METHODOLOGICAL ADVANCES AND PERSPECTIVES IN NONPARAMETRIC FRONTIER ANALYSIS

LEUVEN - September 2012

LÉOPOLD SIMAR Institut de Statistique, Biostatistique et Sciences Actuarielles Université Catholique de Louvain, Belgium

Contents

- Frontier Models and Efficiency Measures
	- Production theory and Farell-Debreu efficiency scores
- Statistical Paradigm

✬

- Different models and Different approaches
- Nonparametric approaches
	- FDH and DEA estimators and Statistical inference
- Challenges: Drawbacks of FDH/DEA and Solutions
	- Robustness to outliers: Partial-order frontier (order- m and order- α quantile)
	- Economic interpretation of the frontier: Parametric approximations
	- Hetrogeneity: introducing Environmental Factors
	- Introducing noise: Stochastic Nonparametric Frontiers

Nonparametric Frontier Analysis: recent developments and new challenges

I. Frontier Models and Efficiency Measures

The Frontier Model -1-

- Economic Theory Koopmans (1951), Debreu (1951): "Activity Analysis"
	- $x \in \mathbb{R}_+^p$ vector of **inputs**
	- $y \in \mathbb{R}_+^q$ vector of **outputs**

– **Production set** Ψ of physically attainable points (x, y) :

 $\Psi = \{ (x, y) \in \mathbb{R}^{p+q}_+ \mid x \text{ can produce } y \}.$

• The input (output) correspondence sets

– Ψ can be described by its sections:

$$
\forall\; y\in \Psi,\;\; X(y)=\{x\in \mathbb{R}^p_+\;|\; (x,y)\in \Psi\}
$$

$$
\forall\; x\in \Psi,\;\; Y(x)=\{y\in \mathbb{R}^q_+\;|\; (x,y)\in \Psi\}.
$$

– We have

✫

✬

$$
\forall (x,y)\in \Psi\,,\,x\in X(y)\Leftrightarrow y\in Y(x).
$$

Nonparametric Frontier Analysis: recent developments and new challenges

• Bottom Panels: Correspondence sets $X(y)$ and $Y(x)$ for $p = 2$ and $q = 2$

✫

The Frontier Model -2-

- Usual Assumptions (a.o.): (Shephard, 1970)
	- Free Disposability of inputs and outputs

 $\forall (x, y) \in \Psi$, then if $x' \ge x, y' \le y$, $(x', y') \in \Psi$

– Convexity: if $(x_1, y_1), (x_2, y_2) \in \Psi$, then for all $\alpha \in [0, 1]$ we have:

$$
(x, y) = \alpha(x_1, y_1) + (1 - \alpha)(x_2, y_2) \in \Psi
$$

– No Free Lunches: $(x, y) \notin \Psi$ if $x = 0$ and $y \ge 0, y \ne 0$.

- Farrell-Debreu Efficiency scores radial measures of distance to the boundary of Ψ
	- Input oriented: $\theta(x, y) = \inf \{ \theta \mid (\theta x, y) \in \Psi \} \leq 1$
	- Output oriented: $\lambda(x, y) = \sup\{\lambda \mid (x, \lambda y) \in \Psi\} \ge 1$

Nonparametric Frontier Analysis: recent developments and new challenges

• Bottom panels: $\theta_P = |OQ|/|OP| \le 1$ and $\lambda_P = |OQ|/|OP| \ge 1$

The Frontier Model -3-

• Extensions

✬

✫

– Hyperbolic Distances: adjusts simultaneously input and output levels (Färe et al., 1985, Färe and Grosskopf, 2004).

 $\gamma(x, y|\Psi) = \sup\{\gamma > 0 | (\gamma^{-1}x, \gamma y) \in \Psi\}.$

– **Directional Distances**: Projection of (x, y) onto the technology frontier in a direction $d = (-d_x, d_y)$. (Chambers et al., 1998, Färe and Grosskopf, 2000).

 $\delta(x,y|d_x,d_y,\Psi)=\sup\{\delta|(x-\delta d_x,y+\delta d_y)\in\Psi\}.$

- *** Additive:** allow negative values of x and/or y.
- ∗ Special cases:
	- · If $d = (-x, 0)$ with $x > 0$: $\delta(x, y|d_x, d_y, \Psi) = 1 \theta(x, y|\Psi)^{-1}$
	- · If $d = (0, y)$ with $y > 0$: $\delta(x, y|d_x, d_y, \Psi) = \lambda(x, y|\Psi|)^{-1} 1$

✫

The Frontier Model -4-

- Under free disposability, characterization of the technology
	- $-\delta(x, y|d_x, d_y, \Psi) \ge 0$ if and only if $(x, y) \in \Psi$
	- $-\delta(x, y|d_x, d_y, \Psi) = 0$ if (x, y) is on the frontier.

• Presentation today and below: Radial cases, but can be extended (Wilson, 2011, Simar and Vanhems, 2012, Simar, Vanhems and Wilson, 2012)

• In practice, Ψ is unknown

✬

 $\Rightarrow \theta(x, y)$ and/or $\lambda(x, y)$ are also unknown.

• Estimation based on a sample $\mathcal{X} = \{(x_i, y_i), i = 1, \ldots, n\}$

The Statistical Paradigm -2-

• Different Approaches

✬

✫

- **Deterministic** Frontiers: Prob $\{(x_i, y_i) \in \Psi\} = 1$, pour tout $i = 1, \ldots, n$.
	- ∗ No noise on the data, no random shocks . . .
	- ∗ Distance to frontier is pure inefficiency.
	- ∗ Drawback: sensitivity to outliers (superefficient units or errors)
- Stochastic Frontiers
	- ∗ Random noise: some observations may ∈/ Ψ.
	- ∗ Distance to frontier has 2 components (noise and inefficiency)
	- ∗ Drawback: identification problems
- Different Models: for frontier function and for the law of (X, Y) , $F(x, y)$
	- Parametric Models: very restrictive, standard methods (MLE, OLS,. . .)

e.g. SFA $Y_i = \beta' X_i + V_i - U_i$, where $V_i \sim N(0, \sigma_V^2), U_i \sim N^+(0, \sigma_U^2)$, indep.

– Nonparametric Models: very flexible but more difficult and more challenging.

Choosing a Model: A Summary

Remarks:

✫

✬

- $\mathcal{D} \subseteq \mathcal{S}$ and $\mathcal{P} \subseteq \mathcal{NP}$
- Horizontal and Vertical comparisons are legitimate and may be useful.
- **Semiparametric Models**: combine P and $N P$ (see below)

✫

Choosing a Model: Inference

Bootstrap is needed almost everywhere!

The Statistical Paradigm -3-

• Statistical Inference

✬

- Estimation individual inefficiencies ("rankings")
- Confidence intervals for these measures
- Specification tests
	- ∗ Aggregation of inputs and/or outputs
	- ∗ Relevance of the chosen variables
- Hypothesis testing on the shape of the efficient frontier ("technology")
	- ∗ Convexity
	- ∗ Returns to scale (increasing/decreasing/constant)
- Evolution over time
	- ∗ Panel data
	- ∗ Gain or loss of productivity?
	- ∗ Technical progress or gain of efficiency?

✫

The Literature

• Parametric deterministic or stochastic frontier models: hundreds of papers in Econometric literature (Journal of Econometrics,. . .)

Easier but are the parametric assumptions reasonable ones?

• Nonparametric deterministic frontier models: thousands of papers in hundreds of different journals (Management sciences, OR, Econometrics)

Very popular (flexibility) but some drawbacks (see below).

• Nonparametric stochastic frontier models: very recent, very few applications (theoretical econometric literature)

Flexible but so far, hard to use: "work in progress"...

• Applications: Banks, Transports (Air, Railways,. . .), Public Services, Municipalities, Post, School, Education, Research, University, Insurance, Hospitals, Finance, Mutual funds, Industry, Electric plants, Food industry, Agronomy, Macroeconomic, Economy of development, Regional economy,. . . (Journal of Productivity Analysis)

```
III. Nonparametric Approaches
```
Nonparametric Estimators: FDH -1-

- Envelopment Estimators: estimate Ψ by $\hat{\Psi}$ which "envelops" at best the cloud of *n* data points \mathcal{X} .
- Free Disposal Hull: FDH Deprins, Simar, Tulkens (1984)

$$
\widehat{\Psi}_{FDH}(\mathcal{X}) = \left\{ (x, y) \in \mathbb{R}^{p+q}_{+} | y \leq y_i, \ x \geq x_i, \quad (x_i, y_i) \in \mathcal{X} \right\}
$$

• FDH efficiency scores

✬

$$
\hat{\theta}(x_0, y_0) = \inf \{ \theta \mid (\theta x_0, y_0) \in \widehat{\Psi}_{FDH}(\mathcal{X}) \} \n\hat{\lambda}(x_0, y_0) = \sup \{ \lambda \mid (x_0, \lambda y_0) \in \widehat{\Psi}_{FDH}(\mathcal{X}) \}.
$$

- **Practical computations**: fast and easy (sorting algorithms)
	- The set **dominating** points: $D_0 = \{i \mid (x_i, y_i) \in \mathcal{X}, x_i \le x_0, y_i \ge y_0\}$

$$
\hat{\theta}(x_0,y_0)=\min_{i\in D_0}\;\;\max_{j=1,...,p}\left(\frac{x_i^j}{x_0^j}\right); \qquad \hat{\lambda}(x_0,y_0)=\max_{i\in D_0}\;\;\min_{j=1,...,q}\left(\frac{y_i^j}{y_0^j}\right)
$$

Nonparametric Estimators: DEA -1-

- Data Envelopment Analysis: DEA If Ψ is convex:
	- Take the **convex hull** of $\widehat{\Psi}_{FDH}$ (Farrell, 1957, Charnes, Cooper and Rhodes, 1978)

$$
\widehat{\Psi}_{DEA} = \{ (x, y) \in \mathbb{R}^{p+q} | y \le \sum_{i=1}^n \gamma_i y_i; x \ge \sum_{i=1}^n \gamma_i x_i \text{ for } (\gamma_1, \dots, \gamma_n)
$$

such that
$$
\sum_{i=1}^n \gamma_i = 1; \gamma_i \ge 0, i = 1, \dots, n \}.
$$

• Estimation of efficiency score

✬

✫

$$
\hat{\theta}(x, y) = \inf \{ \theta \mid (\theta x, y) \in \widehat{\Psi}_{DEA}(\mathcal{X}) \}
$$

$$
\hat{\lambda}(x, y) = \sup \{ \lambda \mid (x, \lambda y) \in \widehat{\Psi}_{DEA}(\mathcal{X}) \}
$$

• Computation through linear programs.

Available free software: FEAR (Wilson, 2008)

Properties: recent survey, Simar and Wilson (2008)

• Consistency and rate of convergence:

✬

✫

$$
(\hat{\theta}(x,y) - \theta(x,y)) = O_p(n^{-\tau}), \text{ as } n \to \infty?
$$

– FDH: Korostelev, Simar and Tsybakov (1995a) and Park, Simar and Weiner (2000). Rate is $n^{-1/(p+q)}$.

Recent Extensions: Daouia, Florens and Simar (2010)

- DEA: Korostelev, Simar and Tsybakov (1995b) and Kneip, Park and Simar (1998). Rate is $n^{-2/(p+q+1)}$. Park, Jeong and Simar (2010) (CRS case), rate is $n^{-2/(p+q)}$.
- Nice! but not very useful for the practitionners.
- Curse of dimensionality: bad rates if $p + q \uparrow$.

Statistical Inference: State of the Art -2-

Is Inference possible ?

✬

✫

• Asymptotic sampling distribution:

$$
n^{\tau}\Big(\hat{\theta}(x,y) - \theta(x,y)\Big) \sim Q(\eta), \text{ as } n \to \infty?
$$

- FDH: Park, Simar and Weiner (2000), Badin, Simar (2009), Daouia, Florens and Simar (2010); $Q(\eta)$ is a Weibull distribution with unknown parameters to be estimated: not easy to handle and need large sample sizes if $p + q$ increases.
- DEA: Gijbels, Mammen, Park and Simar (1999), Kneip, Simar and Wilson (2008), Park, Jeong, Simar (2010); $Q(\eta)$ is a Regular distribution depending on unknown parameters but no closed forms available (untractable for practical purposes) when p or $q > 1$.
- No hope ? Yes: the bootstrap.

The Bootstrap -1-

Basic Idea

✬

✫

- The "Real World": The Data Generating Process $\mathcal P$
	- (x_i, y_i) in X are realizations of iid random variables (X, Y) with probability density function $f(x, y)$ with support Ψ , and $Prob((X, Y) \in \Psi) = 1$.
		- $\widehat{\Psi}(\mathcal{X})$ is an estimator of Ψ (FDH or DEA)
		- $-\hat{\theta}(x, y) = \inf \{ \theta \mid (\theta x, y) \in \hat{\Psi}(\mathcal{X}) \}$ is an estimator of $\theta(x, y)$
- The "Bootstrap World": Consider a DGP $\hat{\mathcal{P}}$, a consistent estimator of \mathcal{P} . We can use $\widehat{\Psi}(\mathcal{X})$ (FDH or DEA) and **some appropriate** $\widehat{f}(x, y)$ with support $\widehat{\Psi}(\mathcal{X}),$ and $\mathrm{Prob}((X,Y) \in \widehat{\Psi}(\mathcal{X})) = 1.$
- Bootstrap Analogy:

Define a new data set $\mathcal{X}^* = \{(x_i^*, y_i^*), i = 1, \ldots, n\}$ drawn from $\widehat{\mathcal{P}}$.

– $\widehat{\Psi}(\mathcal{X}^*)$ is an estimator of $\widehat{\Psi}(\mathcal{X})$: here, $\widehat{\Psi}(\mathcal{X}^*)$ is the FDH or DEA set computed with \mathcal{X}^* as reference data set.

 $-\hat{\theta}^*(x, y) = \inf \{ \theta \mid (\theta x, y) \in \hat{\Psi}(\mathcal{X}^*) \}$ is an estimator of $\hat{\theta}(x, y)$

The Bootstrap idea:

✫

the • are the original observations (x_i, y_i) generated by the **unknown P**, and the * are the pseudo-observations (x_i^*, y_i^*) generated by the **known** $\hat{\mathcal{P}}$.

The Bootstrap -2-

• The Key Relation : If the Bootstrap is consistent, for large n ,

$$
(\hat{\theta}^*(x,y) - \hat{\theta}(x,y)) | \hat{\mathcal{P}} \approx (\hat{\theta}(x,y) - \theta(x,y)) | \mathcal{P}.
$$

- The right part is **unknown** and/or difficult to handle
- The left part can be approximated by **Monte-Carlo** simulation methods
- Inference is now available

✬

- Bias correction and Standard errors of $\hat{\theta}(x, y)$ are available
- Confidence intervals for $\theta(x, y)$ can be builded
- How to generate \mathcal{X}^* ? Naive bootstrap looks easy: n random drawns of (x_i^*, y_i^*) from \mathcal{X} .
- But naive bootstrap is inconsistent Simar and Wilson (1998, 1999a, 1999b)
	- The efficient facet, which determines in the original sample X the value of θ , appears too often, and with a fixed probability, in \mathcal{X}^* and this fixed probability **does not vanish** even when $n \to \infty$.

✫

The Bootstrap -3-

Two Solutions: see Simar and Wilson (1998, 2000, 2011a), Jeong and Simar (2006), Kneip, Simar and Wilson (2008)

- Subsampling: draw from \hat{P} pseudo-samples of size $m = n^{\kappa}$ where $\kappa < 1$.
	- How to chose m in practice: Simar and Wilson (2011a).
- Smoothing: Use smoothed density estimate $\hat{f}(x, y)$ and smooth the boundary of $\widehat{\Psi}$ when defining $\widehat{\mathcal{P}}$: not easy to implement due to the double smoothing.
	- Simplification: homogeneous bootstrap, Simar and Wilson (1998), similar to homoskedastic assumption in regression. But restrictive. . .
	- Consistent efficient algorithm in the heterogeneous case: Kneip, Simar and Wilson (2011).

Testing issues: Returns to scale, Simar and Wilson (2002), Comparison of groups of firms, Simar and Zelenyuk (2006, 2007), Testing significancy of variables and/or aggregation of variables, Simar and Wilson (2001) , and work in progress $(convexity, \dots)$.

Extensions available: Hyperbolic distances, Wilson (2011), Directional distances, Simar and Vanhems (2012), Simar, Vanhems and Wilson (2012).

✫

An Example: Program Follow Through (PFT)

- Charnes, Cooper, Rhodes (1981): analysis of an experimental education program administered in US schools: data for 49 schools that implemented PFT, and 21 schools that did not, for a total of 70 observations. 5 inputs and 3 outputs
	- x_1 : Education level of the mother (percentage of high school graduates among the mothers),
	- x_2 : Highest occupation of a family member (according a pre-arranged rating scale),
	- x_3 : Parental visit to school index (number of visits to the school)
	- x_4 : Parent counseling index (time spent with child on school related topics)
	- x_5 : Number of teachers of the school.
	- There are three outputs (results to standard tests):
	- y_1 : Total Reading Score (MAT: Metropolitan Achievement Test),
	- y_2 : Total Mathematics Score (MAT) and
	- y_3 : Coopersmith Self-Esteem Inventory (measure of self-esteem).
- We look for **output efficiency** of the Schools $\lambda(x, y)$ using DEA estimators.

• Questions:

✫

✬

- What is the real value of $\lambda(x, y)$ (bias correction, confidence intervals)?
- Comparaison of the 2 groups of school:
	- ∗ Mean of Group A (49 PFT schools): $\overline{\hat{\lambda}}_A = 1.0589$
	- ∗ Mean of Group B (21 Non-PFT schools): $\overline{\hat{\lambda}}_B = 1.0384$ (more efficient?)
- Is it significant?

• The Bootstrap

✬

- After bias correction the mean are:
	- Group A (PFT): 1.0940
	- Group B (Non-PFT): 1.0740
- Formal Test: $H_0: E[\lambda(X, Y)|A] = E[\lambda(X, Y)|B]$ vs $H_0: E[\lambda(X, Y)|A] > E[\lambda(X, Y)|B]$
	- p-value of $H_0 = 0.5590$: \Rightarrow We do not reject H_0 .

Robust Frontier -1

Probabilitic Formulation of DGP

✬

✫

- The DGP: $H(x, y) = \text{Prob}(X \le x, Y \ge y)$, Ψ is the support of $H(x, y)$
- Farrell-Debreu Efficiency score (case of input orientation)

$$
H(x, y) = \text{Prob}(X \le x | Y \ge y) \text{Prob}(Y \ge y) = F_{X|Y}(x|y) S_Y(y)
$$

$$
\theta(x_0, y_0) = \inf \{ \theta | (\theta x_0, y_0) \in \Psi \} = \inf \{ \theta | F_{X|Y}(\theta x_0 | y_0) > 0 \}
$$

– **Nonparametric Estimator**: Plug-in the empirical version of $H(x, y)$

$$
\widehat{H}_n(x,y) = \frac{1}{n} \sum_{i=1}^n \mathbf{1}(X_i \le x, Y_i \ge y), \text{ then } \widehat{F}_{X|Y,n}(x|y) = \frac{\widehat{H}_n(x,y)}{\widehat{H}_n(\infty, y)}
$$

– The FDH estimators: Cazals, Florens and Simar (2002)

- $\widehat{\Psi}_{FDH}$ is the support of $\widehat{H}_n(x, y)$
- Estimation (input) efficiency score: $\theta(x_0, y_0) = \inf \{ \theta \mid F_{X|Y,n}(\theta x_0 | y_0) > 0 \}$

Robust Frontier -2-

Partial order frontiers. Economic interpretation (case of univariate output) Another benchmark frontier less extreme than the "full frontier".

• **Order-***m*: Cazals, Florens, Simar (2002)

✬

- a unit (x, y) is benchmarked against the average maximal output reached by m peers randomly drawn from the population of units using less input than x .
- As $m \to \infty$, order-m frontier converges to the full-frontier.
- **Order-** α quantile: Aragon, Daouia, Thomas (2005), Daouia and Simar (2007)
	- a unit (x, y) is benchmarked against the output level not exceeded by $100(1 - \alpha)$ % of firms in the population of units using less input than x.
	- As $\alpha \to 1$, order- α frontier converges to the **full-frontier**.
Robust Frontier -2-

Partial order frontiers: Mathematical definition for univariate output

- Full Frontier Benchmark: $\varphi(x) = \inf \{y | F_{Y|X}(y|x) \ge 1\}$ and
- Less Extreme Benchmarks:
	- Order-m frontier:

$$
\varphi_m(x) = E\left[\max(Y^1, \dots, Y^m)|X \le x\right]
$$

$$
= \int_0^\infty (1 - [F_{Y|X}(y|x)]^m) dy
$$

– Order- α quantile frontier:

$$
\varphi_{\alpha}(x) = F_{Y|X}^{-1}(\alpha|x)
$$

= inf{ $y \in \mathbb{R}_+|F_{Y|X}(y|x) \ge \alpha$ }

Properties

✫

✬

as
$$
m \to \infty
$$
, $\varphi_m(x) \to \varphi(x)$ and as $\alpha \to 1$, $\varphi_\alpha(x) \to \varphi(x)$

Robust Frontier -4-

Nonparametric estimators of partial order frontier

• Plug-in principle

$$
\hat{\varphi}_{m,n}(x) = \int_0^\infty (1 - [\widehat{F}_{n,Y|X}(y|x)]^m) dy
$$

$$
\hat{\varphi}_{\alpha,n}(x) = \inf \{ y \in \mathbb{R}_+ | \widehat{F}_{n,Y|X}(y|x) \ge \alpha \}
$$

• Properties

✬

✫

 $-\sqrt{n}$ -consistency and asymptotic normality:

 $\sqrt{n}(\hat{\varphi}_{m,n}(x) - \varphi_m(x)) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, \sigma_m^2(x))$ and $\sqrt{n}(\hat{\varphi}_{\alpha,n}(x) - \varphi_\alpha(x)) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0, \sigma_\alpha^2(x))$

– Convergence to FDH estimator:

as $m \to \infty$, $\hat{\varphi}_{m,n}(x) \to \hat{\varphi}_{FDH,n}(x)$ and as $\alpha \to 1$, $\hat{\varphi}_{\alpha,n}(x) \to \hat{\varphi}_{FDH,n}(x)$

• Choice of m and α : tune the percentage of points left out estimated partial frontier, see Simar (2003), Daraio, Simar (2005, 2007a).

✫

In solid black line, the **true** frontier $y = x^{0.5}$. In green solid, the FDH frontier estimate, in blue dashed the estimated order-m frontier and in dash-dot red the estimate of the order- α frontier. In black dotted, the shifted OLS estimate and in dash-dot black, the parametric stochastic fit, $m = 20$ and $\alpha = 0.95$.

✬

✫

Robust Frontier -5-

Robust Nonparametric Estimator of Full-Frontier $\varphi(x)$, Daouia, Florens, Simar (2010, 2012)

– If $m = m(n)$ (and $\alpha = \alpha(n)$) converges to ∞ (to 1) when $n \to \infty$, but at a slow rate, we obtain an estimator (after bias correction) that converges to the full frontier with a Normal limiting distribution

– Easy to build confidence intervals for $\varphi(x)$ using Normal Tables.

– For finite n, $\hat{\varphi}_{m(n),n}(x)$ and $\hat{\varphi}_{\alpha(n),n}(x)$ provide estimators of $\varphi(x)$ that will not envelop all the data points and so, are **more robust to extreme and outliers**.

Post Offices in France (from Daouia, Florens, Simar, 2012). Left panel: estimation with the 4 extreme points. Right panel: estimation without these 4 points

✬

 0_0^L

✫

In solid black line, the true frontier $y = x^{0.5}$ homoscedastic inefficiency. In cyan solid, the FDH frontier, in blue dashed the order- m frontier and in dash-dot red the order- α frontier. Here, $m = 20$ and $\alpha = .9622$. In black dotted, the shifted OLS estimate.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

✫

Same with **heteroscedastic inefficiency**. In cyan solid, the FDH frontier estimate, in blue dashed the order-m frontier and in dash-dot red the order- α frontier. Here, $m = 20$ and $\alpha = .9622$. In black dotted, the shifted OLS estimate.

✬

Introducing Environmental Factors -1-

• Motivation

✬

- The analysis of productive efficiency should have two components:
	- 1. Estimation of a production frontier (best-practice) which serve as a benchmark against which **efficiency** of a producer can be measured;
	- 2. Incorporation into the analysis of **exogenous variables** (Z) which are neither inputs, nor outputs, and so are not under the control of the producer, but which may influence the process.
- How to explain inefficiencies of firms by these factors?
- How to introduce heterogeneity in the production process?

Introducing Environmental Factors -2-

- One-stage approaches Banker and Morey (1986)
	- Z is like an input(favorable) or like an output (defavorable) \Rightarrow Adapt FDH/DEA
	- Free disposability ? Convexity ? RTS assumption ?
	- Which direction for Z ?

✬

- What if the effect of Z changes? (say, favorable if $Z \le z_0$ and then defavorable or neutral for $Z > z_0$)
- Two-stage approaches Simar and Wilson (2007, 2011b)
	- DEA efficiency scores are regressed on Z (in an appropriate way)
	- Implicit Separability Condition:
		- $-$ Z does not influence Ψ
		- $-$ Z only affects the probability of being more or less efficient
		- The second stage regression is nonstandard (correlation among efficiency scores, bias,...): inference by bootstrap.

Traditional 2-stage approaches

- First stage get efficiency estimates $\lambda(X_i, Y_i)$ (or $\theta(X_i, Y_i), \hat{\gamma}(X_i, Y_i), \ldots$) with respect to $\hat{\Psi}$ (by DEA or FDH, ...)
- Second stage regression of $\widehat{\lambda}(X_i, Y_i)$ on Z.

✬

✫

- Parametric models (truncated regression, logistic, etc,. ..)
- Nonparametric models (truncated, etc,. . .)
- Problems: $\Psi^z = \{(x, y) | Z = z, x \text{ can produce } y\}$ Simar and Wilson (2007, 2011b):
	- If $\Psi^z \neq \Psi$, what is the **Economic meaning** of $\lambda(x, y)$ (and so, of $\hat{\lambda}(X_i, Y_i)$), for a unit facing environmental conditions z ?
	- Separability issue: condition for giving economic meaning to $\widehat{\Psi}$ and $\widehat{\lambda}(x, y)$.

"Separability" condition: $\Psi^z = \Psi$, for all $z \in \mathcal{Z}$.

– Even if separability holds, Inference in second stage is nonstandard (bootstrap).

Left Panel: Separable, Right Panel: Not Separable

Conditional Efficiency -1-

• Conditional Measures Cazals, Florens, Simar (2002), Daraio Simar (2005, 2007a, 2007b), Jeong, Park, Simar (2010)

- **The DGP** (A Model for the Production process) is now characterized by
	- $-F(x, y|z) = \text{Prob}(X \leq x, Y \leq y|Z = z)$ or
	- $-H(x, y|z) = \text{Prob}(X \leq x, Y \geq y|Z = z)$

– The attainable set is Ψ^z : the support of $F(x, y|z)$

- **Natural and very easy:** A firm combines inputs $X \in \mathbb{R}_+^p$ and outputs $Y \in \mathbb{R}_+^q$ facing the environmental conditions $Z \in \mathbb{R}^r$
	- No separability conditions

✬

- No prior information of the role of Z (favorable or not to the process)
- Note that the separability condition of 2-stages methods relies on:

$$
\Psi \equiv \Psi^z \text{ for all } z.
$$

Conditional Efficiency -3-

• Conditional FDH efficiency estimator: Kernels with compact support,

$$
\widehat{\lambda}_{FDH}(x,y|z) = \sup \{ \lambda | \widehat{S}_{Y|X,Z}(\lambda y|x,z) > 0 \} = \max_{\{i | X_i \le x, ||Z_i - z|| \le h \}} \left\{ \min_{j=1,\dots,q} \frac{Y_i^j}{y^j} \right\}.
$$

• Conditional FDH attainable set:

✬

✫

$$
\widehat{\Psi}_{FDH}^{Z} = \{(x, y) \in \mathbb{R}_{+}^{p+q} \mid x \ge x_i, y \le y_i \text{ for } i \text{ s.t. } ||Z_i - z|| \le h\}
$$

• DEA versions: Convexify the FDH attainable set, see Daraio, Simar (2007b)

$$
\widehat{\Psi}_{DEA}^{Z} = \{(x, y) \in \mathbb{R}_{+}^{p+q} \mid x \ge \sum_{\{i|||Z_{i}-z|| \le h\}} \gamma_{i}x_{i}, \quad y \le \sum_{\{i|||Z_{i}-z|| \le h\}} \gamma_{i}y_{i}
$$
\n
$$
\text{for } \gamma_{i} \text{ s.t.} \sum_{\{i|||Z_{i}-z|| \le h\}} \gamma_{i} = 1\},
$$
\n
$$
\widehat{\lambda}_{DEA}(x, y|z) = \sup \{\lambda \mid (x, \lambda y) \in \widehat{\Psi}_{DEA}^{Z}\}.
$$

Conditional Efficiency -4-

• Properties

✬

- Optimal bandwidth selection by data-driven methods, Badin, Daraio, Simar (2010)
- Asymptotic properties: similar to FDH/DEA with n replaced by nh^r , Jeong, Park, Simar (2010)
- Allow to detect the direction of the "influence" of Z on efficiency, see Daraio, Simar (2005, 2007a), Badin, Daraio, Simar (2012a, 2012b)
- Inference (confidence intervals) by bootstrap
- Robust versions (using order-m and order- α) are also available
- Z can be continuous, categorical or discrete

Conditional Efficiency -5-

• Usefulness

✬

- Define a "pure measure of technical efficiency", Badin, Daraio, Simar (2012a, 2012b)
	- Eliminate most of the influence of Z on $\widehat{\lambda}(x, y|z)$ by using a flexible location-scale nonparametric model: $\hat{\lambda}(x, y|z) = \mu(z) + \sigma(z)\varepsilon$, where $\mu(z)$ and $\sigma(z)$ are unspecified functions
	- $\hat{\epsilon}_i$ allows to rank firms facing different operating conditions.
- N.B.: An other approach: Florens, Simar, Van Keilegom (2011).
	- First eliminate influence of Z on inputs X and outputs Y by using two flexible location-scale nonparametric models
	- The residuals are "pure inputs and outputs" \tilde{X}_i and \tilde{Y}_i
	- Search for the frontier in these new units, to define "pure measure of technical efficiency"
	- Full frontier and order- m frontiers

Conditional Efficiency, Example -1-

• A Toy example:

✬

✫

- No output $(Y_i \equiv 1)$ and one input (input orientation)
- Z has no effect on X when $Z \leq 5$ and then a defavorable effect on X when $Z > 5$.
- The input are generated according

$$
X_i = 5^{1.5} \mathit{I\!I}(Z_i \leq 5) + Z_i^{1.5} \mathit{I\!I}(Z_i > 5) + U_i,
$$

where $Z_i \sim U(1, 10)$, $U_i \sim \text{Expo}(\mu = 3)$ and $n = 100$.

Conditional Efficiency, Examples -2a-

• 2 inputs/ 2 outputs : output orientation

– The efficient frontier is described by: $y^{(2)} = 1.0845(x^{(1)})^{0.3}(x^{(2)})^{0.4} - y^{(1)}$.

-
$$
X_i^{(j)} \sim U(1,2)
$$
 and $\tilde{Y}_i^{(j)} \sim U(0.2,5)$ for $j = 1,2$.

– The output efficient random points on the frontier are

$$
Y_{i,eff}^{(1)} = \frac{1.0845(X_i^{(1)})^{0.3}(X_i^{(2)})^{0.4}}{S_i + 1}
$$

$$
Y_{i,eff}^{(2)} = 1.0845(X_i^{(1)})^{0.3}(X_i^{(2)})^{0.4} - Y_{i,eff}^{(1)}.
$$

where $S_i = \tilde{Y}_i^{(2)} / \tilde{Y}_i^{(1)}$ represent the generated random rays in the output space.

- The efficiencies are simulated according to $\exp(-U_i)$
- The observed output are defined by $Y_i = Y_{i,eff} * \exp(-U_i)$ where $U_i \sim Exp(\mu_U = 1/2).$

 $- n = 100.$

✫

✬

Conditional Efficiency, Examples -2b-

• Environmental factors Z bivariate

✬

✫

- We generate two independent uniform variables $Z_j \sim U(1, 4)$ to build the bivariate variable $Z = (Z_1, Z_2)$.
- The influence of Z on the production process is described by:

$$
Y_i^{(1)} = (1 + 2 * |Z_1 - 2.5|^3) * Y_{i,eff}^{(1)} * \exp(-U_i)
$$

$$
Y_i^{(2)} = (1 + 2 * |Z_1 - 2.5|^3) * Y_{i,eff}^{(2)} * \exp(-U_i).
$$

- Z_1 pushes the efficient frontier above when far from 2.5, in both directions, with a **cubic effect**,
- Z_2 has **no effect** on the frontier or on the distribution of inefficiencies: Z_2 is irrelevant.
- Note that there is no interaction between Z_1 and Z_2 (independent) and no interaction between X and Z.

– Remember: only $n = 100$ observations, with $p = q = r = 2$!

Simulated example with multivariate Z. Marginal views of the surface regression of $\widehat{\lambda}_n(x,y|z)/\widehat{\lambda}_n(x,y)$ on z at the observed points (X_i, Y_i, Z_i) , viewed as a function of Z_1 (top panel) and as a function of Z_2 (bottom panel).

✬

✬

✫

Nonparametric Stochastic Frontiers -1-

• Basic Idea: localize (using kernels) an anchorage parametric model, Kumbhakar, Park, Simar, Tsionas (2007)

$$
Y_i = r(X_i) + v_i - u_i
$$

- $u|X = x ∼ |W(0, σ_u²(x))|$ and $v|X = x ∼ N(0, σ_v²(x))$ and u and v being independent conditionally on X.
- $\tau = r(x), \sigma^2_u(x) \text{ and } \sigma^2_v(x)$ are $\textbf{unknown functional parameters}$
- Estimation by Local Maximum Likelihhood method: $r(x)$, $\sigma_u^2(x)$ and $\sigma_v^2(x)$ are approximated by local polynomials (linear or quadratic).
- Asymptotic properties are available
- Bandwidths selection by LOO-LS cross-validation: numerical burden!

Nonparametric Stochastic Frontiers -2-

- Multivariate extension: Simar (2007), Simar, Zelenyuk (2011)
	- Use (partial-)polar coordinates: (x, y) [⇔] (ω, ^η, x), where ^ω [∈] ^R⁺ is the modulus and $\eta \in [0, \pi/2]^{q-1}$ is the amplitude (angle) of the vector y.

– The joint density $f_{X,Y}(x, y)$ induces a density on (ω, η, x) :

$$
f_{\omega,\eta,X}(\omega,\eta,x) = f_{\omega}(\omega \mid \eta,x) f_{\eta,X}(\eta,x)
$$

– For a given (x, y) the frontier point $y^{\partial}(x, y) = \lambda(x, y) y$ has a modulus:

$$
\omega(y^{\partial}(x,y)) = \sup \{ \omega \in \mathbb{R}^+ \mid f_{\omega}(\omega \mid \eta, x) > 0 \}
$$

- Back to a univariate frontier problem!
	- Given (η, x) find $\omega(y^{\partial}(x, y))$.

✬

✫

Polar coordinates in the output space for a particular section $Y(x)$. Output efficiency of $P = (x, y)$ is $\lambda(x, y) = |OQ|/|OP| = \omega(y^{\partial}(x, y))/\omega(x, y) \ge 1.$

• The Model:

✬

✫

– The observations are made on noisy data in the output radial-direction

– The data $\{(X_i, Y_i), i = 1, \ldots, n\}$ have polar coordinates (ω_i, η_i, X_i)

$$
\omega_i = \omega(y^{\partial}(X_i, Y_i)) e^{-u_i} e^{v_i},
$$

where $u_i > 0$ is inefficiency and v_i is noise $(E(v_i|X_i, Y_i)=0)$.

- $\omega(y^{\partial}(X_i, Y_i))$ is only a function of (η_i, X_i) .
- In the log-scale, the model could be written as

$$
\log \omega_i = r(\eta_i, X_i) - u_i + v_i,
$$

with $u_i > 0$ and $E(v_i|\eta_i, X_i) = 0$.

Nonparametric Stochastic Frontiers -5-

- Stochastic Versions of DEA/FDH : Two-stage procedure
	- [1] "Whitening the noise": Compute the consistent estimator of the frontier levels $\hat{r}(\eta_i, X_i)$ for each data points

* This gives points (X_i, Y_i^*) where $Y_i^* = \exp(\hat{r}(\eta_i, X_i))Y_i/\omega_i$

– [2] Run a DEA (or FDH) program with reference set (X_i, Y_i^*) .

– Summary:

✬

- Very encouraging results
- Computationally demanding (cross-validation for bandwidth selection)
- Below, some bivariate examples (see multivariate examples in Simar and Zelenyuk, 2011)

Nonparametric Frontier Analysis: recent developments and new challenges \sim

Conclusions -1-

- Nonparametric models \mathcal{NP} are Econometric/Statistical Models
	- Flexible and can be "robustified",

✬

- Inference is available (bootstrap)
- Noise can be introduced, but not easy.
- Environmental factors (heterogeneity) can be introduced
- Any directional distance can be used
- \bullet ${\mathcal{P}}$ and ${\mathcal{NP}}$ are complimentary models
	- \mathcal{NP} models can be used to check (test) $\mathcal P$ models (not the contrary).
	- Parametric approximations of \mathcal{NP} models can be useful for economic analysis.
	- Semiparametric models should be developed.

Conclusions -2-

• Other challenges

✬

✫

– ...

- Panel Data: introduce dynamic behavior of units
- Theory for functions of DEA/FDH scores: Kneip, Simar and Wilson (2012)
	- ∗ Useful for justifying and deriving testing procedures: Work in progress!!
	- ∗ RTS, Convexity, using subsampling, Simar and Wilson (2011a),
	- ∗ Testing Separabilty, Daraio, Simar and Wilson (2010), still problems. . .
	- ∗ Testing by avoiding bootstrap? Kneip, Simar, Wilson (?)
- Nonparametric Stochastic Frontiers
	- ∗ Kneip, Simar, Van Keilegom (2012): Gaussian noise and using penalized nonparametric techniques (sieve estimation)
	- ∗ Florens, Simar (?): Gaussian noise and deconvolution with Tikhonov regularization.

References

• Basic References

✬

- Fried, H., Lovell, K. and S. Schmidt (eds) (2008),The Measurement of Productive Efficiency, 2nd Edition, Oxford University Press.
- Kumbhakar, S.C. and C.A.K. Lovell (2000), Stochastic Frontier Analysis, Cambridge University Press.
- Daraio, C. and L. Simar (2007a), Advanced Robust and Nonparametric Methods in Efficiency Analysis. Methodology and Applications, Springer, New-York.
- Simar, L. and P.W. Wilson (2008), Statistical Inference in Nonparametric Frontier Models: recent Developments and Perspectives, in The Measurement of Productive Efficiency, 2nd Edition, Harold Fried, C.A.Knox Lovell and Shelton Schmidt, editors, Oxford University Press, 2008.

• References list

✬

- Aigner, D.J., Lovell, C.A.K. and P. Schmidt (1977), Formulation and estimation of stochastic frontier models, Journal of Econometrics, 6, 21-37.
- Aragon, Y. and Daouia, A. and Thomas-Agnan, C. (2005), Nonparametric Frontier Estimation: A Conditional Quantile-based Approach, Econometric Theory, 21, 358–389.
- Badin, M., Daraio, C. and L. Simar (2010), Optimal Bandwidth Selection for Conditional Efficiency Measures: a Data-driven Approach, European Journal of Operational Research, 201, 633–640
- Badin, L., Daraio, C. and L. Simar (2012a), How to measure the impact of environmental factors in a nonparametric production model? Discussion paper 2011/19, Institut de Statistique, UCL, in press European Journal of Operational Research.
- Badin, L., Daraio, C. and L. Simar (2012b), Explaining Inefficiency in Nonparametric Production Models: the State of the Art. Discussion paper 2011/33, Institut de Statistique, UCL, in press Annals of Operations Research.
- Badin, L. and L. Simar (2009), A bias corrected nonparametric envelopment estimator of frontiers, Econometric Theory, 25, 5, 1289–1318.
- Banker, R.D. and R.C. Morey (1986), Efficiency analysis for exogenously fixed inputs and outputs, Operations Research, 34(4), 513–521.

- Cazals, C. Florens, J.P. and L. Simar (2002), Nonparametric Frontier Estimation: a Robust Approach , in Journal of Econometrics, 106, 1–25.
- Chambers, R. G., Y. Chung, and R. Färe (1998), Profit, directional distance functions, and nerlovian efficiency, Journal of Optimization Theory and Applications, 98, 351–364.
- Charnes, A., Cooper W.W. and E. Rhodes (1978), Measuring the inefficiency of decision making units, European Journal of Operational Research 2 (6), 429-444.
- Daouia, A., J.P. Florens and L. Simar (2008), Functional Convergence of Quantile-type Frontiers with Application to Parametric Approximations, Journal of Statistical Planning and Inference, 138, 708–725.
- Daouia, A., Florens, J.P. and L. Simar (2010), Frontier estimation and extreme values theory. Bernoulli, 16(4), 1039–1063.
- Daouia, A., Florens, J.P. and L. Simar (2012), Regularization of Non-parametric Frontier Estimators, Journal of Econometrics, 168, 285–299.
- Daouia, A. and L. Simar (2005), Robust Nonparametric Estimators of Monotone Boundaries, Journal of Multivariate Analysis, 96, 311–331.
- Daouia, A. and L. Simar (2007), Nonparametric efficiency analysis: a multivariate conditional quantile approach, Journal of Econometrics, 140, 375–400.

- Daraio, C. and L. Simar (2005), Introducing environmental variables in nonparametric frontier models: a probabilistic approach, Journal of Productivity Analysis, vol 24, 1, 93–121.
- Daraio, C. and L. Simar (2006), A Robust Nonparametric Approach to Evaluate and Explain the Performance of Mutual Funds, European Journal of Operational Research, vol 175, 1, 516–542.
- Daraio, C. and L. Simar (2007a), Advanced Robust and Nonparametric Methods in Efficiency Analysis. Methodology and Applications, Springer, New-York.
- Daraio, C. and L. Simar (2007b), Conditional nonparametric frontier models for convex and non convex technologies: a unifying approach, Journal of Productivity Analysis, vol 28, 13–32.
- Daraio, C., Simar, L. and P.W. Wilson (2010), Testing whether Two-Stage Estimation is Meaningful in Non-Parametric Models of Production, Discussion paper 1031, Institut de Statistique, UCL.
- Debreu, G. (1951), The coefficient of ressource utilization, *Econometrica*, 19:3, 273-292.
- Deprins, D., Simar, L. and H. Tulkens (1984), Measuring labor inefficiency in post offices. In The Performance of Public Enterprises: Concepts and measurements. M. Marchand, P. Pestieau and H. Tulkens (eds.), Amsterdam, North-Holland, 243–267.
- Farrell, M.J. (1957), The measurement of productive efficiency. Journal of the Royal Statistical Society, Series A, 120, 253–281.

- Färe, R. and S. Grosskopf (2000), Theory and application of directional distance functions, Journal of Productivity Analysis 13, 93–103.
- Färe, R., and S. Grosskopf (2004), New Directions: Efficiency and Productivity, Boston: Kluwer Academic Publishers.
- Färe, R., S. Grosskopf, and C. A. K. Lovell (1985), The Measurement of Efficiency of Production, Boston: Kluwer-Nijhoff Publishing.
- Florens, J.P. and L. Simar, (2005), Parametric Approximations of Nonparametric Frontier, Journal of Econometrics, vol 124, 1, 91–116
- Kneip, A., Simar, L. and I. Van Keilegom (2012), Boundary estimation in the presence of measurement error with unknown variance. Discussion paper 2012/02, Institut de Statistique, UCL.
- Fried, H., Lovell, K. and S. Schmidt (eds) (2008), The Measurement of Productive Efficiency, 2nd Edition, Oxford University Press.
- Gijbels, I., E. Mammen, B.U. Park and L. Simar (1999), On Estimation of Monotone and Concave Frontier Functions, Journal of the American Statistical Association, vol 94, 445, 220-228.
- Hall, P. and L. Simar (2002), Estimating a Changepoint, Boundary or Frontier in the Presence of Observation Error, Journal of the American Statistical Association, 97, 523–534.

- Jeong, S.O., B. U. Park and L. Simar (2010), Nonparametric conditional efficiency measures: asymptotic properties. Annals of Operations Research, 173, 105–122.
- Jeong, S.O. and L. Simar (2006), Linearly interpolated FDH efficiency score for nonconvex frontiers, Journal of Multivariate Analysis, 97, 2141–2161.
- Kneip, A., Park, B.U. and Simar, L. (1998). : A note on the convergence of nonparametric DEA estimators for production efficiency scores. *Econometric Theory*, 14, 783–793.
- Kneip, A., Simar, L. and I. Van Keilegom (2010), Boundary Estimation in the Presence of Measurement Errors. Discussion paper 1046, Institut de Statistique, UCL.
- Kneip, A, L. Simar and P.W. Wilson (2008), Asymptotics and consistent bootstraps for DEA estimators in non-parametric frontier models, Econometric Theory, 24, 1663–1697.
- Kneip, A., Simar, L. and P.W. Wilson (2011), A Computational Efficient, Consistent Bootstrap for Inference with Non-parametric DEA Estimators. Computational Economics., 38,483-515.
- Kneip, A., Simar, L. and P.W. Wilson (2012), Central Limit Theorems for DEA efficiency scores: when bias can kill the variance. Discussion paper, Institut de Statistique, UCL.
- Koopmans, T.C.(1951), An analysis of production as an efficient combination of activities, in Koopmans, T.C. (ed) Activity Analysis of Production and Allocation, Cowles Commision for Research in Economics, Monograph 13, John-Wiley, New-York.

- Korostelev, A., Simar, L. and A. Tsybakov (1995a), Efficient Estimation of Monotone Boundaries, Annals of Statistics, 23(2), 476–489.
- Korostelev, A., Simar, L. and A. Tsybakov (1995b), On Estimation of Monotone and Convex Boundaries, Publications des Instituts de Statistique des Universités de Paris, 1, 3–18.
- Kumbhakar, S.C. and C.A.K. Lovell (2000), Stochastic Frontier Analysis, Cambridge University Press.
- Kumbhakar, S.C. , Park, B.U., Simar, L. and E.G. Tsionas (2007), Nonparametric stochastic frontiers: a local likelihood approach, Journal of Econometrics, 137, 1, 1–27.
- Mouchart, M. and L. Simar (2002), Efficiency analysis of Air Controlers: first insights, Consulting report 0202, Institut de Statistique, Université Catholique de Louvain, Belgium.
- Park, B.U., Jeong, S.-O. and L. Simar (2010), Asymptotic Distribution of Conical-Hull Estimators of Directional Edges. Annals of Statistics, Vol 38, 6, 1320–1340.
- Park, B. Simar, L. and Ch. Weiner (2000), The FDH Estimator for Productivity Efficiency Scores: Asymptotic Properties, Econometric Theory, Vol 16, 855–877.
- Park, B., L. Simar and V. Zelenyuk (2008), Local Likelihood Estimation of Truncated Regression and its Partial Derivatives: Theory and Application, Journal of Econometrics, 146, 185–198.
- Ritter, C. and L. Simar (1997), Pitfalls of normal-gamma stochastic frontier models, *Journal of* Productivity Analysis, 8, 167–182.

- Schubert, T. and L. Simar (2011), Innovation and export activities in the German mechanical engineering sector: an application of testing restrictions in production analysis. Journal of Productivity Analysis, 36, 55–69.
- Shephard, R.W. (1970). Theory of Cost and Production Function. Princeton University Press, Princeton, New-Jersey.
- Simar, L. (1992), Estimating efficiencies from frontier models with panel data: a comparison of parametric, non-parametric and semi-parametric methods with bootstrapping, Journal of Productivity Analysis, 3, 167-203.
- Simar, L. (2003), Detecting Outliers in Frontiers Models: a Simple Approach, *Journal of* Productivity Analysis, 20, 391–424.
- Simar, L. (2007), How to Improve the Performances of DEA/FDH Estimators in the Presence of Noise, Journal of Productivity Analysis, vol 28, 183–201.
- Simar, L. and A. Vanhems (2012), Probabilist Characterization of Directional Distances and their Robust versions. Journal of Econometrics, 166, 342–354.
- Simar, L., Vanhems, A. and P.W. Wilson (2012), Statistical inference with DEA estimators of directional distances, European Journal of Operational Research, 220, 853–864.
- Simar, L. and P. Wilson (1998), Sensitivity of efficiency scores : How to bootstrap in Nonparametric frontier models, Management Sciences, 44, 1, 49–61.

- Simar, L. and P. Wilson (1999a), Some problems with the Ferrier/Hirschberg Bootstrap Idea, Journal of Productivity Analysis, 11, 67–80.
- Simar, L. and P. Wilson (1999b), Of Course we can bootstrap DEA scores ! But does it mean anything ? Logic trumps wishful thinking, Journal of Productivity Analysis, 11, 93–97.
- Simar L. and P. Wilson (2000), A General Methodology for Bootstrapping in Nonparametric Frontier Models, Journal of Applied Statistics, Vol 27, 6, 779–802.
- Simar L. and P. Wilson (2001), Testing Restrictions in Nonparametric Efficiency Models, Communications in Statistics, simulation and computation, 30 (1), 159–184.
- Simar L. and P. Wilson (2002), Nonparametric Test of Return to Scale, *European Journal of* Operational Research, 139, 115–132.
- Simar, L and P. Wilson (2007), Estimation and Inference in Two-Stage, Semi-Parametric Models of Production Processes, Journal of Econometrics, vol 136, 1, 31–64.
- Simar, L. and P.W. Wilson (2008), Statistical Inference in Nonparametric Frontier Models: recent Developments and Perspectives, in The Measurement of Productive Efficiency, 2nd Edition, Harold Fried, C.A.Knox Lovell and Shelton Schmidt, editors, Oxford University Press, 2008.
- Simar, L. and P.W. Wilson (2010), Inference From Cross-Sectional Stochastic Frontier Models. Econometric Review, 29, 1, 62–98.

- Simar, L. and P.W. Wilson (2011a), Inference by the m out of n bootstrap in nonparametric frontier models. Journal of Productivity Analysis, 36, 33–53.
- Simar, L. and P.W. Wilson (2011), Two-Stage DEA: Caveat Emptor. Journal of Productivity Analysis, 36, 205–218.
- Simar, L. and V. Zelenyuk (2006), On Testing Equality of Two Distribution Functions of Efficiency Score Estimated via DEA, Econometric Review, 25(4), 497-522.
- Simar, L. and V. Zelenyuk (2007), Statistical Inference for Aggregates of Farrell-type Efficiencies, Journal of Applied Econometrics, vol 22, 7, 1367–1394.
- Simar, L. and V. Zelenyuk (2011), Stochastic FDH/DEA estimators for frontier analysis. Journal of Productivity Analysis, 36, 1–20..
- Wilson, P.W. (2008), FEAR 1.0: A Software Package for Frontier Efficiency Analysis with R, Socio-Economic Planning Sciences 42, 247–254.
- Wilson, P.W. (2011), Asymptotic properties of some non-parametric hyperbolic efficiency estimators, in I. van Keilegom and P. W. Wilson, eds., Exploring Research Frontiers in Contemporary Statistics and Econometrics, Berlin: Springer-Verlag.