(j)} \in A_j] \mathbb{P}(X^{(j)} \in A_j)$.

- If *j* ∈ S, then the best split is at the midpoint of the node, with a variance decrease equal to a²_i/16 > 0.
- If *j* ∈ W, the decrease of the variance is always 0, whatever the location of the split.

- We have at hand an independent test set \mathcal{D}'_n .
- The model is linear:

$$Y = \sum_{j \in \mathcal{S}} a_j X^{(j)} + \varepsilon.$$

• For a fixed node $A = \prod_{j=1}^{d} A_j$, fix a coordinate *j* and look at the weighted conditional variance $\mathbb{V}[Y|X^{(j)} \in A_j] \mathbb{P}(X^{(j)} \in A_j)$.

- If *j* ∈ S, then the best split is at the midpoint of the node, with a variance decrease equal to a²_i/16 > 0.
- If *j* ∈ W, the decrease of the variance is always 0, whatever the location of the split.

- We have at hand an independent test set \mathcal{D}'_n .
- The model is linear:

$$Y = \sum_{j \in \mathcal{S}} a_j X^{(j)} + \varepsilon.$$

For a fixed node A = ∏^d_{j=1} A_j, fix a coordinate j and look at the weighted conditional variance V[Y|X^(j) ∈ A_j] P(X^(j) ∈ A_j).

- If *j* ∈ S, then the best split is at the midpoint of the node, with a variance decrease equal to a²_i/16 > 0.
- If *j* ∈ W, the decrease of the variance is always 0, whatever the location of the split.

- We have at hand an independent test set \mathcal{D}'_n .
- The model is linear:

$$Y = \sum_{j \in \mathcal{S}} a_j X^{(j)} + \varepsilon.$$

For a fixed node A = ∏^d_{j=1} A_j, fix a coordinate j and look at the weighted conditional variance V[Y|X^(j) ∈ A_j] P(X^(j) ∈ A_j).

- If *j* ∈ S, then the best split is at the midpoint of the node, with a variance decrease equal to a²_i/16 > 0.
- If *j* ∈ W, the decrease of the variance is always 0, whatever the location of the split.

- We have at hand an independent test set \mathcal{D}'_n .
- The model is linear:

$$Y = \sum_{j \in \mathcal{S}} a_j X^{(j)} + \varepsilon.$$

- For a fixed node A = ∏^d_{j=1} A_j, fix a coordinate j and look at the weighted conditional variance V[Y|X^(j) ∈ A_j] P(X^(j) ∈ A_j).
- If *j* ∈ S, then the best split is at the midpoint of the node, with a variance decrease equal to a²_i/16 > 0.
- If *j* ∈ W, the decrease of the variance is always 0, whatever the location of the split.

Near-reality scenario

The following splitting scheme is iteratively repeated at each node:

- Select at random M_n candidate coordinates to split on.
- Por each of the M_n elected coordinates, calculate the best split.
- Select the coordinate which outputs the best within-node sum of squares decrease, and cut.

Conclusion

For $j \in S$,

$$p_{nj} \approx \frac{1}{S} \left(1 + \xi_{nj}\right),$$

The following splitting scheme is iteratively repeated at each node:

- Select at random *M_n* candidate coordinates to split on.
- Por each of the M_n elected coordinates, calculate the best split.
- Select the coordinate which outputs the best within-node sum of squares decrease, and cut.

Conclusion

For $j \in S$,

$$p_{nj} \approx \frac{1}{S} \left(1 + \xi_{nj}\right),$$

The following splitting scheme is iteratively repeated at each node:

- Select at random *M_n* candidate coordinates to split on.
- **2** For each of the M_n elected coordinates, calculate the best split.
- Select the coordinate which outputs the best within-node sum of squares decrease, and cut.

Conclusion

For $j \in S$,

$$p_{nj} \approx \frac{1}{S} \left(1 + \xi_{nj}\right),$$

The following splitting scheme is iteratively repeated at each node:

- Select at random *M_n* candidate coordinates to split on.
- **2** For each of the M_n elected coordinates, calculate the best split.
- Select the coordinate which outputs the best within-node sum of squares decrease, and cut.

Conclusion

For $j \in S$,

$$p_{nj} \approx \frac{1}{S} \left(1 + \xi_{nj}\right),$$

The following splitting scheme is iteratively repeated at each node:

- Select at random *M_n* candidate coordinates to split on.
- **2** For each of the M_n elected coordinates, calculate the best split.
- Select the coordinate which outputs the best within-node sum of squares decrease, and cut.

Conclusion

For $j \in S$,

$$p_{nj} \approx rac{1}{S} \left(1 + \xi_{nj}\right),$$

4 Layered nearest neighbors and random forests

 $Y = r(\mathbf{X}) + \varepsilon$, with $\mathbf{X} \sim \mathcal{U}([0, 1]^d)$ and $\varepsilon \sim \mathcal{N}(0, 1)$.

1. [Sinus] For $\mathbf{x} \in [0, 1]^d$,

$$r(\mathbf{x}) = 10 \sin(10\pi x^{(1)}).$$

2. [Friedman #1] Here,

$$\mathbf{r}(\mathbf{x}) = 10\sin(\pi x^{(1)}x^{(2)}) + 20(x^{(3)} - .05)^2 + 10x^{(4)} + 5x^{(5)}$$

3. [Tree] In this example, the function *r* has itself a tree structure.

G. Biau (UPMC)

3 A small simulation study

Definition

Let $X_1, ..., X_n$ be a sample of i.i.d. random vectors in \mathbb{R}^d , $d \ge 2$. An observation X_i is said to be a LNN of a point \mathbf{x} if the hyperrectangle defined by \mathbf{x} and X_i contains no other data points.

What is known about $L_n(\mathbf{x})$?

• ... a lot when $\mathbf{X}_1, \ldots, \mathbf{X}_n$ are uniformly distributed over $[0, 1]^d$.

For example,

$$\mathbb{E}L_n(\mathbf{x}) = \frac{2^d (\log n)^{d-1}}{(d-1)!} + \mathcal{O}\left((\log n)^{d-2}\right)$$

and

 $\frac{(d-1)! L_n(\mathbf{x})}{2^d (\log n)^{d-1}} \to 1 \quad \text{in probability as } n \to \infty.$

 This is the problem of maxima in random vectors (Barndorff-Nielsen and Sobel, 1966).

What is known about $L_n(\mathbf{x})$?

- ... a lot when $\mathbf{X}_1, \ldots, \mathbf{X}_n$ are uniformly distributed over $[0, 1]^d$.
- For example,

$$\mathbb{E}L_n(\mathbf{x}) = \frac{2^d (\log n)^{d-1}}{(d-1)!} + \mathcal{O}\left((\log n)^{d-2}\right)$$

and

$$\frac{(d-1)! L_n(\mathbf{x})}{2^d (\log n)^{d-1}} \to 1 \quad \text{in probability as } n \to \infty.$$

 This is the problem of maxima in random vectors (Barndorff-Nielsen and Sobel, 1966).

What is known about $L_n(\mathbf{x})$?

- ... a lot when $\mathbf{X}_1, \ldots, \mathbf{X}_n$ are uniformly distributed over $[0, 1]^d$.
- For example,

$$\mathbb{E}L_n(\mathbf{x}) = \frac{2^d (\log n)^{d-1}}{(d-1)!} + \mathcal{O}\left((\log n)^{d-2}\right)$$

and

$$\frac{(d-1)! L_n(\mathbf{x})}{2^d (\log n)^{d-1}} \to 1 \quad \text{in probability as } n \to \infty.$$

 This is the problem of maxima in random vectors (Barndorff-Nielsen and Sobel, 1966).

Two results (Biau and Devroye, 2010)

Model

 $\mathbf{X}_1, \ldots, \mathbf{X}_n$ are independently distributed according to some probability density *f* (with probability measure μ).

Theorem

For μ -almost all $\mathbf{x} \in \mathbb{R}^d$, one has

 $L_n(\mathbf{x}) \to \infty$ in probability as $n \to \infty$.

Theorem

Suppose that f is λ -almost everywhere continuous. Then

$$\frac{(d-1)! \mathbb{E}L_n(\mathbf{x})}{2^d (\log n)^{d-1}} \to 1 \quad \text{as } n \to \infty,$$

at μ -almost all $\mathbf{x} \in \mathbb{R}^d$.

Two results (Biau and Devroye, 2010)

Model

 $\mathbf{X}_1, \ldots, \mathbf{X}_n$ are independently distributed according to some probability density *f* (with probability measure μ).

Theorem

For μ -almost all $\mathbf{x} \in \mathbb{R}^d$, one has

$$L_n(\mathbf{x}) \to \infty$$
 in probability as $n \to \infty$.

Theorem

Suppose that f is λ -almost everywhere continuous. Then

$$\frac{(d-1)! \mathbb{E}L_n(\mathbf{x})}{2^d (\log n)^{d-1}} \to 1 \quad as \ n \to \infty,$$

at μ -almost all $\mathbf{x} \in \mathbb{R}^d$.

Two results (Biau and Devroye, 2010)

Model

 $\mathbf{X}_1, \ldots, \mathbf{X}_n$ are independently distributed according to some probability density *f* (with probability measure μ).

Theorem

For μ -almost all $\mathbf{x} \in \mathbb{R}^d$, one has

$$L_n(\mathbf{x}) \to \infty$$
 in probability as $n \to \infty$.

Theorem

Suppose that f is λ -almost everywhere continuous. Then

$$\frac{(d-1)! \mathbb{E}L_n(\mathbf{x})}{2^d (\log n)^{d-1}} \to 1 \quad \text{as } n \to \infty,$$

at μ -almost all $\mathbf{x} \in \mathbb{R}^d$.

 $(\mathbf{X}, Y), (\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)$ are i.i.d. random vectors of $\mathbb{R}^d \times \mathbb{R}$. Moreover, |Y| is bounded and \mathbf{X} has a density.

$$r_n(\mathbf{x}) = \frac{1}{L_n(\mathbf{x})} \sum_{i=1}^n Y_i \mathbf{1}_{[\mathbf{X}_i \in \mathcal{L}_n(\mathbf{x})]}.$$

- No smoothing parameter.
- A scale-invariant estimate.
- Intimately connected to Breiman's random forests.

 $(\mathbf{X}, Y), (\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)$ are i.i.d. random vectors of $\mathbb{R}^d \times \mathbb{R}$. Moreover, |Y| is bounded and \mathbf{X} has a density.

$$r_n(\mathbf{x}) = \frac{1}{L_n(\mathbf{x})} \sum_{i=1}^n Y_i \mathbf{1}_{[\mathbf{X}_i \in \mathcal{L}_n(\mathbf{x})]}.$$

- No smoothing parameter.
- A scale-invariant estimate.
- Intimately connected to Breiman's random forests.

 $(\mathbf{X}, Y), (\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)$ are i.i.d. random vectors of $\mathbb{R}^d \times \mathbb{R}$. Moreover, |Y| is bounded and \mathbf{X} has a density.

$$r_n(\mathbf{x}) = \frac{1}{L_n(\mathbf{x})} \sum_{i=1}^n Y_i \mathbf{1}_{[\mathbf{X}_i \in \mathcal{L}_n(\mathbf{x})]}.$$

- No smoothing parameter.
- A scale-invariant estimate.
- Intimately connected to Breiman's random forests.

 $(\mathbf{X}, Y), (\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)$ are i.i.d. random vectors of $\mathbb{R}^d \times \mathbb{R}$. Moreover, |Y| is bounded and \mathbf{X} has a density.

$$r_n(\mathbf{x}) = \frac{1}{L_n(\mathbf{x})} \sum_{i=1}^n Y_i \mathbf{1}_{[\mathbf{X}_i \in \mathcal{L}_n(\mathbf{x})]}.$$

- No smoothing parameter.
- A scale-invariant estimate.
- Intimately connected to Breiman's random forests.

 $(\mathbf{X}, Y), (\mathbf{X}_1, Y_1), \dots, (\mathbf{X}_n, Y_n)$ are i.i.d. random vectors of $\mathbb{R}^d \times \mathbb{R}$. Moreover, |Y| is bounded and \mathbf{X} has a density.

$$r_n(\mathbf{x}) = \frac{1}{L_n(\mathbf{x})} \sum_{i=1}^n Y_i \mathbf{1}_{[\mathbf{X}_i \in \mathcal{L}_n(\mathbf{x})]}.$$

- No smoothing parameter.
- A scale-invariant estimate.
- Intimately connected to Breiman's random forests.

Theorem (**Pointwise** *L*_{*p*}-consistency)

Assume that the regression function r is λ -almost everywhere continuous and that Y is bounded. Then, for μ -almost all $\mathbf{x} \in \mathbb{R}^d$ and all $p \ge 1$,

$$\mathbb{E} |r_n(\mathbf{x}) - r(\mathbf{x})|^p \to 0 \quad \text{as } n \to \infty.$$

Theorem (Gobal L_p-consistency)

Under the same conditions, for all $p \ge 1$,

```
\mathbb{E} |r_n(\mathbf{X}) - r(\mathbf{X})|^p \to 0 \quad as \ n \to \infty.
```

No universal consistency result with respect to r is possible.

- The results do not impose any condition on the density.
- They are also scale-free.

G. Biau (UPMC)

Theorem (**Pointwise** *L*_{*p*}-consistency)

Assume that the regression function r is λ -almost everywhere continuous and that Y is bounded. Then, for μ -almost all $\mathbf{x} \in \mathbb{R}^d$ and all $p \ge 1$,

$$\mathbb{E} |r_n(\mathbf{x}) - r(\mathbf{x})|^p \to 0 \quad \text{as } n \to \infty.$$

Theorem (**Gobal** L_p -consistency)

Under the same conditions, for all $p \ge 1$,

$$\mathbb{E} |r_n(\mathbf{X}) - r(\mathbf{X})|^{\rho} \to 0 \quad as \ n \to \infty.$$

No universal consistency result with respect to r is possible.

The results do not impose any condition on the density.

They are also scale-free.
Theorem (**Pointwise** *L*_{*p*}-consistency)

Assume that the regression function r is λ -almost everywhere continuous and that Y is bounded. Then, for μ -almost all $\mathbf{x} \in \mathbb{R}^d$ and all $p \ge 1$,

$$\mathbb{E} |r_n(\mathbf{x}) - r(\mathbf{x})|^p \to 0 \quad \text{as } n \to \infty.$$

Theorem (**Gobal** L_p -consistency)

Under the same conditions, for all $p \ge 1$,

$$\mathbb{E} |r_n(\mathbf{X}) - r(\mathbf{X})|^p \to 0 \quad as \ n \to \infty.$$

No universal consistency result with respect to r is possible.

The results do not impose any condition on the density.

They are also scale-free.

Theorem (**Pointwise** *L*_{*p*}-consistency)

Assume that the regression function r is λ -almost everywhere continuous and that Y is bounded. Then, for μ -almost all $\mathbf{x} \in \mathbb{R}^d$ and all $p \ge 1$,

$$\mathbb{E} |r_n(\mathbf{x}) - r(\mathbf{x})|^p \to 0 \quad \text{as } n \to \infty.$$

Theorem (**Gobal** L_p -consistency)

Under the same conditions, for all $p \ge 1$,

$$\mathbb{E} |r_n(\mathbf{X}) - r(\mathbf{X})|^p \to 0 \quad as \ n \to \infty.$$

No universal consistency result with respect to r is possible.

Interest of the second seco

They are also scale-free.

G. Biau (UPMC)

Theorem (**Pointwise** *L*_{*p*}-consistency)

Assume that the regression function r is λ -almost everywhere continuous and that Y is bounded. Then, for μ -almost all $\mathbf{x} \in \mathbb{R}^d$ and all $p \ge 1$,

$$\mathbb{E} |r_n(\mathbf{x}) - r(\mathbf{x})|^p \to 0 \quad \text{as } n \to \infty.$$

Theorem (**Gobal** L_p -consistency)

Under the same conditions, for all $p \ge 1$,

$$\mathbb{E} |r_n(\mathbf{X}) - r(\mathbf{X})|^p \to 0 \quad as \ n \to \infty.$$

- No universal consistency result with respect to r is possible.
- Interest of the second seco
- They are also scale-free.

A random forest can be viewed as a weighted LNN regression estimate

$$\bar{r}_n(\mathbf{x}) = \sum_{i=1}^n Y_i \boldsymbol{W}_{ni}(\mathbf{x}),$$

where the weights concentrate on the LNN and satisfy

$$\sum_{i=1}^{n} W_{ni}(\mathbf{x}) = 1.$$

Consider the non-adaptive random forests estimate

$$\bar{r}_n(\mathbf{x}) = \sum_{i=1}^n Y_i W_{ni}(\mathbf{x}).$$

Proposition

For any $\mathbf{x} \in \mathbb{R}^d$, assume that $\sigma^2 = \mathbb{V}[Y|\mathbf{X} = \mathbf{x}]$ is independent of \mathbf{x} . Then

$$\mathbb{E}\left[\overline{r}_{n}(\mathbf{x})-r(\mathbf{x})\right]^{2}\geq\frac{\sigma^{2}}{\mathbb{E}L_{n}(\mathbf{x})}.$$

Consider the non-adaptive random forests estimate

$$\bar{r}_n(\mathbf{x}) = \sum_{i=1}^n Y_i W_{ni}(\mathbf{x}).$$

Proposition

For any $\mathbf{x} \in \mathbb{R}^d$, assume that $\sigma^2 = \mathbb{V}[Y|\mathbf{X} = \mathbf{x}]$ is independent of \mathbf{x} . Then

$$\mathbb{E}\left[\overline{r}_n(\mathbf{x})-r(\mathbf{x})\right]^2\geq \frac{\sigma^2}{\mathbb{E}L_n(\mathbf{x})}.$$

At μ -almost all **x**, when *f* is λ -almost everywhere continuous,

$$\mathbb{E}\left[\bar{r}_n(\mathbf{x})-r(\mathbf{x})\right]^2 \gtrsim \frac{\sigma^2(d-1)!}{2^d(\log n)^{d-1}}.$$

Improving the rate of convergence

- Stop as soon as a future rectangle split would cause a sub-rectangle to have fewer than k_n points.
- Resort to bagging and randomize using random subsamples.

At μ -almost all **x**, when *f* is λ -almost everywhere continuous,

$$\mathbb{E}\left[\bar{r}_n(\mathbf{x})-r(\mathbf{x})\right]^2 \gtrsim \frac{\sigma^2(d-1)!}{2^d(\log n)^{d-1}}.$$

Improving the rate of convergence

- Stop as soon as a future rectangle split would cause a sub-rectangle to have fewer than k_n points.
 - Provide the second state of the second stat

At μ -almost all **x**, when *f* is λ -almost everywhere continuous,

$$\mathbb{E}\left[\bar{r}_n(\mathbf{x})-r(\mathbf{x})\right]^2 \gtrsim \frac{\sigma^2(d-1)!}{2^d(\log n)^{d-1}}.$$

Improving the rate of convergence

- Stop as soon as a future rectangle split would cause a sub-rectangle to have fewer than k_n points.
- Present to bagging and randomize using random subsamples.