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ﬂ Setting

e A random forests model
e A small simulation study

© Layered nearest neighbors and random forests
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From trees to forests

@ Leo Breiman promoted random forests.
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From trees to forests

@ Leo Breiman promoted random forests.
@ Idea: Using tree averaging as a means of obtaining good rules.

@ The base trees are simple and randomized.

Breiman’s ideas were decisively influenced by
@ Amit and Geman (1997, geometric feature selection).

@ Ho (1998, random subspace method).

@ Dietterich (2000, random split selection approach).

stat .berkeley.edu/users/breiman/RandomForests J
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Random forests
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Random forests

@ They have emerged as serious competitors to state of the art
methods.

@ They are fast and easy to implement, produce highly accurate
predictions and can handle a very large number of input variables
without overfitting.

@ In fact, forests are among the most accurate general-purpose
learners available.

@ The algorithm is difficult to analyze and its mathematical
properties remain to date largely unknown.

@ Most theoretical studies have concentrated on isolated parts or
stylized versions of the procedure.
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Key-references

@ Breiman (2000, 2001, 2004).

> Definition, experiments and intuitions.
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Key-references

@ Breiman (2000, 2001, 2004).

> Definition, experiments and intuitions.

@ Lin and Jeon (2006).
> Link with layered nearest neighbors.
@ Biau, Devroye and Lugosi (2008).

> Consistency results for stylized versions.

@ Biau (2012).

> Sparsity and random forests.
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e A random forests model
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Three basic ingredients

-Randomization and no-pruning

> For each tree, select at random, at each node, a small group of
input coordinates to split.
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Three basic ingredients

-Randomization and no-pruning

> For each tree, select at random, at each node, a small group of
input coordinates to split.

> Calculate the best split based on these features and cut.

> The tree is grown to maximum size, without pruning.
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Three basic ingredients

-Aggregation
> Final predictions are obtained by aggregating over the ensembile.

> It is fast and easily parallelizable.
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Three basic ingredients

-Bagging

> The subspace randomization scheme is blended with bagging.
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Three basic ingredients

-Bagging
> The subspace randomization scheme is blended with bagging.
> Breiman (1996).

> Biihlmann and Yu (2002).

> Biau, Cérou and Guyader (2010).
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Mathematical framework

@ A training sample: D, = {(Xy, Y1),...,(Xn, Yn)} iid.
[0,1]9 x R-valued random variables.
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Mathematical framework

@ A training sample: D, = {(Xy, Y1),...,(Xn, Yn)} iid.
[0,1]9 x R-valued random variables.

@ A generic pair: (X, Y) satisfying EY? < .

@ Our mission: For fixed x € [0, 1]9, estimate the regression function
r(x) = E[Y|X = x] using the data.

@ Quality criterion: E[rs(X) — r(X)]?.
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The model

@ A random forest is a collection of randomized base regression
trees {r(x,©m, Dp), m > 1}.

G. Biau (UPMC) 42/114



The model

@ A random forest is a collection of randomized base regression
trees {r(x,©m, Dp), m > 1}.

@ These random trees are combined to form the aggregated
regression estimate

FA(X, D) = Eo [ra(X, ©, Dp)].-

G. Biau (UPMC) 42/114



The model

@ A random forest is a collection of randomized base regression
trees {r(x,©m, Dp), m > 1}.

@ These random trees are combined to form the aggregated
regression estimate

FA(X, D) = Eo [ra(X, ©, Dp)].-

@ O is assumed to be independent of X and the training sample Dj,.

G. Biau (UPMC) 42/114



The model

@ A random forest is a collection of randomized base regression
trees {r(x,©m, Dp), m > 1}.

@ These random trees are combined to form the aggregated
regression estimate

Fn(x, Dn) = E@ [rn(x’ @, Dn)] .
@ O is assumed to be independent of X and the training sample Dj,.

@ However, we allow © to be based on a test sample, independent
of, but distributed as, Dj,.
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The procedure

> Fix k, > 2 and repeat the following procedure [log, kn| times:

@ At each node, a coordinate of X = (X(V), ... X(9)) is selected, with the
J-th feature having a probability p,; € (0, 1) of being selected.
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The procedure

> Fix k, > 2 and repeat the following procedure [log, kn| times:

@ At each node, a coordinate of X = (X(V), ... X(9)) is selected, with the
J-th feature having a probability p,; € (0, 1) of being selected.

@ At each node, once the coordinate is selected, the split is at the midpoint
of the chosen side.

> Thus n
_ 2i=1 Y xieax.0)]
(X) = Eg — 1e,x0) |
n Soitt 1 xeanx.0)] %©)
where n
En(X,©) = 21[Xi€An(X=@)] 7 0] -
i=1
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General comments

@ Each individual tree has exactly 2109 %1 (~ k) terminal nodes,
and each leaf has Lebesgue measure 2-110% k1 (~ 1/k,).
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General comments

@ Each individual tree has exactly 2109 %1 (~ k) terminal nodes,
and each leaf has Lebesgue measure 2-110% k1 (~ 1/k,).

@ If X has uniform distribution on [0, 1]9, there will be on average
about n/k, observations per terminal node.

@ The choice k, = ninduces a very small number of cases in the
final leaves. )

This scheme is close to what the original random
forests algorithm does.
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Assume that the distribution of X has support on [0, 1]9. Then the
random forests estimate 7, is consistent whenever py; log k, — oo for
allj=1,...,dand k,/n — 0 as n — oc.
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Consistency

Theorem

Assume that the distribution of X has support on [0, 1]9. Then the
random forests estimate 7, is consistent whenever py; log k, — oo for
allj=1,...,dand k,/n — 0 as n — oc.

@ In the purely random model, p,; = 1/d, independently of n and j,
and consistency is ensured as long as k, — oo and k,/n — 0.

@ This is however a radically simplified version of the random forests
used in practice.

@ A more in-depth analysis is needed.
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@ There is empirical evidence that many signals in high-dimensional
spaces admit a sparse representation.
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@ There is empirical evidence that many signals in high-dimensional
spaces admit a sparse representation.

> Images wavelet coefficients.

> High-throughput technologies.

@ Sparse estimation is playing an increasingly important role in the
statistics and machine learning communities.

@ Several methods have recently been developed in both fields,
which rely upon the notion of sparsity.
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Qur vision

@ The regression function r(X) = E[Y|X] depends in fact only on a
nonempty subset S (for Strong) of the d features.

G. Biau (UPMC) 52/114



Qur vision

@ The regression function r(X) = E[Y|X] depends in fact only on a
nonempty subset S (for Strong) of the d features.

@ In other words, letting Xs = (X; : j € §) and S = Card S, we have

r(X) = E[Y|Xs].

G. Biau (UPMC) 52/114



Qur vision

@ The regression function r(X) = E[Y|X] depends in fact only on a
nonempty subset S (for Strong) of the d features.

@ In other words, letting Xs = (X; : j € §) and S = Card S, we have
r(X) = E[Y|Xs].

@ In the dimension reduction scenario we have in mind, the ambient
dimension d can be very large, much larger than n.

G. Biau (UPMC) 52/114



Qur vision

@ The regression function r(X) = E[Y|X] depends in fact only on a
nonempty subset S (for Strong) of the d features.

@ In other words, letting Xs = (X; : j € §) and S = Card S, we have
r(X) = E[Y|Xs].

@ In the dimension reduction scenario we have in mind, the ambient
dimension d can be very large, much larger than n.

@ As such, the value S characterizes the sparsity of the model: The
smaller S, the sparser r.
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Sparsity and random forests

@ Ideally, ppj=1/Sforje S.
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Sparsity and random forests

@ Ideally, ppj=1/Sforje S.
@ To stick to reality, we will rather require that pp = (1/S)(1 + &p).

@ Such a randomization mechanism may be designed on the basis
of a test sample.

Action plan

E [Fa(X) — r(X)]? = E [7a(X) — Fa(X)] + E [Fa(X) — r(X)?,

where N
Pn(X) =Y Eo [Wni(X, ©)] r(X)).

i=1
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Variance

Assume that X is uniformly distributed on [0, 1] and, for all x € R,
o2(x) = V[Y|X = x] < 02

for some positive constant o2. Then, if py = (1/S)(1 + &) forj € S,

> \ S/2d K
B0 - X < 0 (575 ) (1460 oo

where
C=

288 (rlog2\ /%
16 '

™
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Bias

Assume that X is uniformly distributed on [0, 1] and r is L-Lipschitz.
Then, if ppj = (1/S)(1 + &) for j € S,

~ 2 281_2 2 —n/2k
E [rn(X) - I’(X)] < 0.75 + sup r (X) € "
k,ska2(1+ 1) |xepo,1]¢
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Bias

Assume that X is uniformly distributed on [0, 1] and r is L-Lipschitz.
Then, if ppj = (1/S)(1 + &) for j € S,

- 2 2512 2 —n/2k
E [rn(X) - I’(X)] < 0.75 + sup r (X) € "
kn3'6g2(1+7”) xe[0,1]¢

@ The rate at which the bias decreases to 0 depends on the number
of strong variables, not on d.

@ k,(075/(S192))(1+m) — o(k,2/9) as soon as S < |0.54d|.

@ The term e—"/2k» prevents the extreme choice k, = n.
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Main result

If ppj = (1/8)(1 + &) for j € S, with &,;logn — 0 as n — oo, then for
the choice

0.75 )

2\ 1/(1+55g2
K o (L_) T i)

— I

we have
_ 2
) E[r(X) — r(X
limsup sup [7n( )0_75 (Xl <A.
n—=oo (X,Y)EFs (EL%> Slog2H0 S nsmEngng
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Main result

If prj = (1/S)(1 + &) for j € S, with &ylogn — 0 as n — oo, then for
the choice o7

742

I

we have

imsup  sup E [F2(X) — r(X)]?

0.75
251092 \ SToc5i075 —0.75
n—oo (X,Y)eFs (ELﬁ> S92H075 | <1575 7s

Take-home message

The rate nS'onggJS is strictly faster than the usual minimax rate
n—2/(d+2) ag soon as S < [0.54d].
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Dimension reduction
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Discussion —

@ The optimal parameter k;, depends on the unknown distribution of
(X, Y).
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Discussion —

@ The optimal parameter k;, depends on the unknown distribution of
(X, Y).

@ To correct this situation, adaptive choices of k, should preserve
the rate of convergence of the estimate.

@ Another route we may follow is to analyze the effect of bagging.

@ Biau, Cérou and Guyader (2010).
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Discussion —

Imaginary scenario

The following splitting scheme is iteratively repeated at each node:

G. Biau (UPMC) 70/ 114



Discussion —

Imaginary scenario

The following splitting scheme is iteratively repeated at each node:

@ Select at random M, candidate coordinates to split on.

G. Biau (UPMC) 70/114



Discussion —

Imaginary scenario

The following splitting scheme is iteratively repeated at each node:

@ Select at random M, candidate coordinates to split on.

© If the selection is all weak, then choose one at random to split on.

G. Biau (UPMC) 70/114



Discussion —

Imaginary scenario

The following splitting scheme is iteratively repeated at each node:

@ Select at random M, candidate coordinates to split on.
© If the selection is all weak, then choose one at random to split on.

© If there is more than one strong variable elected, choose one at
random and cut.

G. Biau (UPMC) 70/114



Discussion —

@ Each coordinate in S will be cut with the “ideal” probability

a=s-(-3)]
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Discussion —

@ Each coordinate in S will be cut with the “ideal” probability
L1 S\ M
sl (-9

@ The parameter M, should satisfy

S\ M
(1—d> logn — 0 asn— cc.
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Discussion —

@ Each coordinate in S will be cut with the “ideal” probability
L1 S\ M
sl (-9

@ The parameter M, should satisfy

S\ M
(1—d> logn — 0 asn— cc.

@ This is true as soon as

M
M, =00 and —-— — oo asn-— .
log n

G. Biau (UPMC) 71/114



@ We have at hand an independent test set D,
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@ We have at hand an independent test set D,

@ The model is linear:

Y = Zan(j) + €.
JES

@ For afixed node A = H;’:1 Aj, fix a coordinate j and look at the
weighted conditional variance V[Y|X) € A]P(XV) € A)).

@ If j € S, then the best split is at the midpoint of the node, with a
variance decrease equal to a/?/16 > 0.

@ If j € W, the decrease of the variance is always 0, whatever the
location of the split.

G. Biau (UPMC) 72/114
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Discussion —

Near-reality scenario

The following splitting scheme is iteratively repeated at each node:

@ Select at random M, candidate coordinates to split on.
@ For each of the M, elected coordinates, calculate the best split.

© Select the coordinate which outputs the best within-node sum of
squares decrease, and cut.
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Discussion —

Near-reality scenario

The following splitting scheme is iteratively repeated at each node:
@ Select at random M,, candidate coordinates to split on.
@ For each of the M, elected coordinates, calculate the best split.

© Select the coordinate which outputs the best within-node sum of
squares decrease, and cut.

Conclusion

Forje S,

”
Pnj = S (1 ‘anj)»

where ¢,;; — 0 and satisfies the constraint ¢, logn — 0 as ntends to
infinity, provided k,logn/n — 0, M, — oo and M,/ log n — co.
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e A small simulation study
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Tested models

Y =r(X)+¢e, with X ~2(]0,1]%) and e ~ N(0, 1).
1. [Sinus] For x € [0, 1]¢,
r(x) = 10sin(107x().
2. [Friedman #1] Here,
r(x) = 10sin(mx(Mx@)) + 20(x®) — .05)% + 10x™*) + 5x0O),

3. [Tree] In this example, the function r has itself a tree structure.
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MSE
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© Layered nearest neighbors and random forests
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Layered Nearest Neighbors

Definition

LetXq,...,X, be a sample of i.i.d. random vectors in RY, d>2. An
observation X; is said to be a LNN of a point x if the hyperrectangle
defined by x and X; contains no other data points.

G. Biau (UPMC) 107 /114



What is known about L,(x)?

@ ... alotwhen Xy, ..., X, are uniformly distributed over [0, 1]°.
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What is known about L,(x)?

@ ... alotwhen Xy, ..., X, are uniformly distributed over [0, 1]°.
@ For example,

29(log n)?-1

ELo(X) = g —qy +© ((log n)d_2>

and
(d — 1) La(x)

W — 1 in probability as n — cc.
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What is known about L,(x)?

@ ... alotwhen Xy, ..., X, are uniformly distributed over [0, 1]°.

@ For example,

29(log n)9-" -
ELn(x) = % + 0 ((Iog n)9 2)
and d— 1L
W — 1 in probability as n — .

@ This is the problem of maxima in random vectors
(Barndorff-Nielsen and Sobel, 1966).

G. Biau (UPMC)
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Two results (Biau and Devroye, 2010)

X1, ..., Xn are independently distributed according to some probability
density f (with probability measure p).
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Two results (Biau and Devroye, 2010)

X1, ..., Xn are independently distributed according to some probability
density f (with probability measure p).

v

Theorem
For yi-almost all x € RY, one has

Ln(x) — oo in probability as n — oo.

v

Theorem
Suppose that f is A\-almost everywhere continuous. Then

(d = 1)IELy(x)

23(log n)o—" —1 asn— oo,

at u-almost all x € RY.
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LNN regression estimation

(X, Y), (Xy, Yy),...,(Xp, Yn) are i.i.d. random vectors of R? x R.
Moreover, | Y| is bounded and X has a density.
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LNN regression estimation

Model

(X, Y), (Xy, Yy),...,(Xp, Yn) are i.i.d. random vectors of R? x R.
Moreover, | Y| is bounded and X has a density.

The regression function r(x) = E[Y|X = x] may be estimated by

rn(X) = Z Yilxc.20(0)]

@ No smoothing parameter.
@ A scale-invariant estimate.

© Intimately connected to Breiman’s random forests.
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Theorem ( L,-consistency)

Assume that the regression function r is A-almost everywhere
continuous and that Y is bounded. Then, for ji-almost all x € R and
allp>1,

E|rm(x) — r(x)|° -0 asn— oo.
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Theorem ( L,-consistency)

Assume that the regression function r is A-almost everywhere
continuous and that Y is bounded. Then, for ji-almost all x € R and
allp>1,

E|rm(x) — r(x)|° -0 asn— oo.

Theorem ( L,-consistency)

Under the same conditions, for allp > 1,

E|rm(X) - r(X)[P -0 asn— oco.

@ No universal consistency result with respect to r is possible.
@ The results do not impose any condition on the density.

© They are also scale-free.
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Back to random forests

A random forest can be viewed as a weighted LNN regression estimate
n
Fa(X) = > YiWyi(x),
i=1

where the weights concentrate on the LNN and satisfy

i Wn,'(X) =1.
i=1
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Non-adaptive strategies

Consider the non-adaptive random forests estimate

7'n(X) = i YiWni(x)-
i=1
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Non-adaptive strategies

Consider the non-adaptive random forests estimate

7'n(X) = i YiWni(x)-
i=1

Proposition

For any x € R9, assume that o> = V[Y|X = X] is independent of x.
Then

E [fa(x) - r(x)[? >
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Rate of convergence

At p-almost all x, when f is A-almost everywhere continuous,

o?(d —1)!

E [Fa(x) — r(X)] 2 29(log )1
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Improving the rate of convergence

@ Stop as soon as a future rectangle split would cause a
sub-rectangle to have fewer than k;, points.
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Rate of convergence

At p-almost all x, when f is A-almost everywhere continuous,

o?(d —1)!

E [Ta(x) — r(x))* 2 29(log n)a—T"

v

Improving the rate of convergence

@ Stop as soon as a future rectangle split would cause a
sub-rectangle to have fewer than k;, points.

©@ Resort to bagging and randomize using random subsamples.

G. Biau (UPMC) 114/114



	Setting
	A random forests model
	A small simulation study
	Layered nearest neighbors and random forests

