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From trees to forests

Leo Breiman promoted random forests.

Idea: Using tree averaging as a means of obtaining good rules.

The base trees are simple and randomized.

Breiman’s ideas were decisively influenced by

Amit and Geman (1997, geometric feature selection).

Ho (1998, random subspace method).

Dietterich (2000, random split selection approach).

stat.berkeley.edu/users/breiman/RandomForests
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Random forests

They have emerged as serious competitors to state of the art
methods.

They are fast and easy to implement, produce highly accurate
predictions and can handle a very large number of input variables
without overfitting.

In fact, forests are among the most accurate general-purpose
learners available.

The algorithm is difficult to analyze and its mathematical
properties remain to date largely unknown.

Most theoretical studies have concentrated on isolated parts or
stylized versions of the procedure.
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Three basic ingredients

1-Randomization and no-pruning
. For each tree, select at random, at each node, a small group of

input coordinates to split.

. Calculate the best split based on these features and cut.

. The tree is grown to maximum size, without pruning.
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Three basic ingredients

2-Aggregation
. Final predictions are obtained by aggregating over the ensemble.

. It is fast and easily parallelizable.
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Three basic ingredients

3-Bagging
. The subspace randomization scheme is blended with bagging.

. Breiman (1996).

. Bühlmann and Yu (2002).

. Biau, Cérou and Guyader (2010).
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Mathematical framework

A training sample: Dn = {(X1,Y1), . . . , (Xn,Yn)} i.i.d.
[0,1]d × R-valued random variables.

A generic pair: (X,Y ) satisfying EY 2 <∞.

Our mission: For fixed x ∈ [0,1]d , estimate the regression function
r(x) = E[Y |X = x] using the data.

Quality criterion: E[rn(X)− r(X)]2.
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The model

A random forest is a collection of randomized base regression
trees {rn(x,Θm,Dn),m ≥ 1}.

These random trees are combined to form the aggregated
regression estimate

r̄n(X,Dn) = EΘ [rn(X,Θ,Dn)] .

Θ is assumed to be independent of X and the training sample Dn.

However, we allow Θ to be based on a test sample, independent
of, but distributed as, Dn.
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The procedure

. Fix kn ≥ 2 and repeat the following procedure dlog2 kne times:

1 At each node, a coordinate of X = (X (1), . . . ,X (d)) is selected, with the
j-th feature having a probability pnj ∈ (0,1) of being selected.

2 At each node, once the coordinate is selected, the split is at the midpoint
of the chosen side.

. Thus

r̄n(X) = EΘ

[∑n
i=1 Yi1[Xi∈An(X,Θ)]∑n

i=1 1[Xi∈An(X,Θ)]

1En(X,Θ)

]
,

where

En(X,Θ) =

[
n∑

i=1

1[Xi∈An(X,Θ)] 6= 0

]
.
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Binary trees
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General comments

Each individual tree has exactly 2dlog2 kne (≈ kn) terminal nodes,
and each leaf has Lebesgue measure 2−dlog2 kne (≈ 1/kn).

If X has uniform distribution on [0,1]d , there will be on average
about n/kn observations per terminal node.

The choice kn = n induces a very small number of cases in the
final leaves.

This scheme is close to what the original random
forests algorithm does.
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Consistency

Theorem
Assume that the distribution of X has support on [0,1]d . Then the
random forests estimate r̄n is consistent whenever pnj log kn →∞ for
all j = 1, . . . ,d and kn/n→ 0 as n→∞.

In the purely random model, pnj = 1/d , independently of n and j ,
and consistency is ensured as long as kn →∞ and kn/n→ 0.

This is however a radically simplified version of the random forests
used in practice.

A more in-depth analysis is needed.
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Sparsity

There is empirical evidence that many signals in high-dimensional
spaces admit a sparse representation.

. Images wavelet coefficients.

. High-throughput technologies.

Sparse estimation is playing an increasingly important role in the
statistics and machine learning communities.

Several methods have recently been developed in both fields,
which rely upon the notion of sparsity.

G. Biau (UPMC) 51 / 114



Sparsity

There is empirical evidence that many signals in high-dimensional
spaces admit a sparse representation.

. Images wavelet coefficients.

. High-throughput technologies.

Sparse estimation is playing an increasingly important role in the
statistics and machine learning communities.

Several methods have recently been developed in both fields,
which rely upon the notion of sparsity.

G. Biau (UPMC) 51 / 114



Sparsity

There is empirical evidence that many signals in high-dimensional
spaces admit a sparse representation.

. Images wavelet coefficients.

. High-throughput technologies.

Sparse estimation is playing an increasingly important role in the
statistics and machine learning communities.

Several methods have recently been developed in both fields,
which rely upon the notion of sparsity.

G. Biau (UPMC) 51 / 114



Sparsity

There is empirical evidence that many signals in high-dimensional
spaces admit a sparse representation.

. Images wavelet coefficients.

. High-throughput technologies.

Sparse estimation is playing an increasingly important role in the
statistics and machine learning communities.

Several methods have recently been developed in both fields,
which rely upon the notion of sparsity.

G. Biau (UPMC) 51 / 114



Sparsity

There is empirical evidence that many signals in high-dimensional
spaces admit a sparse representation.

. Images wavelet coefficients.

. High-throughput technologies.

Sparse estimation is playing an increasingly important role in the
statistics and machine learning communities.

Several methods have recently been developed in both fields,
which rely upon the notion of sparsity.

G. Biau (UPMC) 51 / 114



Our vision

The regression function r(X) = E[Y |X] depends in fact only on a
nonempty subset S (for Strong) of the d features.

In other words, letting XS = (Xj : j ∈ S) and S = Card S, we have

r(X) = E[Y |XS ].

In the dimension reduction scenario we have in mind, the ambient
dimension d can be very large, much larger than n.

As such, the value S characterizes the sparsity of the model: The
smaller S, the sparser r .
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Sparsity and random forests

Ideally, pnj = 1/S for j ∈ S.

To stick to reality, we will rather require that pnj = (1/S)(1 + ξnj).

Such a randomization mechanism may be designed on the basis
of a test sample.

Action plan

E [r̄n(X)− r(X)]2 = E [r̄n(X)− r̃n(X)]2 + E [r̃n(X)− r(X)]2 ,

where

r̃n(X) =
n∑

i=1

EΘ [Wni(X,Θ)] r(Xi).
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i=1

EΘ [Wni(X,Θ)] r(Xi).
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Variance

Proposition

Assume that X is uniformly distributed on [0,1]d and, for all x ∈ Rd ,

σ2(x) = V[Y |X = x] ≤ σ2

for some positive constant σ2. Then, if pnj = (1/S)(1 + ξnj) for j ∈ S,

E [r̄n(X)− r̃n(X)]2 ≤ Cσ2
(

S2

S − 1

)S/2d

(1 + ξn)
kn

n(log kn)S/2d ,

where

C =
288
π

(
π log 2

16

)S/2d

.
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Bias

Proposition

Assume that X is uniformly distributed on [0,1]d and r is L-Lipschitz.
Then, if pnj = (1/S)(1 + ξnj) for j ∈ S,

E [r̃n(X)− r(X)]2 ≤ 2SL2

kn
0.75

S log 2 (1+γn)
+

[
sup

x∈[0,1]d
r2(x)

]
e−n/2kn .

The rate at which the bias decreases to 0 depends on the number
of strong variables, not on d .

kn
−(0.75/(S log 2))(1+γn) = o(kn

−2/d ) as soon as S ≤ b0.54dc.

The term e−n/2kn prevents the extreme choice kn = n.

G. Biau (UPMC) 55 / 114



Bias

Proposition

Assume that X is uniformly distributed on [0,1]d and r is L-Lipschitz.
Then, if pnj = (1/S)(1 + ξnj) for j ∈ S,

E [r̃n(X)− r(X)]2 ≤ 2SL2

kn
0.75

S log 2 (1+γn)
+

[
sup

x∈[0,1]d
r2(x)

]
e−n/2kn .

The rate at which the bias decreases to 0 depends on the number
of strong variables, not on d .

kn
−(0.75/(S log 2))(1+γn) = o(kn

−2/d ) as soon as S ≤ b0.54dc.

The term e−n/2kn prevents the extreme choice kn = n.

G. Biau (UPMC) 55 / 114



Bias

Proposition

Assume that X is uniformly distributed on [0,1]d and r is L-Lipschitz.
Then, if pnj = (1/S)(1 + ξnj) for j ∈ S,

E [r̃n(X)− r(X)]2 ≤ 2SL2

kn
0.75

S log 2 (1+γn)
+

[
sup

x∈[0,1]d
r2(x)

]
e−n/2kn .

The rate at which the bias decreases to 0 depends on the number
of strong variables, not on d .

kn
−(0.75/(S log 2))(1+γn) = o(kn

−2/d ) as soon as S ≤ b0.54dc.

The term e−n/2kn prevents the extreme choice kn = n.

G. Biau (UPMC) 55 / 114



Bias

Proposition

Assume that X is uniformly distributed on [0,1]d and r is L-Lipschitz.
Then, if pnj = (1/S)(1 + ξnj) for j ∈ S,

E [r̃n(X)− r(X)]2 ≤ 2SL2

kn
0.75

S log 2 (1+γn)
+

[
sup

x∈[0,1]d
r2(x)

]
e−n/2kn .

The rate at which the bias decreases to 0 depends on the number
of strong variables, not on d .

kn
−(0.75/(S log 2))(1+γn) = o(kn

−2/d ) as soon as S ≤ b0.54dc.

The term e−n/2kn prevents the extreme choice kn = n.

G. Biau (UPMC) 55 / 114



Main result

Theorem
If pnj = (1/S)(1 + ξnj) for j ∈ S, with ξnj log n→ 0 as n→∞, then for
the choice

kn ∝
(

L2

Ξ

)1/(1+ 0.75
S log 2 )

n1/(1+ 0.75
S log 2 )

,

we have

lim sup
n→∞

sup
(X,Y )∈FS

E [r̄n(X)− r(X)]2(
ΞL

2S log 2
0.75

) 0.75
S log 2+0.75 n

−0.75
S log 2+0.75

≤ Λ.

Take-home message

The rate n
−0.75

S log 2+0.75 is strictly faster than the usual minimax rate
n−2/(d+2) as soon as S ≤ b0.54dc.
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Dimension reduction
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Discussion — Bagging

The optimal parameter kn depends on the unknown distribution of
(X,Y ).

To correct this situation, adaptive choices of kn should preserve
the rate of convergence of the estimate.

Another route we may follow is to analyze the effect of bagging.

Biau, Cérou and Guyader (2010).
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Discussion — Choosing the pnj ’s

Imaginary scenario
The following splitting scheme is iteratively repeated at each node:

1 Select at random Mn candidate coordinates to split on.

2 If the selection is all weak, then choose one at random to split on.

3 If there is more than one strong variable elected, choose one at
random and cut.
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Discussion — Choosing the pnj ’s

Each coordinate in S will be cut with the “ideal” probability

p?n =
1
S

[
1−

(
1− S

d

)Mn
]
.

The parameter Mn should satisfy(
1− S

d

)Mn

log n→ 0 as n→∞.

This is true as soon as

Mn →∞ and
Mn

log n
→∞ as n→∞.
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Assumptions
We have at hand an independent test set D′n.

The model is linear:

Y =
∑
j∈S

ajX (j) + ε.

For a fixed node A =
∏d

j=1 Aj , fix a coordinate j and look at the
weighted conditional variance V[Y |X (j) ∈ Aj ]P(X (j) ∈ Aj).

If j ∈ S, then the best split is at the midpoint of the node, with a
variance decrease equal to a2

j /16 > 0.

If j ∈ W, the decrease of the variance is always 0, whatever the
location of the split.
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Discussion — Choosing the pnj ’s

Near-reality scenario
The following splitting scheme is iteratively repeated at each node:

1 Select at random Mn candidate coordinates to split on.

2 For each of the Mn elected coordinates, calculate the best split.

3 Select the coordinate which outputs the best within-node sum of
squares decrease, and cut.

Conclusion
For j ∈ S,

pnj ≈
1
S
(
1 + ξnj

)
,

where ξnj → 0 and satisfies the constraint ξnj log n→ 0 as n tends to
infinity, provided kn log n/n→ 0, Mn →∞ and Mn/ log n→∞.
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Outline

1 Setting

2 A random forests model

3 A small simulation study

4 Layered nearest neighbors and random forests
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Tested models

Y = r(X) + ε, with X ∼ U([0,1]d ) and ε ∼ N (0,1).

1. [Sinus] For x ∈ [0,1]d ,

r(x) = 10 sin(10πx (1)).

2. [Friedman #1] Here,

r(x) = 10 sin(πx (1)x (2)) + 20(x (3) − .05)2 + 10x (4) + 5x (5).

3. [Tree] In this example, the function r has itself a tree structure.

G. Biau (UPMC) 75 / 114
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Layered Nearest Neighbors

Definition
Let X1, . . . ,Xn be a sample of i.i.d. random vectors in Rd , d ≥ 2. An
observation Xi is said to be a LNN of a point x if the hyperrectangle
defined by x and Xi contains no other data points.

empty

x
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What is known about Ln(x)?

... a lot when X1, . . . ,Xn are uniformly distributed over [0,1]d .

For example,

ELn(x) =
2d (log n)d−1

(d − 1)!
+O

(
(log n)d−2

)
and

(d − 1)! Ln(x)

2d (log n)d−1 → 1 in probability as n→∞.

This is the problem of maxima in random vectors
(Barndorff-Nielsen and Sobel, 1966).
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Two results (Biau and Devroye, 2010)

Model
X1, . . . ,Xn are independently distributed according to some probability
density f (with probability measure µ).

Theorem
For µ-almost all x ∈ Rd , one has

Ln(x)→∞ in probability as n→∞.

Theorem
Suppose that f is λ-almost everywhere continuous. Then

(d − 1)!ELn(x)

2d (log n)d−1 → 1 as n→∞,

at µ-almost all x ∈ Rd .
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LNN regression estimation

Model
(X,Y ), (X1,Y1), . . . , (Xn,Yn) are i.i.d. random vectors of Rd × R.
Moreover, |Y | is bounded and X has a density.

The regression function r(x) = E[Y |X = x] may be estimated by

rn(x) =
1

Ln(x)

n∑
i=1

Yi1[Xi∈Ln(x)].

1 No smoothing parameter.

2 A scale-invariant estimate.

3 Intimately connected to Breiman’s random forests.
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Consistency

Theorem (Pointwise Lp-consistency)
Assume that the regression function r is λ-almost everywhere
continuous and that Y is bounded. Then, for µ-almost all x ∈ Rd and
all p ≥ 1,

E |rn(x)− r(x)|p → 0 as n→∞.

Theorem (Gobal Lp-consistency)
Under the same conditions, for all p ≥ 1,

E |rn(X)− r(X)|p → 0 as n→∞.

1 No universal consistency result with respect to r is possible.

2 The results do not impose any condition on the density.

3 They are also scale-free.
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Back to random forests

A random forest can be viewed as a weighted LNN regression estimate

r̄n(x) =
n∑

i=1

YiWni(x),

where the weights concentrate on the LNN and satisfy
n∑

i=1

Wni(x) = 1.

G. Biau (UPMC) 112 / 114



Non-adaptive strategies

Consider the non-adaptive random forests estimate

r̄n(x) =
n∑

i=1

YiWni(x).

where the weights concentrate on the LNN.Proposition

For any x ∈ Rd , assume that σ2 = V[Y |X = x] is independent of x.
Then

E [r̄n(x)− r(x)]2 ≥ σ2

ELn(x)
.
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Rate of convergence

At µ-almost all x, when f is λ-almost everywhere continuous,

E [r̄n(x)− r(x)]2 &
σ2(d − 1)!

2d (log n)d−1 .

Improving the rate of convergence
1 Stop as soon as a future rectangle split would cause a

sub-rectangle to have fewer than kn points.

2 Resort to bagging and randomize using random subsamples.
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