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I. Frontier Models and Efficiency Measures
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The Frontier Model -1-

• Economic Theory Koopmans (1951), Debreu (1951): “Activity Analysis”

– x ∈ R
p
+ vector of inputs

– y ∈ R
q
+ vector of outputs

– Production set Ψ of physically attainable points (x, y):

Ψ = {(x, y) ∈ R
p+q
+ | x can produce y}.

• The input (output) correspondence sets

– Ψ can be described by its sections:

∀ y ∈ Ψ, X(y) = {x ∈ R
p
+ | (x, y) ∈ Ψ}

∀ x ∈ Ψ, Y (x) = {y ∈ R
q
+ | (x, y) ∈ Ψ}.

– We have

∀(x, y) ∈ Ψ , x ∈ X(y) ⇔ y ∈ Y (x).
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• Top panel: Production set Ψ for p = q = 1.

• Bottom Panels: Correspondence sets X(y) and Y (x) for p = 2 and q = 2
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The Frontier Model -2-

• Usual Assumptions (a.o.): (Shephard, 1970)

– Free Disposability of inputs and outputs

∀(x, y) ∈ Ψ, then if x′ ≥ x, y′ ≤ y, (x′, y′) ∈ Ψ

– Convexity: if (x1, y1), (x2, y2) ∈ Ψ, then for all α ∈ [0, 1] we have:

(x, y) = α(x1, y1) + (1− α)(x2, y2) ∈ Ψ

– No Free Lunches: (x, y) /∈ Ψ if x = 0 and y ≥ 0, y &= 0.

• Farrell-Debreu Efficiency scores

radial measures of distance to the boundary of Ψ

– Input oriented: θ(x, y) = inf{θ | (θx, y) ∈ Ψ} ≤ 1

– Output oriented: λ(x, y) = sup{λ | (x,λy) ∈ Ψ} ≥ 1
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The Frontier Model -3-

• Extensions

– Hyperbolic Distances: adjusts simultaneously input and output levels

(Färe et al., 1985, Färe and Grosskopf, 2004).

γ(x, y|Ψ) = sup{γ > 0|(γ−1x, γy) ∈ Ψ}.

– Directional Distances: Projection of (x, y) onto the technology frontier in a

direction d = (−dx, dy). (Chambers et al., 1998, Färe and Grosskopf, 2000).

δ(x, y|dx, dy,Ψ) = sup{δ|(x − δdx, y + δdy) ∈ Ψ}.

∗ Additive: allow negative values of x and/or y.

∗ Special cases:

· If d = (−x, 0) with x > 0: δ(x, y|dx, dy,Ψ) = 1 − θ(x, y|Ψ)−1

· If d = (0, y) with y > 0: δ(x, y|dx, dy,Ψ) = λ(x, y|Ψ)−1 − 1
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The Frontier Model -4-

• Under free disposability, characterization of the technology

– δ(x, y|dx, dy,Ψ) ≥ 0 if and only if (x, y) ∈ Ψ

– δ(x, y|dx, dy,Ψ) = 0 if (x, y) is on the frontier.
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• Presentation today and below: Radial cases, but can be extended (Wilson,

2011, Simar and Vanhems, 2012, Simar, Vanhems and Wilson, 2012)
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II. The Statistical Paradigm
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The Statistical Paradigm

• In practice, Ψ is unknown

⇒ θ(x, y) and/or λ(x, y) are also unknown.

• Estimation based on a sample X = {(xi, yi), i = 1, . . . , n}
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The Statistical Paradigm -2-

• Different Approaches

– Deterministic Frontiers: Prob {(xi, yi) ∈ Ψ} = 1, pour tout i = 1, . . . , n.

∗ No noise on the data, no random shocks . . .

∗ Distance to frontier is pure inefficiency.

∗ Drawback: sensitivity to outliers (superefficient units or errors)

– Stochastic Frontiers

∗ Random noise: some observations may /∈ Ψ.

∗ Distance to frontier has 2 components (noise and inefficiency)

∗ Drawback: identification problems

• Different Models: for frontier function and for the law of (X, Y ), F (x, y)

– Parametric Models: very restrictive, standard methods (MLE, OLS,. . . )

e.g. SFA Yi = β′Xi + Vi − Ui, where Vi ∼ N(0, σ2
V ), Ui ∼ N+(0, σ2

U), indep.

– Nonparametric Models: very flexible but more difficult and more challenging.
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Choosing a Model: A Summary

Models Parametric P Nonparametric NP

Deterministic D Analytical models for frontier No specific model for frontier

and for F (x, y) and for F (x, y)

Stochastic S Analytical models for frontier No specific model for frontier

for F (x, y) including noise and for F (x, y) including noise

(Some structure on noise)

Remarks:

– D ⊆ S and P ⊆ NP

– Horizontal and Vertical comparisons are legitimate and may be useful.

– Semiparametric Models: combine P and NP (see below)
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Choosing a Model: Inference

Inference is: Parametric P Nonparametric NP

Deterministic D Very Easy Easy

COLS, MOLS, MLE (restrictive) FDH: F̂n(x, y) ⇒ F (x, y)

Two-stages: P fit of NP DEA: convexify FDH

Bootstrap for efficiency scores Bootstrap

Stochastic S Easy Complicated

MOLS, MLE (restricted models) Identification problems

Identification problems (deconvolution problem)

(noise vs inefficency) Localizing P and SFDH/SDEA

Sensitivity: Bagging Semi-(non)parametric models

Bootstrap is needed almost everywhere!
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The Statistical Paradigm -3-

• Statistical Inference

– Estimation individual inefficiencies (“rankings”)

– Confidence intervals for these measures

– Specification tests

∗ Aggregation of inputs and/or outputs

∗ Relevance of the chosen variables

– Hypothesis testing on the shape of the efficient frontier (“technology”)

∗ Convexity

∗ Returns to scale (increasing/decreasing/constant)

– Evolution over time

∗ Panel data

∗ Gain or loss of productivity?

∗ Technical progress or gain of efficiency?
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The Literature

• Parametric deterministic or stochastic frontier models: hundreds of

papers in Econometric literature (Journal of Econometrics,. . . )

Easier but are the parametric assumptions reasonable ones?

• Nonparametric deterministic frontier models: thousands of papers in

hundreds of different journals (Management sciences, OR, Econometrics)

Very popular (flexibility) but some drawbacks (see below).

• Nonparametric stochastic frontier models: very recent, very few

applications (theoretical econometric literature)

Flexible but so far, hard to use: “work in progress”. . .

• Applications: Banks, Transports (Air, Railways,. . . ), Public Services, Municipalities, Post,

School, Education, Research, University, Insurance, Hospitals, Finance, Mutual funds,

Industry, Electric plants, Food industry, Agronomy, Macroeconomic, Economy of development,

Regional economy,. . . (Journal of Productivity Analysis)
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III. Nonparametric Approaches



Nonparametric Frontier Analysis: recent developments and new challenges 18!

"

#

$

Nonparametric Estimators: FDH -1-

• Envelopment Estimators: estimate Ψ by Ψ̂ which “envelops” at best the

cloud of n data points X .

• Free Disposal Hull: FDH Deprins, Simar, Tulkens (1984)

Ψ̂FDH(X ) =
{
(x, y) ∈ R

p+q
+ |y ≤ yi, x ≥ xi, (xi, yi) ∈ X

}

• FDH efficiency scores

θ̂(x0, y0) = inf{θ | (θx0, y0) ∈ Ψ̂FDH(X )}
λ̂(x0, y0) = sup{λ | (x0,λy0) ∈ Ψ̂FDH(X )}.

• Practical computations: fast and easy (sorting algorithms)

– The set dominating points: D0 = {i | (xi, yi) ∈ X , xi ≤ x0, yi ≥ y0}

θ̂(x0, y0) = min
i∈D0

max
j=1,...,p

(
xj
i

xj
0

)

; λ̂(x0, y0) = max
i∈D0

min
j=1,...,q

(
yj
i

yj
0

)
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Nonparametric Estimators: FDH -2-
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Nonparametric Estimators: DEA -1-

• Data Envelopment Analysis: DEA If Ψ is convex:

– Take the convex hull of Ψ̂FDH (Farrell, 1957, Charnes, Cooper and Rhodes,

1978)

Ψ̂DEA = {(x, y) ∈ IRp+q|y ≤
n∑

i=1

γiyi; x ≥
n∑

i=1

γixi for (γ1, . . . , γn)

such that
n∑

i=1

γi = 1; γi ≥ 0, i = 1, . . . , n}.

• Estimation of efficiency score

θ̂(x, y) = inf{θ | (θx, y) ∈ Ψ̂DEA(X )}
λ̂(x, y) = sup{λ | (x,λy) ∈ Ψ̂DEA(X )}

• Computation through linear programs.

Available free software: FEAR (Wilson, 2008)
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Nonparametric Estimators: DEA -2-
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Nonparametric Estimators: DEA -3-
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Properties of DEA estimators: Relations between θ̂DEA(x, y) and θ(x, y)?



Nonparametric Frontier Analysis: recent developments and new challenges 23!

"

#

$

Statistical Inference: State of the Art -1-

Properties: recent survey, Simar and Wilson (2008)

• Consistency and rate of convergence:
(
θ̂(x, y)− θ(x, y)

)
= Op(n

−τ), as n → ∞?

– FDH: Korostelev, Simar and Tsybakov (1995a) and Park, Simar and Weiner

(2000). Rate is n−1/(p+q).

Recent Extensions: Daouia, Florens and Simar (2010)

– DEA: Korostelev, Simar and Tsybakov (1995b) and Kneip, Park and Simar

(1998). Rate is n−2/(p+q+1). Park, Jeong and Simar (2010) (CRS case), rate is

n−2/(p+q).

• Nice! but not very useful for the practitionners.

• Curse of dimensionality: bad rates if p+ q ↑.
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Statistical Inference: State of the Art -2-

Is Inference possible ?

• Asymptotic sampling distribution:

nτ
(
θ̂(x, y)− θ(x, y)

)
∼ Q(η), as n → ∞?

– FDH: Park, Simar and Weiner (2000), Badin, Simar (2009), Daouia, Florens

and Simar (2010); Q(η) is a Weibull distribution with unknown

parameters to be estimated: not easy to handle and need large sample sizes if

p+ q increases.

– DEA: Gijbels, Mammen, Park and Simar (1999), Kneip, Simar and Wilson

(2008), Park, Jeong, Simar (2010); Q(η) is a Regular distribution

depending on unknown parameters but no closed forms available (untractable

for practical purposes) when p or q > 1.

• No hope ? Yes: the bootstrap.
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The Bootstrap -1-

Basic Idea

• The “Real World” : The Data Generating Process P
(xi, yi) in X are realizations of iid random variables (X, Y ) with probability

density function f(x, y) with support Ψ, and Prob
(
(X, Y ) ∈ Ψ

)
= 1.

– Ψ̂(X ) is an estimator of Ψ (FDH or DEA)

– θ̂(x, y) = inf{θ | (θx, y) ∈ Ψ̂(X )} is an estimator of θ(x, y)

• The “Bootstrap World” : Consider a DGP P̂ , a consistent estimator of P .

We can use Ψ̂(X ) (FDH or DEA) and some appropriate f̂(x, y) with support

Ψ̂(X ), and Prob
(
(X, Y ) ∈ Ψ̂(X )

)
= 1.

• Bootstrap Analogy:

Define a new data set X ∗ = {(x∗
i , y

∗
i ), i = 1, . . . , n} drawn from P̂ .

– Ψ̂(X ∗) is an estimator of Ψ̂(X ): here, Ψ̂(X ∗) is the FDH or DEA set

computed with X ∗ as reference data set.

– θ̂∗(x, y) = inf{θ | (θx, y) ∈ Ψ̂(X ∗)} is an estimator of θ̂(x, y)
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the • are the original observations (xi, yi) generated by the unknown P , and the *
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i ) generated by the known P̂ .
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The Bootstrap -2-

• The Key Relation : If the Bootstrap is consistent, for large n,

(θ̂∗(x, y)− θ̂(x, y)) | P̂ ≈ (θ̂(x, y)− θ(x, y)) | P .

– The right part is unknown and/or difficult to handle

– The left part can be approximated by Monte-Carlo simulation methods

• Inference is now available

– Bias correction and Standard errors of θ̂(x, y) are available

– Confidence intervals for θ(x, y) can be builded

• How to generate X ∗ ? Naive bootstrap looks easy: n random drawns of

(x∗
i , y

∗
i ) from X .

• But naive bootstrap is inconsistent Simar and Wilson (1998, 1999a, 1999b)

– The efficient facet, which determines in the original sample X the value of θ̂,

appears too often, and with a fixed probability, in X ∗ and this fixed

probability does not vanish even when n → ∞.



Nonparametric Frontier Analysis: recent developments and new challenges 28!

"

#

$

The Bootstrap -3-

Two Solutions: see Simar and Wilson (1998, 2000, 2011a), Jeong and Simar (2006),

Kneip, Simar and Wilson (2008)

• Subsampling: draw from P̂ pseudo-samples of size m = nκ where κ < 1.

– How to chose m in practice: Simar and Wilson (2011a).

• Smoothing: Use smoothed density estimate f̂(x, y) and smooth the boundary
of Ψ̂ when defining P̂: not easy to implement due to the double smoothing.

– Simplification: homogeneous bootstrap, Simar and Wilson (1998), similar to homoskedastic

assumption in regression. But restrictive. . .

– Consistent efficient algorithm in the heterogeneous case: Kneip, Simar and Wilson (2011).

Testing issues: Returns to scale, Simar and Wilson (2002), Comparison of groups of firms,

Simar and Zelenyuk (2006, 2007), Testing significancy of variables and/or aggregation of variables,

Simar and Wilson (2001), and work in progress (convexity,. . . ).

Extensions available: Hyperbolic distances, Wilson (2011), Directional distances,

Simar and Vanhems (2012), Simar, Vanhems and Wilson (2012).
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An Example: Program Follow Through (PFT)

• Charnes, Cooper, Rhodes (1981): analysis of an experimental education program
administered in US schools: data for 49 schools that implemented PFT, and 21
schools that did not, for a total of 70 observations. 5 inputs and 3 outputs

– x1: Education level of the mother (percentage of high school graduates among the mothers),

– x2: Highest occupation of a family member (according a pre-arranged rating scale),

– x3: Parental visit to school index (number of visits to the school)

– x4: Parent counseling index (time spent with child on school related topics)

– x5: Number of teachers of the school.

There are three outputs (results to standard tests):

– y1: Total Reading Score (MAT: Metropolitan Achievement Test),

– y2: Total Mathematics Score (MAT) and

– y3: Coopersmith Self-Esteem Inventory (measure of self-esteem).

• We look for output efficiency of the Schools λ(x, y) using DEA estimators.
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Units λ̂(x, y) Units λ̂(x, y)

1 1.0323 50 1.0436

2 1.1093 51 1.0871

3 1.0684 52 1.0000

4 1.1074 53 1.1465

5 1.0000 54 1.0000
...

...
...

...

• Questions:

– What is the real value of λ(x, y) (bias correction, confidence intervals)?

– Comparaison of the 2 groups of school:

∗ Mean of Group A (49 PFT schools): λ̂A = 1.0589

∗ Mean of Group B (21 Non-PFT schools): λ̂B = 1.0384 (more efficient?)

– Is it significant?



Nonparametric Frontier Analysis: recent developments and new challenges 31!

"

#

$

• The Bootstrap

Units Eff. Scores Eff. Bias-Corrected Bias Std Lower Bound Upper Bound

1 1.0323 1.0671 -0.0348 0.0246 1.0343 1.1268

2 1.1093 1.1387 -0.0294 0.0162 1.1111 1.1702

3 1.0684 1.0979 -0.0295 0.0186 1.0703 1.1396

4 1.1074 1.1264 -0.0190 0.0098 1.1094 1.1463

5 1.0000 1.0530 -0.0530 0.0444 1.0020 1.1651

50 1.0436 1.0725 -0.0289 0.0221 1.0450 1.1239

51 1.0871 1.1102 -0.0231 0.0125 1.0895 1.1373

52 1.0000 1.0558 -0.0558 0.0435 1.0021 1.1542

53 1.1465 1.1718 -0.0253 0.0121 1.1485 1.1954

54 1.0000 1.0520 -0.0520 0.0418 1.0019 1.1484

• After bias correction the mean are:

– Group A (PFT): 1.0940

– Group B (Non-PFT): 1.0740

• Formal Test: H0 : E[λ(X,Y )|A] = E[λ(X,Y )|B] vs H0 : E[λ(X,Y )|A] > E[λ(X,Y )|B]

– p-value of H0 = 0.5590: ⇒ We do not reject H0.
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IV. Challenges
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Challenges: Drawbacks of DEA/FDH and Solutions

• Sensitivity to extreme/outliers: robust methods and/or detection of outliers

– Order-m frontiers: Cazals, Florens and Simar (2002), Simar (2003), Daraio and Simar

(2006), Daouia, Florens and Simar (2012).

– Order-α quantile frontiers: Aragon, Daouia and Thomas (2005), Daouia and Simar

(2005, 2007), Daouia, Florens and Simar (2008, 2010).

• Lack of Economic interpretation: Semiparametric Model, parametric

approximations of nonparametric frontiers, Simar (1992), Florens and Simar (2005), Daouia,

Florens and Simar (2008)

• Heterogeneity: How to explain inefficiency by environmental/external factors ?

– Two-stage methods, Simar and Wilson (2007, 2011b).

– Conditional measures of efficiency, Cazals, Florens and Simar (2002), Daraio and

Simar (2005, 2006, 2007a, 2007,b), Jeong, Park and Simar (2010), Badin, Daraio and Simar

(2010, 2012a, 2012b).

• No noise is allowed: deterministic frontiers Prob
(
(X,Y ) ∈ Ψ

)
= 1: Nonparametric

Stochastic Frontiers?: Simar (2007), Kumbhakar, Park, Simar and Tsionas (2008), Simar

and Zelenyuk, (2011), Kneip, Simar and Van Keilegom (2012), flexible semiparametric models.
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IV.1 Sensitivity to Outliers
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Robust Frontier -1

Probabilitic Formulation of DGP

– The DGP: H(x, y) = Prob(X ≤ x, Y ≥ y), Ψ is the support of H(x, y)

– Farrell-Debreu Efficiency score (case of input orientation)

H(x, y) = Prob(X ≤ x |Y ≥ y) Prob(Y ≥ y) = FX|Y (x|y)SY (y)

θ(x0, y0) = inf{θ|(θx0, y0) ∈ Ψ} = inf{θ|FX|Y (θx0|y0) > 0}

– Nonparametric Estimator: Plug-in the empirical version of H(x, y)

Ĥn(x, y) =
1

n

n∑

i=1

1I(Xi ≤ x, Yi ≥ y), then F̂X|Y,n(x|y) =
Ĥn(x, y)

Ĥn(∞, y)

– The FDH estimators: Cazals, Florens and Simar (2002)

– Ψ̂FDH is the support of Ĥn(x, y)

– Estimation (input) efficiency score: θ̂(x0, y0) = inf{θ | F̂X|Y,n(θx0|y0) > 0}
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Robust Frontier -2-

Partial order frontiers. Economic interpretation (case of univariate output)

Another benchmark frontier less extreme than the “full frontier”.

• Order-m: Cazals, Florens, Simar (2002)

– a unit (x, y) is benchmarked against the average maximal output reached by

m peers randomly drawn from the population of units using less input than x.

– As m → ∞, order-m frontier converges to the full-frontier.

• Order-α quantile: Aragon, Daouia, Thomas (2005), Daouia and Simar (2007)

– a unit (x, y) is benchmarked against the output level not exceeded by

100(1− α)% of firms in the population of units using less input than x.

– As α → 1, order-α frontier converges to the full-frontier.
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Robust Frontier -2-

Partial order frontiers: Mathematical definition for univariate output

• Full Frontier Benchmark: ϕ(x) = inf{y|FY |X(y|x) ≥ 1} and

• Less Extreme Benchmarks:

– Order-m frontier:

ϕm(x) = E
[
max(Y 1, . . . , Y m)|X ≤ x

]

=

∫ ∞

0

(1− [FY |X(y|x)]m) dy

– Order-α quantile frontier:

ϕα(x) = F−1
Y |X(α|x)

= inf{y ∈ R+|FY |X(y|x) ≥ α}

Properties

as m → ∞, ϕm(x) → ϕ(x) and as α → 1, ϕα(x) → ϕ(x)
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Robust Frontier -3-
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Illustration of full and partial frontiers: one output with m = 6 and α = 0.80
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Robust Frontier -4-

Nonparametric estimators of partial order frontier

• Plug-in principle

ϕ̂m,n(x) =

∫ ∞

0

(1− [F̂n,Y |X(y|x)]m) dy

ϕ̂α,n(x) = inf{y ∈ R+|F̂n,Y |X(y|x) ≥ α}

• Properties

–
√
n-consistency and asymptotic normality:

√
n(ϕ̂m,n(x)− ϕm(x))

L−→ N (0, σ2
m(x)) and

√
n(ϕ̂α,n(x)− ϕα(x))

L−→ N (0, σ2
α(x))

– Convergence to FDH estimator:

as m → ∞, ϕ̂m,n(x) → ϕ̂FDH,n(x) and as α → 1, ϕ̂α,n(x) → ϕ̂FDH,n(x)

• Choice of m and α: tune the percentage of points left out estimated

partial frontier, see Simar (2003), Daraio, Simar (2005, 2007a).
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In solid black line, the true frontier y = x0.5. In green solid, the FDH frontier estimate, in blue

dashed the estimated order-m frontier and in dash-dot red the estimate of the order-α frontier.

In black dotted, the shifted OLS estimate and in dash-dot black, the parametric stochastic fit,

m = 20 and α = 0.95.
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Robust Frontier -5-

Robust Nonparametric Estimator of Full-Frontier ϕ(x), Daouia, Florens,

Simar (2010, 2012)

– If m = m(n) (and α = α(n)) converges to ∞ (to 1) when n → ∞, but at a slow

rate, we obtain an estimator (after bias correction) that converges to the full

frontier with a Normal limiting distribution

– Easy to build confidence intervals for ϕ(x) using Normal Tables.

– For finite n, ϕ̂m(n),n(x) and ϕ̂α(n),n(x) provide estimators of ϕ(x) that will not

envelop all the data points and so, are more robust to extreme and outliers.
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Robust Frontier -5-
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Post Offices in France (from Daouia, Florens, Simar, 2012).

Left panel: estimation with the 4 extreme points.

Right panel: estimation without these 4 points
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IV.2 Lack of Economic Interpretation
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Parametric Approximation of Deterministic Frontiers -1-

– Parametric models: easy economic interpretation of the model (returns to

scale, elasticities, elasticities of substitution, . . . )

– Standard parametric approches: some drawbacks

– strong restrictive assumptions on the stochastic part of the models

– sensitive to extreme/outliers

– most are “regression-based” models and capture the shape of the cloud of

points near its center (not at the efficient boundary)

– Two stage semiparametric approaches: Simar (1992), Florens, Simar

(2005), Daouia, Florens, Simar (2008)

– First estimate the efficient frontier using nonparametric or robust

nonparametric methods;

– Then fit, by standard OLS, the approriate parametric model on the

obtained nonparametric frontier
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Parametric Approximation of Deterministic Frontiers -2-

– More sensible estimator of the parametric frontier model and allows for

some noise by tunning the robustness parameter.

– Asymptotic theory of the resulting estimators (for fix m and fix α):

If FDH is used as 1st step: θ̂n
p−→ θ0

If order-m is used is used as 1st step:
√
n(θ̂mn − θm0 )

L−→ Nk(0, Vm)

If order-α is used is used as 1st step:
√
n(θ̂αn − θα0 )

L−→ Nk(0, Vα)

where θ0, (θm0 , θα0 ), are the pseudo-true values of the parameters of the best

approximation of the corresponding frontier ϕ(x), (ϕm(x), ϕα(x)).

– If m(n) → ∞ and α(n) → 1 as n → ∞ at appropriate rates:

θ̂n
a.s.−→ θ0 ; θ̂m(n)

n
a.s.−→ θ0 ; θ̂α(n)n

a.s.−→ θ0

– Multivariate case: multi-input/muti-output, see Daraio and Simar (2007a)
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In solid black line, the true frontier y = x0.5 homoscedastic inefficiency. In cyan

solid, the FDH frontier, in blue dashed the order-m frontier and in dash-dot red the

order-α frontier. Here, m = 20 and α = .9622. In black dotted, the shifted OLS

estimate.
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Same with 3 outliers included.
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Same with heteroscedastic inefficiency. In cyan solid, the FDH frontier estimate,

in blue dashed the order-m frontier and in dash-dot red the order-α frontier. Here,

m = 20 and α = .9622. In black dotted, the shifted OLS estimate.
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Same with 3 outliers included.



Nonparametric Frontier Analysis: recent developments and new challenges 50!

"

#

$

IV.3 Heterogeneity
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Introducing Environmental Factors -1-

• Motivation

– The analysis of productive efficiency should have two components:

1. Estimation of a production frontier (best-practice) which serve as a

benchmark against which efficiency of a producer can be measured;

2. Incorporation into the analysis of exogenous variables (Z) which are

neither inputs, nor outputs, and so are not under the control of the

producer, but which may influence the process.

– How to explain inefficiencies of firms by these factors?

– How to introduce heterogeneity in the production process?
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Introducing Environmental Factors -2-

• One-stage approaches Banker and Morey (1986)

– Z is like an input(favorable) or like an output (defavorable) ⇒ Adapt FDH/DEA

– Free disposability ? Convexity ? RTS assumption ?

– Which direction for Z?

– What if the effect of Z changes?

(say, favorable if Z ≤ z0 and then defavorable or neutral for Z > z0)

• Two-stage approaches Simar and Wilson (2007, 2011b)

– DEA efficiency scores are regressed on Z (in an appropriate way)

– Implicit Separability Condition:

– Z does not influence Ψ

– Z only affects the probability of being more or less efficient

– The second stage regression is nonstandard (correlation among efficiency

scores, bias,. . . ): inference by bootstrap.
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Traditional 2-stage approaches

• First stage get efficiency estimates λ̂(Xi, Yi) (or θ̂(Xi, Yi), γ̂(Xi, Yi),. . . ) with

respect to Ψ̂ (by DEA or FDH, . . . )

• Second stage regression of λ̂(Xi, Yi) on Z.

– Parametric models (truncated regression, logistic, etc,. . . )

– Nonparametric models (truncated, etc,. . . )

• Problems: Ψz = {(x, y)|Z = z, x can produce y} Simar and Wilson

(2007, 2011b):

– If Ψz &= Ψ, what is the Economic meaning of λ(x, y) (and so, of λ̂(Xi, Yi) ),

for a unit facing environmental conditions z?

– Separability issue: condition for giving economic meaning to Ψ̂ and λ̂(x, y).

“Separability” condition: Ψz = Ψ, for all z ∈ Z.

– Even if separability holds, Inference in second stage is nonstandard

(bootstrap).
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“Separability” Condition

g(X) = [1− (X − 1)2]1/2

Y ∗ = g(X)e−(Z−2)2U Y ∗∗ = g(X)e−(Z−2)2e−U
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Left Panel: Separable, Right Panel: Not Separable
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Conditional Efficiency -1-

• Conditional Measures Cazals, Florens, Simar (2002), Daraio Simar (2005,

2007a, 2007b), Jeong, Park, Simar (2010)

– The DGP (A Model for the Production process) is now characterized by

– F (x, y|z) = Prob(X ≤ x, Y ≤ y|Z = z) or

– H(x, y|z) = Prob(X ≤ x, Y ≥ y|Z = z)

– The attainable set is Ψz: the support of F (x, y|z)

– Natural and very easy: A firm combines inputs X ∈ R
p
+ and outputs Y ∈ R

q
+

facing the environmental conditions Z ∈ Rr

– No separability conditions

– No prior information of the role of Z (favorable or not to the process)

– Note that the separability condition of 2-stages methods relies on:

Ψ ≡ Ψz for all z.
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Conditional Efficiency -2-

• Conditional efficiency score

– Same idea as the unconditional measure:

λ(x, y|z) = sup{λ | HXY |Z(x,λy|z) > 0} = sup{λ | SY |X,Z(λy|x, z) > 0},

where

SY |X,Z(y|x, z) = HXY |Z(x, y|z)/HXY |Z(x, 0|z) = Prob(Y ≥ y | X ≤ x, Z = z).

• Nonparametric estimator: kernel smoothing on Z (here continuous)

ĤXY,n|Z(x, y|Z = z) =

∑n
i=1 1I(Xi ≤ x, Yi ≥ y)K((Zi − z)/h)∑n

i=1K((Zi − z)/h)

ŜY |X,Z(y|x, z) =
∑n

i=1 1I(Yi ≥ y,Xi ≤ x)Kh(Zi, z)∑n
i=1 1I(Xi ≤ x)Kh(Zi, z)
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Conditional Efficiency -3-

• Conditional FDH efficiency estimator: Kernels with compact support,

λ̂FDH(x, y|z) = sup{λ|ŜY |X,Z(λy|x, z) > 0} = max
{i|Xi≤x,||Zi−z||≤h}

{

min
j=1,...,q

Y j
i

yj

}

.

• Conditional FDH attainable set:

Ψ̂Z
FDH = {(x, y) ∈ R

p+q
+ | x ≥ xi, y ≤ yi for i s.t. ||Zi − z|| ≤ h}

• DEA versions: Convexify the FDH attainable set, see Daraio, Simar (2007b)

Ψ̂Z
DEA = {(x, y) ∈ R

p+q
+ | x ≥

∑

{i|||Zi−z||≤h}

γixi, y ≤
∑

{i|||Zi−z||≤h}

γiyi

for γi s.t.
∑

{i|||Zi−z||≤h}

γi = 1},

λ̂DEA(x, y|z) = sup{λ | (x,λy) ∈ Ψ̂Z
DEA}.
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Conditional Efficiency -4-

• Properties

– Optimal bandwidth selection by data-driven methods, Badin, Daraio, Simar

(2010)

– Asymptotic properties: similar to FDH/DEA with n replaced by nhr, Jeong,

Park, Simar (2010)

– Allow to detect the direction of the “influence” of Z on efficiency, see Daraio,

Simar (2005, 2007a), Badin, Daraio, Simar (2012a, 2012b)

– Inference (confidence intervals) by bootstrap

– Robust versions (using order-m and order-α) are also available

– Z can be continuous, categorical or discrete
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Conditional Efficiency -5-

• Usefulness

– Define a “pure measure of technical efficiency” , Badin, Daraio, Simar

(2012a, 2012b)

– Eliminate most of the influence of Z on λ̂(x, y|z) by using a flexible

location-scale nonparametric model: λ̂(x, y|z) = µ(z) + σ(z)ε, where µ(z) and

σ(z) are unspecified functions

– ε̂i allows to rank firms facing different operating conditions.

• N.B.: An other approach: Florens, Simar, Van Keilegom (2011).

– First eliminate influence of Z on inputs X and outputs Y by using two flexible

location-scale nonparametric models

– The residuals are “pure inputs and outputs” X̃i and Ỹi

– Search for the frontier in these new units, to define “pure measure of technical

efficiency”

– Full frontier and order-m frontiers
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Conditional Efficiency, Example -1-

• A Toy example:

– No output (Yi ≡ 1) and one input (input orientation)

– Z has no effect on X when Z ≤ 5 and then a defavorable effect on X when

Z > 5.

– The input are generated according

Xi = 51.51I(Zi <= 5) + Z1.5
i 1I(Zi > 5) + Ui,

where Zi ∼ U(1, 10), Ui ∼ Expo(µ = 3) and n = 100.



Nonparametric Frontier Analysis: recent developments and new challenges 61!

"

#

$

5 10 15 20 25 30 35 40
1

2

3

4

5

6

7

8

9

10

11
 Data points for Toy example

 Values of Xi

 V
al

ue
s 

of
 Z

i

θ(x,y)

θ(x,y|z)

(x,y,z) 1 2 3 4 5 6 7 8 9 10
0.5

1

1.5

2

2.5
Effect of Z on Full frontier

values of Z

ef
f(x

,y
|z

)/e
ff(

x,
y)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4
Effect of Z on Full frontier: derivative

values of Z

de
riv

at
iv

e 
of

 Q
z

Effect of Z on the ratios θ̂n(x, y | z)/θ̂n(x, y).



Nonparametric Frontier Analysis: recent developments and new challenges 62!

"

#

$

Conditional Efficiency, Examples -2a-

• 2 inputs/ 2 outputs : output orientation

– The efficient frontier is described by: y(2) = 1.0845(x(1))0.3(x(2))0.4 − y(1).

– X(j)
i ∼ U(1, 2) and Ỹ (j)

i ∼ U(0.2, 5) for j = 1, 2.

– The output efficient random points on the frontier are

Y (1)
i,eff =

1.0845(X(1)
i )0.3(X(2)

i )0.4

Si + 1

Y (2)
i,eff = 1.0845(X(1)

i )0.3(X(2)
i )0.4 − Y (1)

i,eff .

where Si = Ỹ (2)
i /Ỹ (1)

i represent the generated random rays in the output space.

– The efficiencies are simulated according to exp(−Ui)

– The observed output are defined by Yi = Yi,eff ∗ exp(−Ui) where

Ui ∼ Exp(µU = 1/2).

– n = 100.
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Conditional Efficiency, Examples -2b-

• Environmental factors Z bivariate

– We generate two independent uniform variables Zj ∼ U(1, 4) to build the

bivariate variable Z = (Z1, Z2).

– The influence of Z on the production process is described by:

Y (1)
i = (1 + 2 ∗ |Z1 − 2.5|3) ∗ Y (1)

i,eff ∗ exp(−Ui)

Y (2)
i = (1 + 2 ∗ |Z1 − 2.5|3) ∗ Y (2)

i,eff ∗ exp(−Ui).

– Z1 pushes the efficient frontier above when far from 2.5, in both directions,

with a cubic effect,

– Z2 has no effect on the frontier or on the distribution of inefficiencies: Z2 is

irrelevant.

– Note that there is no interaction between Z1 and Z2 (independent) and no

interaction between X and Z.

– Remember: only n = 100 observations, with p = q = r = 2 !
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Smoothed nonparametric surface regression of λ̂n(x, y|z)/λ̂n(x, y) on Z1 and Z2.
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Simulated example with multivariate Z. Marginal views of the surface regression of

λ̂n(x, y|z)/λ̂n(x, y) on z at the observed points (Xi, Yi, Zi), viewed as a function of Z1

(top panel) and as a function of Z2 (bottom panel).
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IV.4 Introducing Noise
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Nonparametric Stochastic Frontiers -1-

• Basic Idea: localize (using kernels) an anchorage parametric model, Kumbhakar,

Park, Simar, Tsionas (2007)

Yi = r(Xi) + vi − ui

– u|X = x ∼ |N (0, σ2
u(x))| and v|X = x ∼ N (0, σ2

v(x)) and u and v being

independent conditionally on X.

– r(x), σ2
u(x) and σ2

v(x) are unknown functional parameters

– Estimation by Local Maximum Likelihhood method: r(x), σ2
u(x) and σ2

v(x)

are approximated by local polynomials (linear or quadratic).

– Asymptotic properties are available

– Bandwidths selection by LOO-LS cross-validation: numerical burden!
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Nonparametric Stochastic Frontiers -2-

• Multivariate extension: Simar (2007), Simar, Zelenyuk (2011)

– Use (partial-)polar coordinates: (x, y) ⇔ (ω, η, x), where ω ∈ R+ is the modulus

and η ∈ [0, π/2]q−1 is the amplitude (angle) of the vector y.

– The joint density fX,Y (x, y) induces a density on (ω, η, x):

fω,η,X(ω, η, x) = fω(ω | η, x) fη,X(η, x)

– For a given (x, y) the frontier point y∂(x, y) = λ(x, y) y has a modulus:

ω(y∂(x, y)) = sup{ω ∈ R
+ | fω(ω | η, x) > 0}

• Back to a univariate frontier problem!

– Given (η, x) find ω(y∂(x, y)).
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Nonparametric Stochastic Frontiers -3-
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Nonparametric Frontier Analysis: recent developments and new challenges 70!

"

#

$

Nonparametric Stochastic Frontiers -4-

• The Model:

– The observations are made on noisy data in the output radial-direction

– The data {(Xi, Yi), i = 1, . . . , n} have polar coordinates (ωi, ηi, Xi)

ωi = ω(y∂(Xi, Yi)) e
−ui evi ,

where ui > 0 is inefficiency and vi is noise (E(vi|Xi, Yi) = 0).

– ω(y∂(Xi, Yi)) is only a function of (ηi, Xi).

• In the log-scale, the model could be written as

logωi = r(ηi, Xi)− ui + vi,

with ui > 0 and E(vi|ηi, Xi) = 0.
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Nonparametric Stochastic Frontiers -5-

– Stochastic Versions of DEA/FDH : Two-stage procedure

– [1] “Whitening the noise”: Compute the consistent estimator of the frontier

levels r̂(ηi, Xi) for each data points

∗ This gives points (Xi, Y ∗
i ) where Y ∗

i = exp(r̂(ηi, Xi))Yi/ωi

– [2] Run a DEA (or FDH) program with reference set (Xi, Y ∗
i ).

– Summary:

– Very encouraging results

– Computationally demanding (cross-validation for bandwidth selection)

– Below, some bivariate examples (see multivariate examples in Simar and

Zelenyuk, 2011)
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Conclusions -1-

• Nonparametric models NP are Econometric/Statistical Models

– Flexible and can be “robustified”,

– Inference is available (bootstrap)

– Noise can be introduced, but not easy.

– Environmental factors (heterogeneity) can be introduced

– Any directional distance can be used

• P and NP are complimentary models

– NP models can be used to check (test) P models (not the contrary).

– Parametric approximations of NP models can be useful for economic analysis.

– Semiparametric models should be developed.
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Conclusions -2-

• Other challenges

– Panel Data: introduce dynamic behavior of units

– Theory for functions of DEA/FDH scores: Kneip, Simar and Wilson (2012)

∗ Useful for justifying and deriving testing procedures: Work in progress!!

∗ RTS, Convexity, using subsampling, Simar and Wilson (2011a),

∗ Testing Separabilty, Daraio, Simar and Wilson (2010), still problems. . .

∗ Testing by avoiding bootstrap? Kneip, Simar, Wilson (?)

– Nonparametric Stochastic Frontiers

∗ Kneip, Simar, Van Keilegom (2012): Gaussian noise and using penalized

nonparametric techniques (sieve estimation)

∗ Florens, Simar (?): Gaussian noise and deconvolution with Tikhonov

regularization.

– . . .
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