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I. Frontier Models and Efficiency Measures'
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The Frontier Model -1-'

e Economic Theory Koopmans (1951), Debreu (1951): “Activity Analysis”
— x € RY vector of inputs
— y € R% vector of outputs

— Production set U of physically attainable points (z,¥):
¥ = {(z,y) € RE™ | = can produce y}.

e The input (output) correspondence sets

— W can be described by its sections:

VyeVv, X(y)={zx R | (z,y) € ¥}

VeeVv, Y(z)={y €R] | (z,y) € ¥}.

— We have
V(iz,y) e ¥,z € X(y) &y €Y (x).

o
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Production set
T

Isoquants in input space
T

Vo>V,

|npu|‘ X

ou(put‘ B

e Top panel: Production set W for p =¢q = 1.

e Bottom Panels: Correspondence sets X (y) and Y (x) for p=2 and ¢ =

2

/
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The Frontier Model —2—'

e Usual Assumptions (a.o.): (Shephard, 1970)
— Free Disposability of inputs and outputs

V(z,y) € ¥, thenif 2’ > z,y/ <y, (2/,y) e ¥
— Convexity: if (x1,y1), (x2,y2) € ¥, then for all « € [0, 1] we have:
(2, y) = a(z1,y1) + (1 — a)(z2,42) € ¥

— No Free Lunches: (z,y) ¢ Vif x =0and y > 0,y # 0.

e Farrell-Debreu Efficiency scores

radial measures of distance to the boundary of ¥
— Input oriented: O(x,y) = inf{0 | (0z,y) € ¥} <1
— Output oriented: A(x,y) = sup{A|(z,A\y) € ¥} > 1

o
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e Top panel: 0p = |RQ|/|RP| <1 and A\p = |[NM|/|NP| > 1.
e Bottom panels: 0p = |OQ|/|OP| <1 and Ap = |OQ|/|OP| > 1

o
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The Frontier Model —3—'

¢ Extensions

— Hyperbolic Distances: adjusts simultaneously input and output levels
(Féare et al., 1985, Fare and Grosskopf, 2004).

v(z,y|¥) = sup{y > 0|(v'z,vy) € ¥}.

— Directional Distances: Projection of (z,y) onto the technology frontier in a
direction d = (—d,, d,). (Chambers et al., 1998, Fire and Grosskopf, 2000).

(x,y|ds,d,, ¥) = sup{d|(x — éd,,y + dd,) € ¥}

* Additive: allow negative values of x and/or y.

*x Special cases:
- Ifd=(—x,0) with z > 0: (x,y|ds,dy, V) =1 — 0(x,y|P) !
- It d=(0,y) withy >0: 6(z,yld,,d,, ¥) = Az, y|¥) -1
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The Frontier Model -4-'

e Under free disposability, characterization of the technology
— d(z,yldy, d,, V) > 0 if and only if (z,y) € ¥
— 0(x,y|dy,dy, V) =0 if (z,y) is on the frontier.

Production set
T T

Output

e Presentation today and below: Radial cases, but can be extended (Wilson,
K 2011, Simar and Vanhems, 2012, Simar, Vanhems and Wilson, 2012) /
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II. The Statistical Paradigm'




Nonparametric Frontier Analysis: recent developments and new challenges

The Statistical Paradigm'

e In practice, ¥ is unknown

= 0(z,y) and/or \(z,y) are also unknown.

e Estimation based on a sample X = {(z;,v;), i =1,...,n}

Isoquants in input space

Production set 12 :

8 T

input1: X,
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The Statistical Paradigm -2-'

e Different Approaches
— Deterministic Frontiers: Prob {(z;,y;) € ¥} =1, pour tout i = 1,...,n.

*x No noise on the data, no random shocks ...
« Distance to frontier is pure inefficiency.

* Drawback: sensitivity to outliers (superefficient units or errors)

— Stochastic Frontiers

* Random noise: some observations may ¢ W.
« Distance to frontier has 2 components (noise and inefficiency)
x Drawback: identification problems

e Different Models: for frontier function and for the law of (X,Y), F(x,v)
— Parametric Models: very restrictive, standard methods (MLE, OLS,...)

e.g. SFA Y, = ' X; +V; — U;, where V; ~ N(0,0%),U; ~ NT(0,0%,), indep.

— Nonparametric Models: very flexible but more difficult and more challenging.
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Choosing a Model: A Summary'

Models

Parametric P

Nonparametric NP

Deterministic D

Analytical models for frontier

and for F(zx,y)

No specific model for frontier

and for F(x,y)

Stochastic S

Analytical models for frontier

for F'(x,y) including noise

No specific model for frontier
and for F(x,y) including noise

(Some structure on noise)

o

Remarks:

- DCSand PCNP

— Horizontal and Vertical comparisons are legitimate and may be useful.

— Semiparametric Models: combine P and NP (see below)
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Choosing a Model: Inference'

Inference is:

Parametric P

Nonparametric NP

Deterministic D

Very Easy
COLS, MOLS, MLE (restrictive)
Two-stages: P fit of NP

Bootstrap for efficiency scores

Easy
FDH: ﬁn(a:,y) = F(z,y)
DEA: convexify FDH
Bootstrap

Stochastic S

Easy
MOLS, MLE (restricted models)
Identification problems
(noise vs inefficency)

Sensitivity: Bagging

Complicated
Identification problems
(deconvolution problem)

Localizing P and SFDH/SDE/

Semi-(non)parametric models

>

Bootstrap is needed almost everywhere!

/
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The Statistical Paradigm -3-'

e Statistical Inference

Estimation individual inefficiencies (“rankings”)
Confidence intervals for these measures

Specification tests

x Aggregation of inputs and/or outputs

« Relevance of the chosen variables

Hypothesis testing on the shape of the efficient frontier (“technology”)
x Convexity

* Returns to scale (increasing/decreasing/constant)

Evolution over time

*x Panel data
« (Gain or loss of productivity?

« Technical progress or gain of efficiency?
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The Literature I

Parametric deterministic or stochastic frontier models: hundreds of

papers in Econometric literature (Journal of Econometrics,...)

Easier but are the parametric assumptions reasonable ones?

Nonparametric deterministic frontier models: thousands of papers in

hundreds of different journals (Management sciences, OR, Econometrics)

Very popular (flexibility) but some drawbacks (see below).

Nonparametric stochastic frontier models: very recent, very few

applications (theoretical econometric literature)

Flexible but so far, hard to use: “work in progress”...

Applications: Banks, Transports (Air, Railways,. .. ), Public Services, Municipalities, Post,
School, Education, Research, University, Insurance, Hospitals, Finance, Mutual funds,

Industry, Electric plants, Food industry, Agronomy, Macroeconomic, Economy of development,

/

Regional economy,... (Journal of Productivity Analysis)
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I1I. Nonparametric Approaches'
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Nonparametric Estimators: FDH -1-'

cloud of n data points X.
e Free Disposal Hull: FDH Deprins, Simar, Tulkens (1984)

{I}FDH<X) = {(xay) < Rﬂﬂ‘y <wi, x>z (T5,u) € X}
e FDH efficiency scores

O(zo,yo) = inf{0 | (0z0,50) € Vppr(X)}
Mzo,yo) = sup{A| (zo, \yo) € Vrpr(X)}.

e Practical computations: fast and easy (sorting algorithms)

— The set dominating points: Dy = {i | (z;,y;) € X, x; < xo, ¥ > Yo}

x

t€Dg j=1,...,p mO t€Dg j=1,...,q

o

e Envelopment Estimators: estimate W by U which “envelops” at best the

j
6(xo,yo) = min max (—;) : A(xo,Yo) = max min (y

/




Nonparametric Frontier Analysis: recent developments and new challenges

-

Nonparametric Estimators: FDH -2-'
FDH estimator
8*
7k
A
; Peon
s~ ——T1 i :
i
il I % (Xg¥y)
O -
° y)
st R e ;
Free Disposability :
2 \ - ..................
B T
0 L L L L J
0 2 4 6 8 10 12
input: x
FDH estimator Vrpy of the production set W: the e are the observations.
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Nonparametric Estimators: DEA -1-'

e Data Envelopment Analysis: DEA If ¥ is convex:

1978)

Uppa = {(z,y) € Ry < Z%yi;x > Z%—xi for (y1,...,v)

such that Z%-zl;% >0,i=1,...,n}.

1=1

e Estimation of efficiency score

O(z,y) = inf{0] (0x,y) € Uppa(X)}
(x,y) = sup{\| (2, \y) € Uppa(X)}

P

e Computation through linear programs.

Available free software: FEAR (Wilson, 2008)

o

— Take the convex hull of ¥ rpu (Farrell, 1957, Charnes, Cooper and Rhodes,

~
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Nonparametric Estimators: DEA -2-'
DEA estimator
8*
7k
6k
Yoea
5k
3k
2k
1k [ ]

0 1 1 1 1 J
0 2 4 6 8 10 12
input: x
DEA estimator ¥ pgy of the production set W: the e are the observations.
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Nonparametric Estimators: DEA -3-'

Isoquants in input space
12 T

10

.‘9 P=(X1y)

hA DEA=(X(E)EA ).y

input1: X,

Properties of DEA estimators: Relations between 0pga(z,y) and 0(z,y)?

12

/
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Statistical Inference: State of the Art -1-'

Properties: recent survey, Simar and Wilson (2008)

e Consistency and rate of convergence:
(é(a:,y) — Q(x,y)) =0,(n"7), as n — o7

— FDH: Korostelev, Simar and Tsybakov (1995a) and Park, Simar and Weiner
(2000). Rate is n=1/(P+49),

Recent Extensions: Daouia, Florens and Simar (2010)

— DEA: Korostelev, Simar and Tsybakov (1995b) and Kneip, Park and Simar

(1998). Rate is n=%/P+9t1)_ Park, Jeong and Simar (2010) (CRS case), rate is
n—2/(p+a)

e Nice! but not very useful for the practitionners.

e Curse of dimensionality: bad rates if p + ¢ 7.
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Statistical Inference: State of the Art -2-'

Is Inference possible ?

e Asymptotic sampling distribution:

n’ (é(aj,y) — 9(33,y)> ~ Q(n), asn — oo?

— FDH: Park, Simar and Weiner (2000), Badin, Simar (2009), Daouia, Florens
and Simar (2010); Q(n) is a Weibull distribution with unknown
parameters to be estimated: not easy to handle and need large sample sizes if

P + q increases.

— DEA: Gijbels, Mammen, Park and Simar (1999), Kneip, Simar and Wilson
(2008), Park, Jeong, Simar (2010); Q(n) is a Regular distribution
depending on unknown parameters but no closed forms available (untractable

for practical purposes) when p or ¢ > 1.

e No hope 7 Yes: the bootstrap.

o /
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The Bootstrap -1-'

Basic Idea

e The “Real World”: The Data Generating Process P
(s, ;) in X are realizations of iid random variables (X, Y’) with probability
density function f(z,y) with support ¥, and Prob((X7 Y) e ‘If) = 1.

— U(X) is an estimator of ¥ (FDH or DEA)
— O(z,y) = inf{0 | (0z,y) € U(X)} is an estimator of (z, y)
e The “Bootstrap World”: Consider a DGP 73, a consistent estimator of P.

U(X), and Prob((X,Y) € U(X)) = 1.
e Bootstrap Analogy:

Define a new data set X* = {(z7,y7), i = 1,...,n} drawn from P.

— \/I}(X*) is an estimator of \TJ(X): here, ‘TJ(X*) is the FDH or DEA set
computed with X'* as reference data set.

— 0*(z,y) = inf{0 | (6z,y) € V(X*)} is an estimator of 6(z, y)

o

We can use \TJ(X ) (FDH or DEA) and some appropriate f(z,y) with support
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Isoquants in input space

|nput1: X,

The Bootstrap idea:
the e are the original observations (x;, ;) generated by the unknown P, and the *

are the pseudo-observations (z7,y’) generated by the known P.

o /
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The Bootstrap -2—'

The Key Relation : If the Bootstrap is consistent, for large n,

A

0" (x.9) = 0@ )) | P~ (B.y) = 0(z,9)) | P.
— The right part is unknown and/or difficult to handle

— The left part can be approximated by Monte-Carlo simulation methods

Inference is now available

— Bias correction and Standard errors of é(x, y) are available

— Confidence intervals for 6(z,y) can be builded

How to generate X* 7 Naive bootstrap looks easy: n random drawns of
(xf,yF) from X.

But naive bootstrap is inconsistent Simar and Wilson (1998, 1999a, 1999b)

— The efficient facet, which determines in the original sample X the value of é,
appears too often, and with a fixed probability, in X* and this fixed
probability does not vanish even when n — oo.

/
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Two Solutions: see Simar and Wilson (1998, 2000, 2011a), Jeong and Simar (2006),
Kneip, Simar and Wilson (2008)

e Subsampling: draw from P pseudo-samples of size m = n” where rk < 1.

— How to chose m in practice: Simar and Wilson (2011a).

e Smoothing: Use smoothed density estimate f (x,y) and smooth the boundary
of ¥ when defining P: not easy to implement due to the double smoothing.

— Simplification: homogeneous bootstrap, Simar and Wilson (1998), similar to homoskedastic
assumption in regression. But restrictive. ..

— Consistent efficient algorithm in the heterogeneous case: Kneip, Simar and Wilson (2011).

Testing issues: Returns to scale, Simar and Wilson (2002), Comparison of groups of firms,
Simar and Zelenyuk (2006, 2007), Testing significancy of variables and/or aggregation of variables,

Simar and Wilson (2001), and work in progress (convexity,. .. ).

Extensions available: Hyperbolic distances, Wilson (2011), Directional distances,
Simar and Vanhems (2012), Simar, Vanhems and Wilson (2012).

o

/
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An Example: Program Follow Through (PFT)I

e Charnes, Cooper, Rhodes (1981): analysis of an experimental education program

administered in US schools: data for 49 schools that implemented PFT, and 21
schools that did not, for a total of 70 observations. 5 inputs and 3 outputs

— x1: Education level of the mother (percentage of high school graduates among the mothers),

— x9: Highest occupation of a family member (according a pre-arranged rating scale),
— x3: Parental visit to school index (number of visits to the school)
— x4: Parent counseling index (time spent with child on school related topics)
— x5: Number of teachers of the school.
There are three outputs (results to standard tests):
— y1: Total Reading Score (MAT: Metropolitan Achievement Test),
— yo: Total Mathematics Score (MAT) and

— y3: Coopersmith Self-Esteem Inventory (measure of self-esteem).

e We look for output efficiency of the Schools A(z,y) using DEA estimators.

~

/
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Units || A(z,y) || Units || A(z,y)

1 1.0323 50 || 1.0436
2 || 1.1093 o1 || 1.0871
3 || 1.0684 52 || 1.0000
4 1| 1.1074 o3 || 1.1465
5 || 1.0000 54 || 1.0000

e Questions:

— What is the real value of A(z,y) (bias correction, confidence intervals)?
— Comparaison of the 2 groups of school:
+ Mean of Group A (49 PFT schools): A = 1.0589
* Mean of Group B (21 Non-PFT schools): XB = 1.0384 (more efficient?)

— Is it significant?




Nonparametric Frontier Analysis: recent developments and new challenges

-

e The Bootstrap

Units Eff. Scores | Eff. Bias-Corrected Bias Std Lower Bound | Upper Bound
1 1.0323 1.0671 -0.0348 | 0.0246 1.0343 1.1268
2 1.1093 1.1387 -0.0294 | 0.0162 1.1111 1.1702
3 1.0684 1.0979 -0.0295 | 0.0186 1.0703 1.1396
4 1.1074 1.1264 -0.0190 | 0.0098 1.1094 1.1463
5 1.0000 1.0530 -0.0530 | 0.0444 1.0020 1.1651

50 1.0436 1.0725 -0.0289 | 0.0221 1.0450 1.1239
51 1.0871 1.1102 -0.0231 | 0.0125 1.0895 1.1373
52 1.0000 1.0558 -0.0558 | 0.0435 1.0021 1.1542
53 1.1465 1.1718 -0.0253 | 0.0121 1.1485 1.1954
54 1.0000 1.0520 -0.0520 | 0.0418 1.0019 1.1484

e After bias correction the mean are:
— Group A (PFT): 1.0940
— Group B (Non-PFT): 1.0740

e Formal Test: Hy: E[\NX,Y)|A] = E[ANX,Y)|B] vs Hy : E]NX,Y)|A] > E[ANX,Y)|B]
— p-value of Hy = 0.5590: = We do not reject Hj.

o
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I'V. Challenges I
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Challenges: Drawbacks of DEA /FDH and Solutions'

e Sensitivity to extreme/outliers: robust methods and/or detection of outliers

~

— Order-m frontiers: Cazals, Florens and Simar (2002), Simar (2003), Daraio and Simar
(2006), Daouia, Florens and Simar (2012).

— Order-a quantile frontiers: Aragon, Daouia and Thomas (2005), Daouia and Simar
(2005, 2007), Daouia, Florens and Simar (2008, 2010).

e Lack of Economic interpretation: Semiparametric Model, parametric
approximations of nonparametric frontiers, Simar (1992), Florens and Simar (2005), Daouia,

Florens and Simar (2008)

e Heterogeneity: How to explain inefficiency by environmental/external factors ?
— Two-stage methods, Simar and Wilson (2007, 2011b).

— Conditional measures of efficiency, Cazals, Florens and Simar (2002), Daraio and
Simar (2005, 2006, 2007a, 2007,b), Jeong, Park and Simar (2010), Badin, Daraio and Simar
(2010, 2012a, 2012Db).

e No noise is allowed: deterministic frontiers Prob((X,Y) € ¥) = 1: Nonparametric
Stochastic Frontiers?: Simar (2007), Kumbhakar, Park, Simar and Tsionas (2008), Simar
K and Zelenyuk, (2011), Kneip, Simar and Van Keilegom (2012), flexible semiparametric models./
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IV.1 Sensitivity to Outliers
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Robust Frontier —1'

Probabilitic Formulation of DGP
— The DGP: H(z,y) = Prob(X < z,Y > y), ¥ is the support of H(x,y)
— Farrell-Debreu Efficiency score (case of input orientation)

H(z,y) = Prob(X <z |Y >y) Prob(Y > y) = Fxy(z|y) Sy(y)
0(xo,yo) = Inf{0|(0x¢,yo) € ¥} = inf{0|Fx|y (0xo|yo) > 0}

— Nonparametric Estimator: Plug-in the empirical version of H(z,y)
~ 1 < ~ H,(z,y)

Ho(w,y) = =3 H(X: < 2,Y; > y), then Fypy(aly) = =2

(z,y) n; ( ) vin([Y) 7. (c0.9)

— The FDH estimators: Cazals, Florens and Simar (2002)
— \T/FDH is the support of ﬁ]n(a:, Y)
— Estimation (input) efficiency score: QA(:UO, Yo) = inf{6 | F x|y (0o|yo) > 0}

o
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Robust Frontier -2-.

Partial order frontiers. Economic interpretation (case of univariate output)

Another benchmark frontier less extreme than the ‘“full frontier”.

e Order-m: Cazals, Florens, Simar (2002)

— a unit (z,y) is benchmarked against the average maximal output reached by

m peers randomly drawn from the population of units using less input than x.

— As m — oo, order-m frontier converges to the full-frontier.

e Order-a quantile: Aragon, Daouia, Thomas (2005), Daouia and Simar (2007)

— a unit (x,y) is benchmarked against the output level not exceeded by

100(1 — )% of firms in the population of units using less input than z.

— As a — 1, order-a frontier converges to the full-frontier.
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Robust Frontier -2-.

Partial order frontiers: Mathematical definition for univariate output

e Full Frontier Benchmark:  ¢(z) = inf{y|Fy|x(y|z) > 1} and

o Less Extreme Benchmarks:

— Order-m frontier:

om(x) = FE [maX(Yl, LY X L a:]
- / (1~ [Fyx (glo)l™) dy

— Order-a quantile frontier:

gpa(l‘) — F;EX(O‘L%)
= inf{y € Ry|Fy|x(ylz) > o}

Properties

as m — 00, () = p(r) andas «a—1, pu(r) = p(x)

o /
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1 =
081 vttt _ i
- m data points y with X <=x
x :
Il
V 06f i
X
2>
L
0.4f i
¢(x)
02t i
0 | }* | tk v, | |
0 5 10 i 25 30
values of y

Picture of Fy|x(y|x) = Prob(Y < y|X < x)
[lustration of full and partial frontiers: one output with m = 6 and a = 0.80 /
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Robust Frontier -4-.

Nonparametric estimators of partial order frontier

e Plug-in principle

Do) = / “ (= By (yle)]™) dy
@a,n(aj) = inf{y € RJr’F\n,YIX(y’x) > 04}

e Properties

— 4y/n-consistency and asymptotic normality:

. c . c
Vi(@mn(r) = () = N(0,07,(2)) and vn(@an(@) — a(z)) —> N(0,05(2))
— Convergence to FDH estimator:

as m — 00, @m,n(aj) — @FDH,n(x) and as o — 17 @a,n(x) — @FDH,n(x)

e Choice of m and a: tune the percentage of points left out estimated
partial frontier, see Simar (2003), Daraio, Simar (2005, 2007a).

/
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In solid black line, the true frontier y = 2%°. In green solid, the frontier estimate, in blue
dashed the estimated order-m frontier and in dash-dot red the estimate of the order-« frontier.
In black dotted, the shifted OLS estimate and in dash-dot black, the parametric stochastic fit,

m = 20 and a = 0.95.

o

/
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Robust Frontier —5—.

Robust Nonparametric Estimator of Full-Frontier ¢(z), Daouia, Florens,
Simar (2010, 2012)

— If m =m(n) (and o = a(n)) converges to oo (to 1) when n — oo, but at a slow
rate, we obtain an estimator (after bias correction) that converges to the full

frontier with a Normal limiting distribution

— Easy to build confidence intervals for ¢(z) using Normal Tables.

— For finite n, @) (%) and @uem) () provide estimators of p(x) that will not

envelop all the data points and so, are more robust to extreme and outliers.

/
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Robust Frontier -5-.

x 10* x 10*
2r 2r
Data points Data points
1.81 FDH frontier 1.8 | == FDH frontier
phi-tilde phi-tilde
160 phi-m 160 phi-m
1.4r 1.4r
1.2 1.2
1+ 1
0.8 0.8F
0.6 0.6
0.4r 04r
0.2t 0.2t
0 h h . . . . . . ) 0 h L . . . . . . )
0 500 1000 1500 2000 2500 3000 3500 4000 4500 0 500 1000 1500 2000 2500 3000 3500 4000 4500

Post Offices in France (from Daouia, Florens, Simar, 2012).
Left panel: estimation with the 4 extreme points.

Right panel: estimation without these 4 points

o
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IV.2 Lack of Economic Interpretation'
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Parametric Approximation of Deterministic Frontiers —1—'

— Parametric models: easy economic interpretation of the model (returns to
scale, elasticities, elasticities of substitution, ...)
— Standard parametric approches: some drawbacks
— strong restrictive assumptions on the stochastic part of the models
— sensitive to extreme/outliers
— most are “regression-based” models and capture the shape of the cloud of

points near its center (not at the efficient boundary)

— Two stage semiparametric approaches: Simar (1992), Florens, Simar
(2005), Daouia, Florens, Simar (2008)

— First estimate the efficient frontier using nonparametric or robust

nonparametric methods;

— Then fit, by standard OLS, the approriate parametric model on the

obtained nonparametric frontier

~

/
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Parametric Approximation of Deterministic Frontiers —2—'

More sensible estimator of the parametric frontier model and allows for

some noise by tunning the robustness parameter.

Asymptotic theory of the resulting estimators (for fix m and fix «a):

If FDH is used as 1st step: 0, —= 6,
If order-m is used is used as 1st step: /n(0™ — 67) £ N0, Vi)
If order-a is used is used as 1st step: /n(6% — 63) £y N(0, V)

where 6y, (07", 05 ), are the pseudo-true values of the parameters of the best

approximation of the corresponding frontier ¢(x), (om(z), va(x)).

If m(n) — oo and a(n) — 1 as n — oo at appropriate rates:

0, 2500 07 259, 9o 22 g,

Multivariate case: multi-input /muti-output, see Daraio and Simar (2007a)

/
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1.2

In solid black line, the true frontier y = 2%° homoscedastic inefficiency. In cyan
solid, the FDH frontier, in blue dashed the order-m frontier and in dash-dot red the
order-« frontier. Here, m = 20 and a = .9622. In black dotted, the shifted OLS

estimate.

o /
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14

Same with 3 outliers included.
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141

121

Same with heteroscedastic inefficiency. In cyan solid, the FDH frontier estimate
in blue dashed the order-m frontier and in dash-dot red the order-a frontier. Here,
m = 20 and « = .9622. In black dotted, the shifted OLS estimate.

o

)
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14

Same with 3 outliers included.
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IV.3 Heterogeneity'




Nonparametric Frontier Analysis: recent developments and new challenges

-

Introducing Environmental Factors -1-'

e Motivation

— The analysis of productive efficiency should have two components:

1. Estimation of a production frontier (best-practice) which serve as a

benchmark against which efficiency of a producer can be measured;

2. Incorporation into the analysis of exogenous variables (Z) which are
neither inputs, nor outputs, and so are not under the control of the

producer, but which may influence the process.
— How to explain inefficiencies of firms by these factors?

— How to introduce heterogeneity in the production process?

o
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Introducing Environmental Factors -2-'

e One-stage approaches Banker and Morey (1986)

— Free disposability 7 Convexity ? RTS assumption ?
— Which direction for Z7

— What if the effect of Z changes?
(say, favorable if Z < z5 and then defavorable or neutral for Z > z)

e Two-stage approaches Simar and Wilson (2007, 2011b)
— DEA efficiency scores are regressed on Z (in an appropriate way)
— Implicit Separability Condition:
— Z does not influence ¥

— Z only affects the probability of being more or less efficient

— The second stage regression is nonstandard (correlation among efficiency

scores, bias,...): inference by bootstrap.

o

— 7 is like an input(favorable) or like an output (defavorable) = Adapt FDH/DEA

~

/
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~

Traditional 2-stage approaches'

P P

e First stage get efficiency estimates A(X;,Y;) (or 0(X;,Y;), (X, Y;),...) with
respect to ¥ (by DEA or FDH, ...)

e Second stage regression of A\(X;,Y;) on Z.
— Parametric models (truncated regression, logistic, etc,...)
— Nonparametric models (truncated, etc,...)

e Problems: ¥* = {(x,y)|Z = z, x can produce y} Simar and Wilson
(2007, 2011b):
— If U% # U, what is the Economic meaning of A(z,y) (and so, of A(X;,Y;) ),

for a unit facing environmental conditions 27

— Separability issue: condition for giving economic meaning to ¥ and X(x, Y).
“Separability” condition: W¥* =W, forall z € Z.

— Even if separability holds, Inference in second stage is nonstandard
(bootstrap).
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“Separability” Condition'

g(X)=[1—- (X -1

V* — g(X)e_(Z_2)2U Y — g(X)e_(Z_2)26_U

Left Panel: Separable, Right Panel: Not Separable
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Conditional Efficiency —1—'

e Conditional Measures Cazals, Florens, Simar (2002), Daraio Simar (2005,
2007a, 2007b), Jeong, Park, Simar (2010)
— The DGP (A Model for the Production process) is now characterized by
— F(z,y|z) =Prob(X <z,Y <y|Z =2) or
— H(z,y|z) =Prob(X <z,Y > y|Z = 2)
— The attainable set is W*: the support of F(z,y|z)
— Natural and very easy: A firm combines inputs X € R”} and outputs Y € R%
facing the environmental conditions Z € R”
— No separability conditions

— No prior information of the role of Z (favorable or not to the process)

— Note that the separability condition of 2-stages methods relies on:

U = P~* for all z.

o /
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Conditional Efficiency —2—'

e Conditional efficiency score

— Same idea as the unconditional measure:

A(l‘,y‘Z) — Sup{)‘ ‘ HXY|Z(x7)‘y’Z) > O} — Sup{)\ ‘ SY|X,Z<>‘y’x7Z) > 0}7

where

SY|X,Z(?/‘$7 Z) = HXY|Z(1’,?J‘Z>/HX§/|Z(I‘,O|Z) = Prob(Y >y ‘ X<z Z= Z)
e Nonparametric estimator: kernel smoothing on Z (here continuous)

Doi (X <2, > y)K((Z; — 2)/h)

ﬁXY,n|Z(x7y’Z =z) = oo K(Zi —=2)/h)
~ S Y >y, X, < @) K(Z, 2)
Syix,z(y|z, 2) = Yoo (X < 2)Ki(Z;, 2)
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Conditional Efficiency -3-'

e Conditional FDH efficiency estimator: Kernels with compact support,

~ N Y
ArpH(T,Y|2) = sup{\|Sy|x,z(A\y|z,2) > 0} = max { min —Z} :

(i|Xi<,||Zi—2||<h} | j=1sq UI

e Conditional FDH attainable set:

V7,0 ={(z,y) € REY | 2 > a5,y <y for i s.t. ||Z; — || < h}

e DEA versions: Convexify the FDH attainable set, see Daraio, Simar (2007b)

\IJIZ)EA - {(l’, y) S R]-)I—+q ’ z 2 Z YVidi, Y S Z YiYi
{ill|Z;—=|I<h} {illlZi—=||<h}

for ~; s.t. Z vi =1},

{illlZi—=|[<h}

XDEA(QLH?J’Z) = sup{A | (z, \y) € ‘szz)EA}-
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Conditional Efficiency —4—'

e Properties

— Optimal bandwidth selection by data-driven methods, Badin, Daraio, Simar
(2010)

— Asymptotic properties: similar to FDH/DEA with n replaced by nh", Jeong,
Park, Simar (2010)

— Allow to detect the direction of the “influence” of Z on efficiency, see Daraio,
Simar (2005, 2007a), Badin, Daraio, Simar (2012a, 2012b)

— Inference (confidence intervals) by bootstrap
— Robust versions (using order-m and order-«) are also available

— Z can be continuous, categorical or discrete
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Conditional Efficiency -5-'

e Usefulness

— Define a “pure measure of technical efficiency”, Badin, Daraio, Simar
(2012a, 2012Db)

— Eliminate most of the influence of Z on A(z,y|z) by using a flexible
location-scale nonparametric model: A(x,y|z) = u(z) + o(z)e, where u(z) and
o(z) are unspecified functions

— ¢; allows to rank firms facing different operating conditions.
e N.B.: An other approach: Florens, Simar, Van Keilegom (2011).

— First eliminate influence of Z on inputs X and outputs Y by using two flexible

location-scale nonparametric models
— The residuals are “pure inputs and outputs” X; and Y,

— Search for the frontier in these new units, to define “pure measure of technical
efficiency”

K — Full frontier and order-m frontiers /
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Conditional Efficiency, Example —1—'

e A Toy example:
— No output (Y; = 1) and one input (input orientation)

— Z has no effect on X when Z <5 and then a defavorable effect on X when
Z > b.

— The input are generated according
X, =5""1(Z; <=5)+ Z}"°1(Z; > 5) + U,

where Z; ~ U(1,10), U; ~ Expo(p = 3) and n = 100,
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Values of Z

11

Data points for Toy example
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Conditional Efficiency, Examples -2a—'

e 2 inputs/ 2 outputs : output orientation
— The efficient frontier is described by: 32 = 1.0845(z(1))03(£(2))04 — 4/(1),
- X9~ U(1,2) and Y,V ~ U(0.2,5) for j =1,2.
— The output efficient random points on the frontier are

B 1.0845(Xi(1))0.3 (Xz'(2))0'4

vy
nLeff Si+1
9 1)10. 2)\0. 1
Y2 = 1.0845(X V)3 (X )4 — v

where S; = }71-(2) / ﬁ(l) represent the generated random rays in the output space.
— The efficiencies are simulated according to exp(—U;)

— The observed output are defined by Y; =Y, .¢f * exp(—U;) where
Ui ~ Exp(py = 1/2).

— n = 100.

o
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Conditional Efficiency, Examples -2b-I

Environmental factors Z bivariate

— We generate two independent uniform variables Z; ~ U(1,4) to build the
bivariate variable Z = (Z;, Z3).

— The influence of Z on the production process is described by:
Y = (1+42x|2, —25P) « Yl(i}f * exp(—U;)
Yi(2) = (14 2% |2, —2.5%) % Yz(z}f x exp(—U;).

— Z1 pushes the efficient frontier above when far from 2.5, in both directions,

with a cubic effect,

— Z5 has no effect on the frontier or on the distribution of inefficiencies: Z, is

irrelevant.

— Note that there is no interaction between Z; and Z (independent) and no

interaction between X and ~Z.

— Remember: only n = 100 observations, with p =q¢=1r = 2!

/
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eff(x,ylz)/eff(x,y)

eff(x,ylz)/eff(x,y)

Effect of Z1 on Full frontier

O 1 1 1 1
15 2 25 3
values of Z 1
Effect of 22 on Full frontier
N O O
1 . o . OO o O
O O
osoouon Q Sk 8 © UOO%Oog@n ‘
o e O 7
O o f oo 0 00°
O 1 1 1 1
15 2 25 3 35
values of 22

Simulated example with multivariate Z. Marginal views of the surface regression of
M, y|2)/An(x,y) on z at the observed points (X3, Y;, Z;), viewed as a function of Z;

(top panel) and as a function of Z, (bottom panel).
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IV.4 Introducing Noise'
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Nonparametric Stochastic Frontiers —1—'

e Basic Idea: localize (using kernels) an anchorage parametric model, Kumbhakar,
Park, Simar, Tsionas (2007)

Yi=r(X;) + v — u

— ulX =2 ~|N(0,0%(x))| and v| X = 2 ~ N(0,02(x)) and v and v being
independent conditionally on X.

2

2(z) and o2(z) are unknown functional parameters

— r(x),0

— Estimation by Local Maximum Likelihhood method: 7(z),02(z) and o2(x)

u

are approximated by local polynomials (linear or quadratic).
— Asymptotic properties are available

— Bandwidths selection by LOO-LS cross-validation: numerical burden!

o /
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Nonparametric Stochastic Frontiers —2—'

e Multivariate extension: Simar (2007), Simar, Zelenyuk (2011)

and n € [0,7/2]97! is the amplitude (angle) of the vector y.
— The joint density fxy(z,y) induces a density on (w,n,x):
fomx(w,m,2) = folw [ n,z) frx (1, 7)
— For a given (z,y) the frontier point y°(x,y) = Xz, y) vy has a modulus:
w(y’(2,y)) = sup{w € RY | f(w | n,x) > 0}

e Back to a univariate frontier problem!

— Given (n,z) find w(y?(z,y)).

o

— Use (partial-)polar coordinates: (z,y) < (w,n,x), where w € R, is the modulus
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Isoquant in Output space

12
10 Q = (%,y"(x,y)) = (x,o(y’(X,y)).M)
8,
?(\l
‘SN 61
o
>
(@)
4,
X N
\/
’
2f R
\/
’
\O ,\/ YI |
0 2 4 6 8 10 12

Output Y,

Polar coordinates in the output space for a particular section Y (x). Output efficiency
of P = (z,y) is Mz,y) = |0Q|/|OP| = w(y’(v,y))/w(z,y) > 1.

o /
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Nonparametric Stochastic Frontiers —4—'

e The Model:

— The observations are made on noisy data in the output radial-direction

— The data {(X;,Y;), ¢ =1,...,n} have polar coordinates (w;, n;, X;)

w; = w(y?(X;,Y;)) e " e”,
where u; > 0 is inefficiency and v; is noise (E(v;|X;,Y;) = 0).

~ w(y?(X;,Y;)) is only a function of (n;, X;).

e In the log-scale, the model could be written as
logw; = r(n;, X;) — u; + v;,

with u; > 0 and E(Uz’ﬁz,Xz) = 0.

o
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Nonparametric Stochastic Frontiers -5-'

— Stochastic Versions of DEA /FDH : Two-stage procedure

— [1] “Whitening the noise”: Compute the consistent estimator of the frontier

levels 7(n;, X;) for each data points
« This gives points (X;, Y;*) where Y = exp(7(n;, X;))Y;/w;
— [2] Run a DEA (or FDH) program with reference set (X, Y;").

— Summary:
— Very encouraging results
— Computationally demanding (cross-validation for bandwidth selection)

— Below, some bivariate examples (see multivariate examples in Simar and
Zelenyuk, 2011)
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(a) n =100, puts = 0, (b) n = 103, pts = 0 + 3 outliers, (¢) n = 100, ps = 1, (d)
n = 200, pus = 1, (e) n = 500, puis = 1, (f) n = 500, pus = 2.
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Conclusions -1- I

e Nonparametric models NP are Econometric/Statistical Models

— Flexible and can be “robustified”,

— Inference is available (bootstrap)
— Noise can be introduced, but not easy:.
— Environmental factors (heterogeneity) can be introduced

— Any directional distance can be used

e P and NP are complimentary models
— NP models can be used to check (test) P models (not the contrary).
— Parametric approximations of AP models can be useful for economic analysis.

— Semiparametric models should be developed.

o /
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Conclusions -2- I

e Other challenges

Panel Data: introduce dynamic behavior of units

Theory for functions of DEA /FDH scores: Kneip, Simar and Wilson (2012)

x Useful for justifying and deriving testing procedures: Work in progress!!

x RTS, Convexity, using subsampling, Simar and Wilson (2011a),

x Testing Separabilty, Daraio, Simar and Wilson (2010), still problems. . .

* Testing by avoiding bootstrap? Kneip, Simar, Wilson (?)

Nonparametric Stochastic Frontiers

x Kneip, Simar, Van Keilegom (2012): Gaussian noise and using penalized
nonparametric techniques (sieve estimation)

* Florens, Simar (?7): Gaussian noise and deconvolution with Tikhonov

regularization.
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